Math::Random::MT::Auto man page on Fedora

Man page or keyword search:  
man Server   31170 pages
apropos Keyword Search (all sections)
Output format
Fedora logo
[printable version]

Math::Random::MT::AutoUser Contributed Perl DocumentaMath::Random::MT::Auto(3)

NAME
       Math::Random::MT::Auto - Auto-seeded Mersenne Twister PRNGs

VERSION
       This documentation refers to Math::Random::MT::Auto version 6.16

SYNOPSIS
	use strict;
	use warnings;
	use Math::Random::MT::Auto qw(rand irand shuffle gaussian),
				   '/dev/urandom' => 256,
				   'random_org';

	# Functional interface
	my $die_roll = 1 + int(rand(6));

	my $coin_flip = (irand() & 1) ? 'heads' : 'tails';

	my $deck = shuffle(1 .. 52);

	my $rand_IQ = gaussian(15, 100);

	# OO interface
	my $prng = Math::Random::MT::Auto->new('SOURCE' => '/dev/random');

	my $angle = $prng->rand(360);

	my $decay_interval = $prng->exponential(12.4);

DESCRIPTION
       The Mersenne Twister is a fast pseudorandom number generator (PRNG)
       that is capable of providing large volumes (> 10^6004) of "high
       quality" pseudorandom data to applications that may exhaust available
       "truly" random data sources or system-provided PRNGs such as rand.

       This module provides PRNGs that are based on the Mersenne Twister.
       There is a functional interface to a single, standalone PRNG, and an OO
       interface (based on the inside-out object model as implemented by the
       Object::InsideOut module) for generating multiple PRNG objects.	The
       PRNGs are normally self-seeding, automatically acquiring a (19968-bit)
       random seed from user-selectable sources.  (Manual seeding is
       optionally available.)

       Random Number Deviates
	   In addition to integer and floating-point uniformly-distributed
	   random number deviates (i.e., "irand" and "rand"), this module
	   implements the following non-uniform deviates as found in Numerical
	   Recipes in C:

	       ·   Gaussian (normal)

	       ·   Exponential

	       ·   Erlang (gamma of integer order)

	       ·   Poisson

	       ·   Binomial

       Shuffling
	   This module also provides a subroutine/method for shuffling data
	   based on the Fisher-Yates shuffling algorithm.

       Support for 64-bit Integers
	   If Perl has been compiled to support 64-bit integers (do perl -V
	   and look for "use64bitint=define"), then this module will use a
	   64-bit-integer version of the Mersenne Twister, thus providing
	   64-bit random integers and 52-bit random doubles.  The size of
	   integers returned by "irand", and used by "get_seed" and "set_seed"
	   will be sized accordingly.

	   Programmatically, the size of Perl's integers can be determined
	   using the "Config" module:

	    use Config;
	    print("Integers are $Config{'uvsize'} bytes in length\n");

       The code for this module has been optimized for speed.  Under Cygwin,
       it's 2.5 times faster than Math::Random::MT, and under Solaris, it's
       more than four times faster.  (Math::Random::MT fails to build under
       Windows.)

QUICKSTART
       To use this module as a drop-in replacement for Perl's built-in rand
       function, just add the following to the top of your application code:

	use strict;
	use warnings;
	use Math::Random::MT::Auto 'rand';

       and then just use "rand" as you would normally.	You don't even need to
       bother seeding the PRNG (i.e., you don't need to call "srand"), as that
       gets done automatically when the module is loaded by Perl.

       If you need multiple PRNGs, then use the OO interface:

	use strict;
	use warnings;
	use Math::Random::MT::Auto;

	my $prng1 = Math::Random::MT::Auto->new();
	my $prng2 = Math::Random::MT::Auto->new();

	my $rand_num = $prng1->rand();
	my $rand_int = $prng2->irand();

       CAUTION: If you want to require this module, see the "Delayed
       Importation" section for important information.

