EFAX(1)EFAX(1)NAME
efax - send/receive faxes with Class 1, 2 or 2.0 fax modem
(Please read the fax man page first.)
SYNOPSIS
efax [ options ] [ -t num [ file... ] ]
OPTIONS
Where options are:
-a cmd use the command ATcmd when answering the phone. The default
is "A".
-c caps set the local modem capabilities. See the section on capabil‐
ities below for the format and meaning of caps. For Class 1
the default is 1,n,0,2,0,0,0,0 where n is the highest speed
supported by the modem. For Class 2 the default is determined
by the modem.
-d dev use the fax modem connected to device dev. The default is
/dev/modem.
-f fnt use font file fnt for generating the header. The default is a
built-in 8x16 font. See the efix(1)-f option for the font
file format.
-g cmd if a CONNECT (or DATA) response indicates a data call, the
shell /bin/sh is exec(2)'ed with cmd as its command. cmd is a
printf(3) format that may contain up to 6 %d escapes which are
replaced by the baud rate following the most recent CONNECT
message. cmd typically exec's getty(8).
-h hdr put string `hdr' at the top of each page. The first %d in
`hdr' is replaced by the page number and the second, if any,
is replaced by the number of pages being sent.
-i str
-j str
-k str send the command ATstr to the modem to initialize it. -i com‐
mands are sent before the modem is put into fax mode, -j com‐
mands after the modem is in fax mode, and -k commands just
before efax exits. The only default is a hang-up (ATH) com‐
mand that is sent before exiting only if no other -k options
are given. Multiple options may be used.
-l id set the local identification string to id. id should be the
local telephone number in international format (for example
"+1 800 555 1212"). This is passed to the remote fax machine.
Some fax machines may not accept characters other than num‐
bers, space, and '+'.
-o opt use option opt to accommodate a non-standard fax modem proto‐
col. See the MODEM REQUIREMENTS section below for more
details. The options are:
0 Force use of Class 2.0 fax modem commands. The modem must
support Class 2.0.
2 Force use of Class 2 fax modem commands. The modem must sup‐
port Class 2.
1 Force use of Class 1 fax modem commands. The modem must sup‐
port Class 1. By default efax queries the modem and uses the
first of the three above classes which is supported by the
modem.
a use software adaptive answer method. If the first attempt to
answer the call does not result in a data connection within 8
seconds the phone is hung up temporarily and answered again in
fax mode (see "Accepting both fax and data calls" below).
e ignore errors in modem initialization commands.
f use "virtual flow control". efax tries to estimate the number
of bytes in the modem's transmit buffer and pauses as neces‐
sary to avoid filling it. The modem's buffer is assumed to
hold at least 96 bytes. This feature does not work properly
with Class 2 modems that add redundant padding to scan lines.
Use this option only if you have problems configuring flow
control.
h use hardware (RTS/CTS) in addition to software (XON/XOFF) flow
control. Many modems will stop responding if this option is
used. See the section `Resolving Problems' before using this
option.
l halve the time between testing lock files when waiting for
other programs to complete. By default this is 8 seconds. For
example -olll sets the interval to 1 second.
n ignore requests for pages to be retransmitted. Use this option
if you don't care about the quality of the received fax or if
the receiving machine is too fussy. Otherwise each page may
be retransmitted up to 3 times.
r do not reverse bit order during data reception for Class 2
modems. Only Multitech modems require this option. Not nor‐
mally required since efax detects these modems.
x send XON (DC1) instead of DC2 to start data reception.
Applies to a very few Class 2 modems only.
z delay an additional 100 milliseconds before each modem ini‐
tialization or reset command. The initial delay is 100 ms.
For example, -ozzz produces a 400 ms delay. Use with modems
that get confused when commands arrive too quickly.
-q n ask for retransmission of pages received with more than n
errors. Default is 10.
-r pat each received fax page is stored in a separate file. The file
name is created using pat as a strftime(3) format string. A
page number of the form .001, .002, ... is appended to the
file name. If pat is blank ("") or no -r option is given a
default string of "%m%d%H%M%S" is used.
