POE::Kernel man page on Fedora

Man page or keyword search:  
man Server   31170 pages
apropos Keyword Search (all sections)
Output format
Fedora logo
[printable version]

POE::Kernel(3)	      User Contributed Perl Documentation	POE::Kernel(3)

NAME
       POE::Kernel - an event-based application kernel in Perl

SYNOPSIS
	 use POE; # auto-includes POE::Kernel and POE::Session

	 POE::Session->create(
	   inline_states => {
	     _start => sub { $_[KERNEL]->yield("next") },
	     next   => sub {
	       print "tick...\n";
	       $_[KERNEL]->delay(next => 1);
	     },
	   },
	 );

	 POE::Kernel->run();
	 exit;

       In the spirit of Perl, there are a lot of other ways to use POE.

DESCRIPTION
       POE::Kernel is the heart of POE.	 It provides the lowest-level
       features: non-blocking multiplexed I/O, timers, and signal watchers are
       the most significant.  Everything else is built upon this foundation.

       POE::Kernel is not an event loop in itself.  For that it uses one of
       several available POE::Loop interface modules.  See CPAN for modules in
       the POE::Loop namespace.

       POE's documentation assumes the reader understands the @_ offset
       constants (KERNEL, HEAP, ARG0, etc.).  The curious or confused reader
       will find more detailed explanation in POE::Session.

USING POE
   Literally Using POE
       POE.pm is little more than a class loader.  It implements some magic to
       cut down on the setup work.

       Parameters to "use POE" are not treated as normal imports.  Rather,
       they're abbreviated modules to be included along with POE.

	 use POE qw(Component::Client::TCP).

       As you can see, the leading "POE::" can be omitted this way.

       POE.pm also includes POE::Kernel and POE::Session by default.  These
       two modules are used by nearly all POE-based programs.  So the above
       example is actually the equivalent of:

	 use POE;
	 use POE::Kernel;
	 use POE::Session;
	 use POE::Component::Client::TCP;

   Using POE::Kernel
       POE::Kernel needs to know which event loop you want to use.  This is
       supported in three different ways:

       The first way is to use an event loop module before using POE::Kernel
       (or POE, which loads POE::Kernel for you):

	 use Tk; # or one of several others
	 use POE::Kernel.

       POE::Kernel scans the list of modules already loaded, and it loads an
       appropriate POE::Loop adapter if it finds a known event loop.

       The next way is to explicitly load the POE::Loop class you want:

	 use POE qw(Loop::Gtk);

       Finally POE::Kernel's "import()" supports more programmer-friendly
       configuration:

	 use POE::Kernel { loop => "Gtk" };
	 use POE::Session;

   Anatomy of a POE-Based Application
       Programs using POE work like any other.	They load required modules,
       perform some setup, run some code, and eventually exit.	Halting
       Problem notwithstanding.

       A POE-based application loads some modules, sets up one or more
       sessions, runs the code in those sessions, and eventually exits.

	 use POE;
	 POE::Session->create( ... map events to code here ... );
	 POE::Kernel->run();
	 exit;

   POE::Kernel singleton
       The POE::Kernel is a singleton object; there can be only one
       POE::Kernel instance within a process.  This allows many object methods
       to also be package methods.

   Sessions
       POE implements isolated compartments called sessions.  Sessions play
       the role of tasks or threads within POE.	 POE::Kernel acts as POE's
       task scheduler, doling out timeslices to each session by invoking
       callbacks within them.

       Callbacks are not preemptive.  As long as one is running, no others
       will be dispatched.  This is known as cooperative multitasking.	Each
       session must cooperate by returning to the central dispatching kernel.

       Cooperative multitasking vastly simplifies data sharing, since no two
       pieces of code may alter data at once.

       A session may also take exclusive control of a program's time, if
       necessary, by simply not returning in a timely fashion.	It's even
       possible to write completely blocking programs that use POE as a state
       machine rather than a cooperative dispatcher.

       Every POE-based application needs at least one session.	Code cannot
       run within POE without being a part of some session.  Likewise, a
       threaded program always has a "thread zero".

       Sessions in POE::Kernel should not be confused with POE::Session even
       though the two are inextricably associated.  POE::Session adapts
       POE::Kernel's dispatcher to a particular calling convention.  Other
       POE::Session classes exist on the CPAN.	Some radically alter the way
       event handlers are called.
       <http://search.cpan.org/search?query=poe+session>.