MODULE DECLARATION
       The module must always be declared such that its "->import()" method
       gets called:

	use Math::Random::MT::Auto;	       # Correct

	#use Math::Random::MT::Auto ();	       # Does not work because
					       #   ->import() does not get invoked

   Subroutine Declarations
       By default, this module does not automatically export any of its
       subroutines.  If you want to use the standalone PRNG, then you should
       specify the subroutines you want to use when you declare the module:

	use Math::Random::MT::Auto qw(rand irand shuffle gaussian
				      exponential erlang poisson binomial
				      srand get_seed set_seed get_state set_state);

       Without the above declarations, it is still possible to use the
       standalone PRNG by accessing the subroutines using their fully-
       qualified names.	 For example:

	my $rand = Math::Random::MT::Auto::rand();

   Module Options
       Seeding Sources
	   Starting the PRNGs with a 19968-bit random seed (312 64-bit
	   integers or 624 32-bit integers) takes advantage of their full
	   range of possible internal vectors states.  This module attempts to
	   acquire such seeds using several user-selectable sources.

	   (I would be interested to hear about other random data sources for
	   possible inclusion in future versions of this module.)

	   Random Devices
	       Most OSs offer some sort of device for acquiring random
	       numbers.	 The most common are /dev/urandom and /dev/random.
	       You can specify the use of these devices for acquiring the seed
	       for the PRNG when you declare this module:

		use Math::Random::MT::Auto '/dev/urandom';
		  # or
		my $prng = Math::Random::MT::Auto->new('SOURCE' => '/dev/random');

	       or they can be specified when using "srand".

		srand('/dev/random');
		  # or
		$prng->srand('/dev/urandom');

	       The devices are accessed in non-blocking mode so that if there
	       is insufficient data when they are read, the application will
	       not hang waiting for more.

	   File of Binary Data
	       Since the above devices are just files as far as Perl is
	       concerned, you can also use random data previously stored in
	       files (in binary format).

		srand('C:\\Temp\\RANDOM.DAT');
		  # or
		$prng->srand('/tmp/random.dat');

	   Internet Sites
	       This module provides support for acquiring seed data from
	       several Internet sites:	random.org, HotBits and
	       RandomNumbers.info.  An Internet connection and LWP::UserAgent
	       are required to utilize these sources.

		use Math::Random::MT::Auto 'random_org';
		  # or
		use Math::Random::MT::Auto 'hotbits';
		  # or
		use Math::Random::MT::Auto 'rn_info';

	       If you connect to the Internet through an HTTP proxy, then you
	       must set the http_proxy variable in your environment when using
	       these sources.  (See "Proxy attributes" in LWP::UserAgent.)

	       The HotBits site will only provide a maximum of 2048 bytes of
	       data per request, and RandomNumbers.info's maximum is 1000.  If
	       you want to get the full seed from these sites, then you can
	       specify the source multiple times:

		my $prng = Math::Random::MT::Auto->new('SOURCE' => ['hotbits',
								    'hotbits']);

	       or specify multiple sources:

		use Math::Random::MT::Auto qw(rn_info hotbits random_org);

	   Windows XP Random Data
	       Under MSWin32 or Cygwin on Windows XP, you can acquire random
	       seed data from the system.

		use Math::Random::MT::Auto 'win32';

	       To utilize this option, you must have the Win32::API module
	       installed.

	   User-defined Seeding Source
	       A subroutine reference may be specified as a seeding source.
	       When called, it will be passed three arguments:	A array
	       reference where seed data is to be added, and the number of
	       integers (64- or 32-bit as the case may be) needed.

		sub MySeeder
		{
		    my $seed = $_[0];
		    my $need = $_[1];

		    while ($need--) {
			my $data = ...;	     # Get seed data from your source
			...
			push(@{$seed}, $data);
		    }
		}

		my $prng = Math::Random::MT::Auto->new('SOURCE' => \&MySeeder);

	   The default list of seeding sources is determined when the module
	   is loaded.  Under MSWin32 or Cygwin on Windows XP, "win32" is added
	   to the list if Win32::API is available.  Otherwise, /dev/urandom
	   and then /dev/random are checked.  The first one found is added to
	   the list.  Finally, "random_org" is added.

	   For the functional interface to the standalone PRNG, these defaults
	   can be overridden by specifying the desired sources when the module
	   is declared, or through the use of the "srand" subroutine.
	   Similarly for the OO interface, they can be overridden in the
	   ->new() method when the PRNG is created, or later using the "srand"
	   method.