-s remove lock file(s) after initializing the modem. This allows
outgoing calls to proceed when efax is waiting for an incoming
call. If efax detects modem activity it will attempt to re-
lock the device. If the modem has been locked by the other
program efax will exit and return 1 (``busy''). Normally a
new efax process is then started by init(8). The new efax
process will then check periodically until the lock file dis‐
appears and then re-initialize the modem.
-t num [file...]
dial telephone number num and send the fax image files
file.... If used, this must be the last argument on the com‐
mand line. The telephone number num is a string that may con‐
tain any dial modifiers that the modem supports such as a T
prefix for tone dialing or commas for delays. If no file
names are given the remote fax machine will be polled. If no
-t argument is given efax will answer the phone and attempt to
receive a fax.
-v strng select types of messages to be printed. Each lower-case let‐
ter in strng enables one type of message:
e - errors
w - warnings
i - session progress information
n - capability negotiation information
c - modem (AT) commands and responses
h - HDLC frame data (Class 1 only)
m - modem output
a - program arguments
r - reception error details
t - transmission details
f - image file details
x - lock file processing
Up to two -v options may be used. The first is for messages
printed to the standard error and the second is for messages
to the standard output. The default is "ewin" to the standard
error only.
-w wait for an OK or CONNECT prompt instead of issuing an answer
(ATA) command to receive a fax. Use this option when the
modem is set to auto-answer (using S0=n) or if another program
has already answered the call.
-x lkf use a UUCP-style lock file lkf to lock the modem device before
opening it. If the device is locked, efax checks every 15
seconds until it is free. Up to 16 -x options may be used if
there are several names for the same device. A `#' prefix on
the file name creates an binary rather than text (HDB-style)
lock file. This is the reverse of what was used by previous
efax versions.
FAX FILE FORMATS
efax can read the same types of files as efix(1) including text, T.4
(Group 3), PBM, single- and multi-page TIFF (G3 and uncompressed).
efax automatically determines the type of file from its contents. TIFF
files are recommended as they contain information about the image size
and resolution.
Each page to be sent should be converted to a separate TIFF format file
with Group 3 (G3) compression. Received files are also stored in this
format. The EXAMPLES section below shows how efix and other programs
can be used to create, view and print these files.
OPERATING SYSTEM REQUIREMENTS
The operating system must provide short response times to avoid proto‐
col timeouts. For Class 2 and 2.0 modems the delay should not exceed 1
or 2 seconds.
When using Class 1 modems the program must respond to certain events
within 55 milliseconds. Longer delays may cause the fax protocol to
fail in certain places (between DCS and TCF or between RTC and MPS).
Class 1 modems should therefore not be used on systems that cannot
guarantee that the program will respond to incoming data in less than
55 milliseconds. In particular, some intelligent serial cards and ter‐
minal servers may introduce enough delay to cause problems with Class 1
operation.
The operating system must also provide sufficient low-level buffering
to allow uninterrupted transfer of data between the modem and a disk
file at the selected baud rate, typically 9600 bps. Since the fax pro‐
tocol does not provide end-to-end flow control the effectiveness of
flow control while receiving is limited by the size of the modem's buf‐
fer. This can be less than 100 bytes. Efax does not use flow control
during reception.
MODEM REQUIREMENTS
The "Group" is the protocol used to send faxes between fax machines.
Efax supports the Group 3 protocol used over the public telephone net‐
work.
The "Class" is the protocol used by computers to control fax modems.
Efax supports Class 1, 2 and 2.0 fax modems.
Most fax modems use XON/XOFF flow control when in fax mode. This type
of flow control adds very little overhead for fax use. Many modems have
unreliable hardware (RTS/CTS) flow control in fax mode. By default
efax enables only XON/XOFF flow control and the -oh option must be used
to add hardware flow control.
While some modems have serial buffers of about 1k bytes, many inexpen‐
sive modems have buffers of about one hundred bytes and are thus more
likely to suffer overruns when sending faxes.
A few older modems may need a delay between commands of more than the
default value used by efax (100 milliseconds). If the delay is too
short, commands may not echo properly, may time out, or may give incon‐
sistent responses. Use one or more -oz options to increase the delay
between modem initialization commands and use the E0 modem initializa‐
tion command to disable echoing of modem commands.