	   Optionally, the maximum number of integers (64- or 32-bits as the
	   case may be) to be acquired from a particular source may be
	   specified:

	    # Get at most 1024 bytes from random.org
	    # Finish the seed using data from /dev/urandom
	    use Math::Random::MT::Auto 'random_org' => (1024 / $Config{'uvsize'}),
				       '/dev/urandom';

       Delayed Seeding
	   Normally, the standalone PRNG is automatically seeded when the
	   module is loaded.  This behavior can be modified by supplying the
	   ":!auto" (or ":noauto") flag when the module is declared.  (The
	   PRNG will still be seeded using data such as time() and PID ($$),
	   just in case.)  When the ":!auto" option is used, the "srand"
	   subroutine should be imported, and then run before calling any of
	   the random number deviates.

	    use Math::Random::MT::Auto qw(rand srand :!auto);
	      ...
	    srand();
	      ...
	    my $rn = rand(10);

   Delayed Importation
       If you want to delay the importation of this module using require, then
       you must execute its "->import()" method to complete the module's
       initialization:

	eval {
	    require Math::Random::MT::Auto;
	    # You may add options to the import call, if desired.
	    Math::Random::MT::Auto->import();
	};

STANDALONE PRNG OBJECT
       my $obj = $MRMA::PRNG;
	   $MRMA::PRNG is the object that represents the standalone PRNG.

OBJECT CREATION
       The OO interface for this module allows you to create multiple,
       independent PRNGs.

       If your application will only be using the OO interface, then declare
       this module using the :!auto flag to forestall the automatic seeding of
       the standalone PRNG:

	use Math::Random::MT::Auto ':!auto';

       Math::Random::MT::Auto->new
	    my $prng = Math::Random::MT::Auto->new( %options );

	   Creates a new PRNG.	With no options, the PRNG is seeded using the
	   default sources that were determined when the module was loaded, or
	   that were last supplied to the "srand" subroutine.

	   'STATE' => $prng_state
	       Sets the newly created PRNG to the specified state.  The PRNG
	       will then function as a clone of the RPNG that the state was
	       obtained from (at the point when then state was obtained).

	       When the "STATE" option is used, any other options are just
	       stored (i.e., they are not acted upon).

	   'SEED' => $seed_array_ref
	       When the "STATE" option is not used, this option seeds the
	       newly created PRNG using the supplied seed data.	 Otherwise,
	       the seed data is just copied to the new object.

	   'SOURCE' => 'source'
	   'SOURCE' => ['source', ...]
	       Specifies the seeding source(s) for the PRNG.  If the "STATE"
	       and "SEED" options are not used, then seed data will be
	       immediately fetched using the specified sources, and used to
	       seed the PRNG.

	       The source list is retained for later use by the "srand"
	       method.	The source list may be replaced by calling the "srand"
	       method.

	       'SOURCES', 'SRC' and 'SRCS' can all be used as synonyms for
	       'SOURCE'.

	   The options above are also supported using lowercase and mixed-case
	   names (e.g., 'Seed', 'src', etc.).

       $obj->new
	    my $prng2 = $prng1->new( %options );

	   Creates a new PRNG in the same manner as
	   "Math::Random::MT::Auto->new".

       $obj->clone
	    my $prng2 = $prng1->clone();

	   Creates a new PRNG that is a copy of the referenced PRNG.

SUBROUTINES/METHODS
       When any of the functions listed below are invoked as subroutines, they
       operates with respect to the standalone PRNG.  For example:

	my $rand = rand();

       When invoked as methods, they operate on the referenced PRNG object:

	my $rand = $prng->rand();

       For brevity, only usage examples for the functional interface are given
       below.

       rand
	    my $rn = rand();
	    my $rn = rand($num);

	   Behaves exactly like Perl's built-in rand, returning a number
	   uniformly distributed in [0, $num).	($num defaults to 1.)

	   NOTE: If you still need to access Perl's built-in rand function,
	   you can do so using "CORE::rand()".

       irand
	    my $int = irand();

	   Returns a random integer.  For 32-bit integer Perl, the range is 0
	   to 2^32-1 (0xFFFFFFFF) inclusive.  For 64-bit integer Perl, it's 0
	   to 2^64-1 inclusive.

	   This is the fastest way to obtain random numbers using this module.

       shuffle
	    my $shuffled = shuffle($data, ...);
	    my $shuffled = shuffle(@data);

	   Returns an array reference containing a random ordering of the
	   supplied arguments (i.e., shuffled) by using the Fisher-Yates
	   shuffling algorithm.