By default efax sends DC2 to start the data flow from the modem when
receiving faxes from Class 2 modems. A few older modems require XON
instead. Use of DC2 would cause the modem to give an error message
and/or the program to time out. The -ox option should be used in this
case.
A few older Class 2 modems (e.g. some Intel models) don't send DC2 or
XON to start the data flow to the modem when sending faxes. After
waiting 2 seconds efax will print a warning and start sending anyways.
A very few Class 2 modems do not reverse the bit order (MSB to LSB) by
default on receive. This might cause errors when trying to display or
print the received files. The -or option can be used in this case.
Some inexpensive "9600 bps" fax modems only transmit at 9600 bps and
reception is limited to 4800 bps.
The following Class 1 modems have been reported to work with efax: AT&T
DataPort, Cardinal Digital Fax Modem (14400), Digicom Scout+, Motorola
Lifestyle 28.8, Motorola Power 28.8, QuickComm Spirit II, Smartlink
9614AV-Modem, Supra Faxmodem 144LC, USR Courier V.32bis Terbo, USR
Sportster (V.32 and V.34), Zoom AFC 2.400, Zoom VFX14.4V.
The following Class 2 modems have been reported to work with efax: 14k4
Amigo Communion fax/modem, Adtech Micro Systems 14.4 Fax/modem, askey
modem type 1414VQE, AT&T DataPort, ATT/Paradyne, AT&T Paradyne PCMCIA,
Boca modem, BOCA M1440E, Crosslink 9614FH faxmodem, FuryCard DNE 5005,
GVC 14.4k internal, Intel 14.4 fax modem, Megahertz 14.4, , Microcom
DeskPorte FAST ES 28.8, Motorola UDS FasTalk II, MultiTech 1432MU,
Practical Peripherals PM14400FXMT, Supra V32bis, Telebit Worldblazer,
TKR DM-24VF+, Twincom 144/DFi, ViVa 14.4/Fax modem, Vobis Fax-Modem
(BZT-approved), Zoom VFX14.4V, ZyXEL U-1496E[+], ZyXEL Elite 2864I.
MODEM INITIALIZATION OPTIONS
The required modem initialization commands are generated by efax.
Additional commands may be supplied as command-line arguments. The
modem must be set up to issue verbose(text) result codes. The follow‐
ing command does this and is sent by efax before trying to initialize
the modem.
Q0V1 respond to commands with verbose result codes
The following commands may be useful for special purposes:
X3 don't wait for dial tone before dialing. This may be used to
send a fax when the call has already been dialed manually. In
this case use an empty string ("") as the first argument to
the -t command. Use X4 (usual default) to enable all result
codes.
M2 leave the monitor speaker turned on for the duration of the
call (use M0 to leave it off).
L0 turn monitor speaker volume to minimum (use L3 for maximum).
E0 disable echoing of modem commands. See the Resolving Problems
section below.
&D2 returns the modem to command mode when DTR is dropped. The
program drops DTR at the start and end of the call if it can't
get a response to a modem command. You can use &D3 to reset
the modem when DTR is dropped.
S7=120 wait up to two minutes (120 seconds) for carrier. This may be
useful if the answering fax machine takes a long time to start
the handshaking operation (e.g. a combined fax/answering
machine with a long announcement).
CAPABILITIES
The capabilities of the local hardware and software can be set using a
string of 8 digits separated by commas:
vr,br,wd,ln,df,ec,bf,st
where:
vr (vertical resolution) =
0 for 98 lines per inch
1 for 196 lpi
br (bit rate) =
0 for 2400 bps
1 for 4800
2 for 7200
3 for 9600
4 for 12000 (V.17)
5 for 14400 (V.17)
wd (width) =
0 for 8.5" (21.5 cm) page width
1 for 10" (25.5 cm)
2 for 12" (30.3 cm)
ln (length) =
0 for 11" (A4: 29.7 cm) page length
1 for 14" (B4: 36.4 cm)
2 for unlimited page length
df (data format) =
0 for 1-D coding
1 for 2-D coding (not supported)
ec (error correction) =
0 for no error correction
bf (binary file) =
0 for no binary file transfer
st (minimum scan time) =
0 for zero delay per line
1 for 5 ms per line
3 for 10 ms per line
5 for 20 ms per line
7 for 40 ms per line
When receiving a fax the vr, wd, and ln fields of the capability string
should be set to the maximum values that your display software sup‐
ports. The default is 196 lpi, standard (8.5"/21.5cm) width and unlim‐
ited length.