	   If called with a single array reference (fastest method), the
	   contents of the array are shuffled in situ:

	    shuffle(\@data);

       gaussian
	    my $gn = gaussian();
	    my $gn = gaussian($sd);
	    my $gn = gaussian($sd, $mean);

	   Returns floating-point random numbers from a Gaussian (normal)
	   distribution (i.e., numbers that fit a bell curve).	If called with
	   no arguments, the distribution uses a standard deviation of 1, and
	   a mean of 0.	 Otherwise, the supplied argument(s) will be used for
	   the standard deviation, and the mean.

       exponential
	    my $xn = exponential();
	    my $xn = exponential($mean);

	   Returns floating-point random numbers from an exponential
	   distribution.  If called with no arguments, the distribution uses a
	   mean of 1.  Otherwise, the supplied argument will be used for the
	   mean.

	   An example of an exponential distribution is the time interval
	   between independent Poisson-random events such as radioactive
	   decay.  In this case, the mean is the average time between events.
	   This is called the mean life for radioactive decay, and its inverse
	   is the decay constant (which represents the expected number of
	   events per unit time).  The well known term half-life is given by
	   "mean * ln(2)".

       erlang
	    my $en = erlang($order);
	    my $en = erlang($order, $mean);

	   Returns floating-point random numbers from an Erlang distribution
	   of specified order.	The order must be a positive integer (> 0).
	   The mean, if not specified, defaults to 1.

	   The Erlang distribution is the distribution of the sum of $order
	   independent identically distributed random variables each having an
	   exponential distribution.  (It is a special case of the gamma
	   distribution for which $order is a positive integer.)  When "$order
	   = 1", it is just the exponential distribution.  It is named after
	   A. K. Erlang who developed it to predict waiting times in queuing
	   systems.

       poisson
	    my $pn = poisson($mean);
	    my $pn = poisson($rate, $time);

	   Returns integer random numbers (>= 0) from a Poisson distribution
	   of specified mean (rate * time = mean).  The mean must be a
	   positive value (> 0).

	   The Poisson distribution predicts the probability of the number of
	   Poisson-random events occurring in a fixed time if these events
	   occur with a known average rate.  Examples of events that can be
	   modeled as Poisson distributions include:

	       ·   The number of decays from a radioactive sample within a
		   given time period.

	       ·   The number of cars that pass a certain point on a road
		   within a given time period.

	       ·   The number of phone calls to a call center per minute.

	       ·   The number of road kill found per a given length of road.

       binomial
	    my $bn = binomial($prob, $trials);

	   Returns integer random numbers (>= 0) from a binomial distribution.
	   The probability ($prob) must be between 0.0 and 1.0 (inclusive),
	   and the number of trials must be >= 0.

	   The binomial distribution is the discrete probability distribution
	   of the number of successes in a sequence of $trials independent
	   Bernoulli trials (i.e., yes/no experiments), each of which yields
	   success with probability $prob.

	   If the number of trials is very large, the binomial distribution
	   may be approximated by a Gaussian distribution. If the average
	   number of successes is small ("$prob * $trials < 1"), then the
	   binomial distribution can be approximated by a Poisson
	   distribution.

       srand
	    srand();
	    srand('source', ...);

	   This (re)seeds the PRNG.  It may be called anytime reseeding of the
	   PRNG is desired (although this should normally not be needed).

	   When the :!auto flag is used, the "srand" subroutine should be
	   called before any other access to the standalone PRNG.

	   When called without arguments, the previously determined/specified
	   seeding source(s) will be used to seed the PRNG.

	   Optionally, seeding sources may be supplied as arguments as when
	   using the 'SOURCE' option.  (These sources will be saved and used
	   again if "srand" is subsequently called without arguments).

	    # Get 250 integers of seed data from Hotbits,
	    #  and then get the rest from /dev/random
	    srand('hotbits' => 250, '/dev/random');

	   If called with integer data (a list of one or more value, or an
	   array of values), or a reference to an array of integers, these
	   data will be passed to "set_seed" for use in reseeding the PRNG.

	   NOTE: If you still need to access Perl's built-in srand function,
	   you can do so using "CORE::srand($seed)".

       get_seed
	    my @seed = get_seed();
	      # or
	    my $seed = get_seed();

	   Returns an array or an array reference containing the seed last
	   sent to the PRNG.

	   NOTE: Changing the data in the array will not cause any changes in
	   the PRNG (i.e., it will not reseed it).  You need to use "srand" or
	   "set_seed" for that.

       set_seed
	    set_seed($seed, ...);
	    set_seed(@seed);
	    set_seed(\@seed);

	   When called with integer data (a list of one or more value, or an
	   array of values), or a reference to an array of integers, these
	   data will be used to reseed the PRNG.

	   Together with "get_seed", "set_seed" may be useful for setting up
	   identical sequences of random numbers based on the same seed.

	   It is possible to seed the PRNG with more than 19968 bits of data
	   (312 64-bit integers or 624 32-bit integers).  However, doing so
	   does not make the PRNG "more random" as 19968 bits more than covers
	   all the possible PRNG state vectors.

       get_state
	    my @state = get_state();
	      # or
	    my $state = get_state();

	   Returns an array (for list context) or an array reference (for
	   scalar context) containing the current state vector of the PRNG.

	   Note that the state vector is not a full serialization of the PRNG.
	   (See "Serialization" below.)

       set_state
	    set_state(@state);
	      # or
	    set_state($state);

	   Sets a PRNG to the state contained in an array or array reference
	   containing the state previously obtained using "get_state".

	    # Get the current state of the PRNG
	    my @state = get_state();

	    # Run the PRNG some more
	    my $rand1 = irand();

	    # Restore the previous state of the PRNG
	    set_state(@state);

	    # Get another random number
	    my $rand2 = irand();

	    # $rand1 and $rand2 will be equal.

	   CAUTION:  It should go without saying that you should not modify
	   the values in the state vector obtained from "get_state".  Doing so
	   and then feeding it to "set_state" would be (to say the least)
	   naughty.

INSIDE-OUT OBJECTS
       By using Object::InsideOut, Math::Random::MT::Auto's PRNG objects
       support the following capabilities:

   Cloning
       Copies of PRNG objects can be created using the "->clone()" method.

	my $prng2 = $prng->clone();

       See "Object Cloning" in Object::InsideOut for more details.

   Serialization
       PRNG objects can be serialized using the "->dump()" method.

	my $array_ref = $prng->dump();
	  # or
	my $string = $prng->dump(1);

       Serialized object can then be converted back into PRNG objects:

	my $prng2 = Object::InsideOut->pump($array_ref);

       See "Object Serialization" in Object::InsideOut for more details.

       Serialization using Storable is also supported:

	use Storable qw(freeze thaw);

	BEGIN {
	    $Math::Random::MT::Auto::storable = 1;
	}
	use Math::Random::MT::Auto ...;

	my $prng = Math::Random::MT::Auto->new();

	my $tmp = $prng->freeze();
	my $prng2 = thaw($tmp);

       See "Storable" in Object::InsideOut for more details.

       NOTE: Code refs cannot be serialized. Therefore, any "User-defined
       Seeding Source" subroutines used in conjunction with "srand" will be
       filtered out from the serialized results.

   Coercion
       Various forms of object coercion are supported through the overload
       mechanism.  For instance, you can to use a PRNG object directly in a
       string:

	my $prng = Math::Random::MT::Auto->new();
	print("Here's a random integer: $prng\n");

       The stringification of the PRNG object is accomplished by calling
       "->irand()" on the object, and returning the integer so obtained as the
       coerced result.

       A similar overload coercion is performed when the object is used in a
       numeric context:

	my $neg_rand = 0 - $prng;

       (See "BUGS AND LIMITATIONS" regarding numeric overloading on 64-bit
       integer Perls prior to 5.10.)

       In a boolean context, the coercion returns true or false based on
       whether the call to "->irand()" returns an odd or even result:

	if ($prng) {
	    print("Heads - I win!\n");
	} else {
	    print("Tails - You lose.\n");
	}

       In an array context, the coercion returns a single integer result:

	my @rands = @{$prng};

       This may not be all that useful, so you can call the "->array()" method
       directly with a integer argument for the number of random integers
       you'd like:

	# Get 20 random integers
	my @rands = @{$prng->array(20)};

       Finally, a PRNG object can be used to produce a code reference that
       will return random integers each time it is invoked:

	my $rand = \&{$prng};
	my $int = &$rand;

       See "Object Coercion" in Object::InsideOut for more details.