When sending a fax efax will determine vr and ln from the image file
and set wd to the default.
If the receiving fax machine does not support high resolution (vr=1)
mode, efax will reduce the resolution by combining pairs of scan lines.
If the receiving fax machine does not support the image's width then
efax will truncate or pad as required. Most fax machines can receive ln
up to 2. Few machines support values of wd other than 0.
HEADERS
efax adds blank scan lines at the top of each image when it is sent.
This allows room for the page header but increases the length of the
image (by default about 0.1" or 2.5mm of blank space is added).
The header placed in this area typically includes the date and time,
identifies the, and shows the page number and total pages. Headers
cannot be disabled but the header string can be set to a blank line.
The default font for generating the headers is the built-in 8x16 pixel
font scaled to 12x24 pixels (about 9 point size).
Note that both efax and efix have -f options to specify the font. efIx
uses the font to generate text when doing text-to-fax conversions (dur‐
ing "fax make") while efAx uses the font to generate the header (during
"fax send").
SESSION LOG
A session log is written to the standard error stream. This log gives
status and error messages from the program as selected by the -v
option. A time stamp showing the full time or just minutes and seconds
is printed before each message. Times printed along with modem
responses also show milliseconds.
RETURN VALUES
The program returns an error code as follows:
0 The fax was successfully sent or received.
1 The dialed number was busy or the modem device was in use.
Try again later.
2 Something failed (e.g. file not found or disk full). Don't
retry. Check the session log for more details.
3 Modem protocol error. The program did not receive the
expected response from the modem. The modem may not have been
properly initialized, the correct -o options were not used, or
a bug report may be in order. Check the session log for more
details.
4 The modem is not responding. Operator attention is required.
Check that the modem is turned on and connected to the correct
port.
5 The program was terminated by a signal.
EXAMPLES
Creating fax (G3) files
The efix program can be used to convert text files to TIFF-G3 format.
For example, the following command will convert the text file letter to
the files letter.001, letter.002, etc,:
efix -nletter.%03d letter
Ghostscript's tiffg3 driver can generate fax files in TIFF-G3 format
from postscript files. For example, the command:
gs -q -sDEVICE=tiffg3 -dNOPAUSE \
-sOutputFile=letter.%03d letter.ps </dev/null
will convert the Postscript file letter.ps into high-resolution (vr=1)
G3 fax image files letter.001, letter.002, ...
The images should have margins of at least 1/2 inch (1 cm) since the
fax standard only requires that fax machines print a central portion of
the image 196.6mm (7.7 inches) wide by 281.5mm (11.1 inches) high.
The efix program can also insert bitmaps in images to create letter‐
head, signatures, etc.
Printing fax files
You can use the efix program to print faxes on Postscript or HP-PCL
(LaserJet) printers. For example, to print the received fax file
reply.001 on a Postscript printer use the command:
efix -ops reply.001 | lpr
Sending fax files
The following command will dial the number 222-2222 using tone dialing
and send a two-page fax from the TIFF-G3 files letter.001 and let‐
ter.002 using the fax modem connected to device /dev/cua1.
efax -d /dev/cua1 \
-t T222-2222 letter.001 letter.002
Manual answer
You can use efax to answer the phone immediately and start fax recep‐
tion. Use this mode if you need to answer calls manually to see if
they are fax or voice.
For example, the following command will make the fax modem on device
/dev/ttyS1 answer the phone and attempt to receive a fax. The received
fax will be stored in the files reply.001, reply.002, and so on. The
modem will identify itself as "555 1212" and receive faxes at high or
low resolution (vr=1), at up to 14.4 kbps (br=5).
efax -d /dev/ttyS1 -l "555 1212" \
-c 1,5 -r reply
Automatic answer
The -w option makes efax wait for characters to become available from
the modem (indicating an incoming call) before starting fax reception.
Use the -w option and a -iS0=n option to answer the phone after n
rings. The example below will make the modem answer incoming calls in
fax mode on the fourth ring and save the received faxes using files
names corresponding to the reception date and time.
efax -d /dev/ttyb -w -iS0=4 2>&1 >> fax.log
Sharing the modem with outgoing calls
The modem device can be shared by programs that use the UUCP device
locking protocol. This includes pppd, chat, minicom, kermit, uucico,
efax, cu, and many others others. However, locking will only work if
all programs use the same lock file.
efax will lock the modem device before opening it if one or more UUCP
lock file names are given with -x options. Most programs place their
lock files in the /usr/spool/uucp or /var/lock directories and use the
name LCK..dev where dev is the name of the device file in the /dev
directory that is to be locked.
If the -s (share) option is used, the lock file is removed while wait‐
ing for incoming calls so other programs can use the same device.
If efax detects another program using the modem while it is waiting to
receive a fax, efax exits with a termination code of 1. A subsequent
efax process using this device will wait until the other program is
finished before re-initializing the modem and starting to wait for
incoming calls again.
Programs that try to lock the modem device by using device locking
facilities other than UUCP lock files not be able to use this arbitra‐
tion mechanism because the device will still be open to the efax
process. In this case you will need to kill the efax process (e.g.
"fax stop") before starting the other program.
When efax is waiting for a fax it leaves the modem ready to receive in
fax mode but removes the lock file. When a slip or PPP program takes
over the modem port by setting up its own lock file efax cannot send
any more commands to the modem -- not even to reset it. Therefore the
other program has to set the modem back to data mode when it starts up.
To do this add a modem reset command (send ATZ expect OK) to the begin‐
ning of your slip or PPP chat script.
Accepting both fax and data calls
Many modems have an adaptive data/fax answer mode that can be enabled
using the -j+FAE=1 (for Class 1) or -jFAA=1 (for Class 2[.0]) initial‐
ization string. The type of call (data or fax) can then be deduced
from the modem's responses.
Some modems have limited adaptive answer features (e.g. only working
properly at certain baud rates or only in Class 2) or none at all. In
this case use the initialization string -i+FCLASS=0 to answer in data
mode first and the -oa option to then hang up and try again in fax mode
if the first answer attempt was not successful. This method only works
if your telephone system waits a few seconds after you hang up before
disconnecting incoming calls.
If the -g option is used then the option's argument will be run as a
shell command when an incoming data call is detected. Typically this
command will exec getty(8). This program should expect to find the
modem already off-hook and a lock file present so it should not try to
hang up the line or create a lock file. Note that the modem should be
set up to report the DCE-DTE (modem-computer, e.g. CONNECT 38400)
speed, not the DCE-DCE (modem-modem, e.g. CONNECT 14400) speed. For
many modems the initialization option -iW0 will set this.
The following command will make efax answer incoming calls on /dev/cua1
on the second ring. This device will be locked using two different
lock files but these lock files will be removed while waiting for
incoming calls (-s). If a data call is detected, the getty program
will be run to initialize the terminal driver and start a login(1)
process. Received fax files will be stored using names like
Dec02-12.32.33.001, in the /usr/spool/fax/incoming directory and the
log file will be appended to /usr/spool/fax/faxlog.cua1.
efax -d /dev/cua1 -j '+FAA=1' \
-x /usr/spool/uucp/LCK..cua1 \
-x /usr/spool/uucp/LCK..ttyS1 \
-g "exec /sbin/getty -h /dev/cua1 %d" \
-iS0=2 -w -s \
-r "/usr/spool/fax/incoming/%b%d-%H.%I.%S" \
>> /usr/spool/fax/faxlog.cua1 2>&1
Note that adaptive answer of either type will not work for all callers.