   Thread Support
       Math::Random::MT::Auto provides thread support to the extent documented
       in "THREAD SUPPORT" in Object::InsideOut.

       In a threaded application (i.e., "use threads;"), the standalone PRNG
       and all the PRNG objects from one thread will be copied and made
       available in a child thread.

       To enable the sharing of PRNG objects between threads, do the following
       in your application:

	use threads;
	use threads::shared;

	BEGIN {
	    $Math::Random::MT::Auto::shared = 1;
	}
	use Math::Random::MT::Auto ...;

       NOTE: Code refs cannot be shared between threads. Therefore, you cannot
       use "User-defined Seeding Source" subroutines in conjunction with
       "srand" when "use threads::shared;" is in effect.

       Depending on your needs, when using threads, but not enabling thread-
       sharing of PRNG objects as per the above, you may want to perform an
       "srand" call on the standalone PRNG and/or your PRNG objects inside the
       threaded code so that the pseudorandom number sequences generated in
       each thread differs.

	use threads;
	use Math::Random:MT::Auto qw(irand srand);

	my $prng = Math::Random:MT::Auto->new();

	sub thr_code
	{
	    srand();
	    $prng->srand();

	    ....
	}

EXAMPLES
       Cloning the standalone PRNG to an object
	    use Math::Random::MT::Auto qw(get_state);

	    my $prng = Math::Random::MT::Auto->new('STATE' => scalar(get_state()));

	   or using the standalone PRNG object directly:

	    my $prng = $Math::Random::MT::Auto::SA_PRNG->clone();

	   The standalone PRNG and the PRNG object will now return the same
	   sequence of pseudorandom numbers.

       Included in this module's distribution are several sample programs
       (located in the samples sub-directory) that illustrate the use of the
       various random number deviates and other features supported by this
       module.

DIAGNOSTICS
   WARNINGS
       Warnings are generated by this module primarily when problems are
       encountered while trying to obtain random seed data for the PRNGs.
       This may occur after the module is loaded, after a PRNG object is
       created, or after calling "srand".

       These seed warnings are not critical in nature.	The PRNG will still be
       seeded (at a minimum using data such as time() and PID ($$)), and can
       be used safely.

       The following illustrates how such warnings can be trapped for
       programmatic handling:

	my @WARNINGS;
	BEGIN {
	    $SIG{__WARN__} = sub { push(@WARNINGS, @_); };
	}

	use Math::Random::MT::Auto;

	# Check for standalone PRNG warnings
	if (@WARNINGS) {
	    # Handle warnings as desired
	    ...
	    # Clear warnings
	    undef(@WARNINGS);
	}

	my $prng = Math::Random::MT::Auto->new();

	# Check for PRNG object warnings
	if (@WARNINGS) {
	    # Handle warnings as desired
	    ...
	    # Clear warnings
	    undef(@WARNINGS);
	}

       ·   Failure opening random device '...': ...

	   The specified device (e.g., /dev/random) could not be opened by the
	   module.  Further diagnostic information should be included with
	   this warning message (e.g., device does not exist, permission
	   problem, etc.).

       ·   Failure setting non-blocking mode on random device '...': ...

	   The specified device could not be set to non-blocking mode.
	   Further diagnostic information should be included with this warning
	   message (e.g., permission problem, etc.).

       ·   Failure reading from random device '...': ...

	   A problem occurred while trying to read from the specified device.
	   Further diagnostic information should be included with this warning
	   message.

       ·   Random device '...' exhausted

	   The specified device did not supply the requested number of random
	   numbers for the seed.  It could possibly occur if /dev/random is
	   used too frequently.	 It will occur if the specified device is a
	   file, and it does not have enough data in it.

       ·   Failure creating user-agent: ...

	   To utilize the option of acquiring seed data from Internet sources,
	   you need to install the LWP::UserAgent module.

       ·   Failure contacting XXX: ...

       ·   Failure getting data from XXX: 500 Can't connect to ... (connect:
	   timeout)

	   You need to have an Internet connection to utilize "Internet Sites"
	   as random seed sources.

	   If you connect to the Internet through an HTTP proxy, then you must
	   set the http_proxy variable in your environment when using the
	   Internet seed sources.  (See "Proxy attributes" in LWP::UserAgent.)

	   This module sets a 5 second timeout for Internet connections so
	   that if something goes awry when trying to get seed data from an
	   Internet source, your application will not hang for an inordinate
	   amount of time.