For some data calls the duration of the initial data-mode answer may be
too short for data handshaking to complete. In other cases this dura‐
tion may be so long that incoming fax calls will time out before efax
switches to fax mode. In addition, some calling fax modems mistake
data-mode answering tones for fax signaling tones and initiate fax
negotiation too soon. If you use software adaptive answer you can
reduce the value of the initial data-mode answer (set by TO_DATAF in
efax.c) to get more reliable fax handshaking or increase it for more
reliable data handshaking. However, if you need to provide reliable
fax and data service to all callers you should use separate phone num‐
bers for the two types of calls.
When a call is answered the modem goes on-line with the computer-to-
modem baud rate fixed at the speed used for the most recent AT command.
When efax is waiting for a fax or data call it sets the interface speed
to 19200 bps since this is the speed required for fax operation. This
prevents full use of 28.8kbps modem capabilities.
USING INIT TO RUN EFAX
efax can answer all incoming calls if you place an entry for efax in
/etc/inittab (for SysV-like systems) or /etc/ttytab (for BSD-like sys‐
tems). The init(8) process will run a new copy of efax when the system
boots up and whenever the previous efax process terminates. The init‐
tab or ttytab entry should invoke efax by running the fax script with
an answer argument.
For example, placing the following line in /etc/inittab (and running
"kill -1 1") will make init run the fax script with the argument answer
every time previous process terminates and init is in runlevel 4 or 5.
s1:45:respawn:/bin/sh /usr/bin/fax answer
For BSD-like systems (e.g. SunOS), a line such as the following in
/etc/ttytab will have the same effect:
ttya "/usr/local/bin/fax answer" unknown on
You should protect the fax script and configuration files against tam‐
pering since init will execute them as a privileged (root) process. If
you will be allowing data calls via getty and login you should ensure
that your system is reasonably secure (e.g. that all user id's have
secure passwords).
If efax exec()'s getty properly but you get a garbled login prompt then
there is probably a baud rate mismatch between the modem and the com‐
puter. First, check the efax log file to make sure the modem's CONNECT
response reported the serial port speed (e.g. 19200), not the modem-
modem speed (e.g. 14400). Next, check the getty options and/or config‐
uration files (e.g. /etc/gettydefs) for that particular baud rate.
Then run getty manually with the same arguments and verify the port
settings using ``stty </dev/XXX''. Note that you'll probably want to
enable hardware flow control for data connections (-h for agetty,
CRTSCTS for getty_ps).
A few programs won't work properly when efax is set up to answer calls
because they don't create lock files. You can put the shell script
``wrapper'' below around such programs to make them work properly.
Change BIN and LOCKF to suit.
#!/bin/sh
BIN=/bin/badprogram
LOCKF=/var/spool/uucp/LCK..cua1
if [ -f $LOCKF ]
then
echo lock file $LOCKF exists
exit 1
else
printf "%10d0 $$ >$LOCKF
$BIN $*
rm $LOCKF
fi
DELIVERING RECEIVED FAXES BY E-MAIL
The "fax answer" script described above can be configured to e-mail the
fax files received by the previous fax answer process to a "fax man‐
ager" who can then forward the fax to the correct recipient. The
received fax files are send as MIME attachments, one file per page,
using the ``base64'' text encoding and the ``image/tiff'' file format.
To view the fax images directly from your e-mail reader you will have
to configure it with an application that can display files of type
image/tiff. Typically this is specified in a ``mailcap'' file. For
example, placing the following line in /etc/mailcap will cause the fax
file attachments to be displayed using the ``fax view'' command.
image/tiff; fax view %s
SENDING FAXES USING THE PRINT SPOOLER
You can configure a "fax" printer into the lpr print spooler that will
fax a document out using efax instead of printing it. This allows a
network server running efax to send faxes on behalf of other machines,
including non-Unix clients. In the following steps use the directories
specified in the fax script if they are different than /usr/bin and
/var/spool/fax (FAXDIR). To set up a fax printer do the following as
root:
(1) Create a link to the fax script called ``faxlpr'' so the fax script
can determine when it is being invoked from the print spooler:
ln -s /usr/bin/fax /usr/bin/faxlpr
(2) Edit /etc/printcap and add an entry such as:
fax:lp=/dev/null:sd=/var/spool/fax:if=/usr/bin/faxlpr:
to define a printer called "fax". Print files will be spooled to the
/var/spool/fax (sd=) directory and then piped to the /usr/bin/faxlpr
filter (if=). Error messages will appear on /dev/console.