       ·   You have exceeded your 24-hour quota for HotBits.

	   The HotBits site has a quota on the amount of data you can request
	   in a 24-hour period.	 (I don't know how big the quota is.)
	   Therefore, this source may fail to provide any data if used too
	   often.

       ·   Failure acquiring Win XP random data: ...

	   A problem occurred while trying to acquire seed data from the
	   Window XP random source.  Further diagnostic information should be
	   included with this warning message.

       ·   Unknown seeding source: ...

	   The specified seeding source is not recognized by this module.

	   This error also occurs if you try to use the win32 random data
	   source on something other than MSWin32 or Cygwin on Windows XP.

	   See "Seeding Sources" for more information.

       ·   No seed data obtained from sources - Setting minimal seed using PID
	   and time

	   This message will occur in combination with some other message(s)
	   above.

	   If the module cannot acquire any seed data from the specified
	   sources, then data such as time() and PID ($$) will be used to seed
	   the PRNG.

       ·   Partial seed - only X of Y

	   This message will occur in combination with some other message(s)
	   above.  It informs you of how much seed data was acquired vs. how
	   much was needed.

   ERRORS
       This module uses "Exception::Class" for reporting errors.  The base
       error class provided by Object::InsideOut is "OIO".  Here is an example
       of the basic manner for trapping and handling errors:

	my $obj;
	eval { $obj = Math::Random::MT::Auto->new(); };
	if (my $e = OIO->caught()) {
	    print(STDERR "Failure creating new PRNG: $e\n");
	    exit(1);
	}

       Errors specific to this module have a base class of "MRMA::Args", and
       have the following error messages:

       ·   Missing argument to 'set_seed'

	   "set_seed" must be called with an array ref, or a list of integer
	   seed data.

PERFORMANCE
       Under Cygwin, this module is 2.5 times faster than Math::Random::MT,
       and under Solaris, it's more than four times faster.  (Math::Random::MT
       fails to build under Windows.)  The file samples/timings.pl, included
       in this module's distribution, can be used to compare timing results.

       If you connect to the Internet via a phone modem, acquiring seed data
       may take a second or so.	 This delay might be apparent when your
       application is first started, or when creating a new PRNG object.  This
       is especially true if you specify multiple "Internet Sites" (so as to
       get the full seed from them) as this results in multiple accesses to
       the Internet.  (If /dev/urandom is available on your machine, then you
       should definitely consider using the Internet sources only as a
       secondary source.)

DEPENDENCIES
   Installation
       A 'C' compiler is required for building this module.

       This module uses the following 'standard' modules for installation:

	   ExtUtils::MakeMaker
	   File::Spec
	   Test::More

   Operation
       Requires Perl 5.6.0 or later.

       This module uses the following 'standard' modules:

	   Scalar::Util (1.18 or later)
	   Carp
	   Fcntl
	   XSLoader

       This module uses the following modules available through CPAN:

	   Object::InsideOut (2.06 or later)
	   Exception::Class (1.22 or later)

       To utilize the option of acquiring seed data from Internet sources, you
       need to install the LWP::UserAgent module.

       To utilize the option of acquiring seed data from the system's random
       data source under MSWin32 or Cygwin on Windows XP, you need to install
       the Win32::API module.

BUGS AND LIMITATIONS
       This module does not support multiple inheritance.

       For Perl prior to 5.10, there is a bug in the overload code associated
       with 64-bit integers that causes the integer returned by the
       "->irand()" call to be coerced into a floating-point number.  The
       workaround in this case is to call "->irand()" directly:

	# my $neg_rand = 0 - $prng;	     # Result is a floating-point number
	my $neg_rand = 0 - $prng->irand();   # Result is an integer number

       Please submit any bugs, problems, suggestions, patches, etc. to:
       http://rt.cpan.org/Public/Dist/Display.html?Name=Math-Random-MT-Auto
       <http://rt.cpan.org/Public/Dist/Display.html?Name=Math-Random-MT-Auto>

SEE ALSO
       Math::Random::MT::Auto Discussion Forum on CPAN:
       http://www.cpanforum.com/dist/Math-Random-MT-Auto
       <http://www.cpanforum.com/dist/Math-Random-MT-Auto>