(3) Create and/or set the permissions to allow anyone to read and write
in the fax spool directory. For example:
mkdir /var/spool/fax
chmod 777 /var/spool/fax
(4) Create a printer daemon lock file that is readable by anyone:
touch /var/spool/fax/lock
chmod 644 /var/spool/fax/lock
You should now be able to send a fax using the lpr interface by using a
command such as:
lpr -P fax -J "555 1212" file.ps
where the -J option is used to specify the phone number or alias to be
dialed.
Note that if more than one file is given on the command line they will
be concatenated before being passed to "fax send". TIFF-G3, Postscript
or PBM files must therefore be sent one file at a time although TIFF
and Postscript files may contain multiple pages. Only multiple text
files can be sent in one command. Page breaks in text files can be
marked with form-feed characters. Files will be converted and sent at
the default (high) resolution.
You can use lpq(1) to check the fax queue, lprm(1) to remove fax jobs
and lpc(8) to control the spooler. In each case use the -Pfax option
to specify the fax ``printer.'' A log file will be mailed to the user
when the fax is sent.
You should also be able to send a fax from any networked computer that
has lpr-compatible remote printing software and that allows you to set
the job name (-J option) to an arbitrary string. Such software is
available for most computers.
See the lpd(8) and printcap(5) man pages for information on the print
spooler and for restricting access by host name (/etc/host.lpd) or by
user group (the `rg' printcap entry).
RESOLVING PROBLEMS
Double check the configuration setup in the first part of the fax
script, particularly the modem device name and the lock file names.
If efax hangs when trying to open the modem device (typically
/dev/ttyX), the device is either already in use by another process
(e.g. pppd) or it requires the carrier detect line to be true before it
can be opened. Many systems define an alternate device name for the
same physical device (typically cuaX) that can be opened even if car‐
rier is not present or other programs are already using it.
If responses to modem initialization commands are being lost or gener‐
ated at random, another processes (e.g. getty or an efax auto-answer
process) may be trying to use the modem at the same time. Try running
efax while this other program is running. If efax does not report
"/dev/ttyX locked or busy. waiting." then the lock files names are not
specified correctly.
Attempt to send a fax. Check that the modem starts making the calling
signal (CNG, a 0.5 second beep every 3 seconds) as soon as it's fin‐
ished dialing. This shows the modem is in fax mode. You may need to
set the SPKR variable to -iM2L3 to monitor the phone line to do this.
Listen for the answering fax machine and check that it sends the answer
signal (CED, a 3 second beep) followed by "warbling" sounds (DIS
frames) every 3 seconds. If you hear a continuous sound (tones or
noise) instead, then you've connected to a data modem instead.
Your modem should send back its own warble (DCS frame) in response to
DIS immediately followed by 1.5 seconds of noise (a channel check). If
everything is OK, the receiving end will send another warble (CFR
frame) and your modem will start to send data. If you have an external
modem, check its LEDs. If flow control is working properly the modem's
send data (SD) LED will turn off periodically while the fax data is
sent.
Check the message showing the line count and the average bit rate when
the page transmission is done. Low line counts (under 1000 for a let‐
ter size image) or the warning "fax output buffer overflow" while send‐
ing indicate that the image data format is incorrect. Check the file
being sent using the "fax view" command.
If you get the error message ``flow control did not work'' then flow
control was not active. This usually results in a garbled transmission
and the receiving machine may reject the page, abort the call, print a
distorted or blank image and/or hang up.
The warning "characters received while sending" or an <XOFF> character
appearing after the transmission means that the operating system
ignored the modem's XOFF flow control character. Ensure that you are
not running other programs such as getty or pppd at the same time as
efax since they will turn off xon/xoff flow control.
If you cannot get flow control to work properly then enable ``virtual
flow control'' with the -of option or hardware flow control with the
-oh option.
Check that the remote machine confirms reception with a +FPTS:1
response (Class 2) or an MCF frame (Class 1).
For Class 2 modems, the error message "abnormal call termination (code
nn)" indicates that the modem detected an error and hung up.
Many companies advertise services that will fax back information on
their products. These can be useful for testing fax reception.
The message "run length buffer overflow" when receiving indicates an
error with the image data format. You may need to use the -or option
with certain Class 2 modems.
If efax displays the message "can't happen (<details>)" please send a
bug report to the author.
Finally, don't play "option bingo," if you can't resolve the problem
send a verbose log of the failed session (the output from fax -v ...)
to the address below.
WEB PAGE
A Web Page with pointers to the latest version, known bugs and patches
is available at:
http://casas.ee.ubc.ca/efax/
RELATED SOFTWARE
For Linux Systems
Independent packages provide more user-friendly interfaces to efax
(xfax, tefax) and provide an e-mail-to-fax (Qfax) gateway using efax.
All are available by anonymous FTP from metalab.unc.edu in
/pub/Linux/apps/serialcomm/fax/.
For Amiga Systems
A port of an early version of efax for the Amiga is available as a com‐
ponent of a shareware voice mail package, AVM, distributed by Al Vil‐
larica (rvillari@cat.syr.edu).
Other Ports
efax is relatively easy to port. All system-dependent code is in
efaxos.c. An early version of efax was ported to VMS. Version 0.8a
was ported to Win32 by Luigi Capriotti. Contact the author if you
would like to integrate the Win32 code into the current version.
AUTHOR
Efax was written by Ed Casas. Please send comments or bug reports to
edc@cce.com.
BUG REPORTS
Bug reports should include the operating system, the type of the modem
and a copy of a verbose session log that demonstrates the problem.
It's usually impossible to help without a verbose log. Please do not
send fax image files.
COPYRIGHT
efax is copyright 1993 -- 1999 Ed Casas. It may be used, copied and
modified under the terms of the GNU Public License.
DISCLAIMER
Although efax has been tested it may have errors that will prevent it
from working correctly on your system. Some of these errors may cause
serious problems including loss of data and interruptions to telephone
service.
REFERENCES
CCITT Recommendation T.30, "Procedures for Document Facsimile Transmis‐
sion in the General Switched Telephone Network". 1988
CCITT Recommendation T.4, "Standardization of Group 3 Facsimile Appara‐
tus for Document Transmission". 1988.
For documentation on Class 1 and Class 2 fax commands as implemented by
Connexant (formerly Rockwell) modems see http://www.conexant.com/tech‐
info.
For the TIFF specification see http://partners.adobe.com/supportser‐
vice/devrelations/PDFS/TN/TIFF6.pdf or RFC 2301 (ftp://ftp.isi.edu/in-
notes/rfc2301.txt).
For information on Ghostscript see http://www.cs.wisc.edu/~ghost/.
The pbm utilities can be obtained by ftp from wuarchive.wustl.edu in
/graphics/graphics/packages/NetPBM/netpbm-1mar1994.tar.gz.
PCX and many other file formats are described in: Gunter Born, The File
Formats Handbook, International Thomson Computer Press, 1995.
The "Fax Modem Source Book" by Andrew Margolis, published by John Wiley
& Sons in 1994 (ISBN 0471950726), is a book on writing fax applications
which includes source code.
Dennis Bodson et. al., "FAX: Digital Facsimile Technology and Applica‐
tions", Second Edition. Artech House, Boston. 1992.
SEE ALSOfax(1), efix(1), gs(1), init(8), inittab(5), ttytab(5), printcap(5),
lpd(8), printf(3), strftime(3).
BUGS
Can't read TIFF files with more than 1 strip
Class 1 operation may fail if the program can't respond to certain data
received from the modem within 55 milliseconds.
May fail if multitasking delays cause the received data to overflow the
computer's serial device buffer or if an under-run of transmit data
exceeds 5 seconds.
Polling does not work.
Does not support 2-D coding, ECM, or BFT.
3rd Berkeley Distribution February 1999 EFAX(1)