       The Mersenne Twister is the (current) quintessential pseudorandom
       number generator. It is fast, and has a period of 2^19937 - 1.  The
       Mersenne Twister algorithm was developed by Makoto Matsumoto and Takuji
       Nishimura.  It is available in 32- and 64-bit integer versions.
       http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
       <http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html>

       Wikipedia entries on the Mersenne Twister and pseudorandom number
       generators, in general:
       <http://en.wikipedia.org/wiki/Mersenne_twister>, and
       <http://en.wikipedia.org/wiki/Pseudorandom_number_generator>

       random.org generates random numbers from radio frequency noise.
       <http://random.org/>

       HotBits generates random number from a radioactive decay source.
       <http://www.fourmilab.ch/hotbits/>

       RandomNumbers.info generates random number from a quantum optical
       source.	<http://www.randomnumbers.info/>

       OpenBSD random devices:
       http://www.openbsd.org/cgi-bin/man.cgi?query=arandom&sektion=4&apropos=0&manpath=OpenBSD+Current&arch=
       <http://www.openbsd.org/cgi-
       bin/man.cgi?query=arandom&sektion=4&apropos=0&manpath=OpenBSD+Current&arch=>

       FreeBSD random devices:
       http://www.freebsd.org/cgi/man.cgi?query=random&sektion=4&apropos=0&manpath=FreeBSD+5.3-RELEASE+and+Ports
       <http://www.freebsd.org/cgi/man.cgi?query=random&sektion=4&apropos=0&manpath=FreeBSD+5.3-RELEASE+and+Ports>

       Man pages for /dev/random and /dev/urandom on
       Unix/Linux/Cygwin/Solaris:
       <http://www.die.net/doc/linux/man/man4/random.4.html>

       Windows XP random data source:
       <http://blogs.msdn.com/michael_howard/archive/2005/01/14/353379.aspx>

       Fisher-Yates Shuffling Algorithm:
       <http://en.wikipedia.org/wiki/Shuffling_playing_cards#Shuffling_algorithms>,
       and shuffle() in List::Util

       Non-uniform random number deviates in Numerical Recipes in C, Chapters
       7.2 and 7.3: <http://www.library.cornell.edu/nr/bookcpdf.html>

       Inside-out Object Model: Object::InsideOut

       Math::Random::MT::Auto::Range - Subclass of Math::Random::MT::Auto that
       creates range-valued PRNGs

       LWP::UserAgent

       Math::Random::MT

       Net::Random

AUTHOR
       Jerry D. Hedden, <jdhedden AT cpan DOT org>

COPYRIGHT AND LICENSE
       A C-Program for MT19937 (32- and 64-bit versions), with initialization
       improved 2002/1/26.  Coded by Takuji Nishimura and Makoto Matsumoto,
       and including Shawn Cokus's optimizations.

	Copyright (C) 1997 - 2004, Makoto Matsumoto and Takuji Nishimura,
	 All rights reserved.
	Copyright (C) 2005, Mutsuo Saito, All rights reserved.
	Copyright 2005 - 2009 Jerry D. Hedden <jdhedden AT cpan DOT org>

       Redistribution and use in source and binary forms, with or without
       modification, are permitted provided that the following conditions are
       met:

       1. Redistributions of source code must retain the above copyright
	  notice, this list of conditions and the following disclaimer.

       2. Redistributions in binary form must reproduce the above copyright
	  notice, this list of conditions and the following disclaimer in the
	  documentation and/or other materials provided with the distribution.

       3. The names of its contributors may not be used to endorse or promote
	  products derived from this software without specific prior written
	  permission.

       THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
       IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
       TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
       PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
       OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
       SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
       LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
       DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
       THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
       (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
       OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

	Any feedback is very welcome.
	m-mat AT math DOT sci DOT hiroshima-u DOT ac DOT jp
	http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

perl v5.14.1			  2010-12-24	     Math::Random::MT::Auto(3)
[top]

List of man pages available for Fedora

Copyright (c) for man pages and the logo by the respective OS vendor.

For those who want to learn more, the polarhome community provides shell access and support.

[legal] [privacy] [GNU] [policy] [cookies] [netiquette] [sponsors] [FAQ]
Tweet
Polarhome, production since 1999.
Member of Polarhome portal.
Based on Fawad Halim's script.
....................................................................
Vote for polarhome
Free Shell Accounts :: the biggest list on the net