   Resources
       Resources are events and things which may create new events, such as
       timers, I/O watchers, and even other sessions.

       POE::Kernel tracks resources on behalf of its active sessions.  It
       generates events corresponding to these resources' activity, notifying
       sessions when it's time to do things.

       The conversation goes something like this:

	 Session: Be a dear, Kernel, and let me know when someone clicks on
		  this widget.	Thanks so much!

	 [TIME PASSES]	[SFX: MOUSE CLICK]

	 Kernel: Right, then.  Someone's clicked on your widget.
		 Here you go.

       Furthermore, since the Kernel keeps track of everything sessions do, it
       knows when a session has run out of tasks to perform.  When this
       happens, the Kernel emits a "_stop" event at the dead session so it can
       clean up and shutdown.

	 Kernel: Please switch off the lights and lock up; it's time to go.

       Likewise, if a session stops on its own and there still are opened
       resource watchers, the Kernel knows about them and cleans them up on
       the session's behalf.  POE excels at long-running services because it
       so meticulously tracks and cleans up resources.

       POE::Resources and the POE::Resource classes implement each kind of
       resource, which are summarized here and covered in greater detail
       later.

       Events.
	 An event is a message to a sessions.  Posting an event keeps both the
	 sender and the receiver alive until after the event has been
	 dispatched.  This is only guaranteed if both the sender and receiver
	 are in the same process.  Inter-Kernel message passing add-ons may
	 have other guarantees.	 Please see their documentation for details.

	 The rationale is that the event is in play, so the receiver must
	 remain active for it to be dispatched.	 The sender remains alive in
	 case the receiver would like to send back a response.

	 Posted events cannot be preemptively canceled.	 They tend to be
	 short-lived in practice, so this generally isn't an issue.

       Timers.
	 Timers allow an application to send a message to the future. Once
	 set, a timer will keep the destination session active until it goes
	 off and the resulting event is dispatched.

       Aliases.
	 Session aliases are an application-controlled way of addressing a
	 session.  Aliases act as passive event watchers.  As long as a
	 session has an alias, some other session may send events to that
	 session by that name.	Aliases keep sessions alive as long as a
	 process has active sessions.

	 If the only sessions remaining are being kept alive solely by their
	 aliases, POE::Kernel will send them a terminal "IDLE" signal.	In
	 most cases this will terminate the remaining sessions and allow the
	 program to exit.  If the sessions remain in memory without waking up
	 on the "IDLE" signal, POE::Kernel sends them a non-maskable "ZOMBIE"
	 signal.  They are then forcibly removed, and the program will finally
	 exit.

       I/O watchers.
	 A session will remain active as long as a session is paying attention
	 to some external data source or sink. See select_read and
	 select_write.

       Child sessions.
	 A session acting as a parent of one or more other sessions will
	 remain active until all the child sessions stop.  This may be
	 bypassed by detaching the children from the parent.

       Child processes.
	 Child process are watched by sig_child().  The sig_child() watcher
	 will keep the watching session active until the child process has
	 been reaped by POE::Kernel and the resulting event has been
	 dispatched.

	 All other signal watchers, including using "sig" to watch for "CHLD",
	 do not keep their sessions active.  If you need a session to remain
	 active when it's only watching for signals, have it set an alias or
	 one of its own public reference counters.

       Public reference counters.
	 A session will remain active as long as it has one or more nonzero
	 public (or external) reference counter.

   Session Lifespans
       "Session" as a term is somewhat overloaded.  There are two related
       concepts that share the name.  First there is the class POE::Session,
       and objects created with it or related classes.	Second there is a data
       structure within POE::Kernel that tracks the POE::Session objects in
       play and the various resources owned by each.

       The way POE's garbage collector works is that a session object gives
       itself to POE::Kernel at creation time.	The Kernel then holds onto
       that object as long as resources exist that require the session to
       remain alive.  When all of these resources are destroyed or released,
       the session object has nothing left to trigger activity.	 POE::Kernel
       notifies the object it's through, and cleans up its internal session
       context.	 The session object is released, and self-destructs in the
       normal Perlish fashion.

       Sessions may be stopped even if they have active resources.  For
       example, a session may fail to handle a terminal signal.	 In this case,
       POE::Kernel forces the session to stop, and all resources associated
       with the session are preemptively released.

   Events
       An event is a message that is sent from one part of the POE application
       to another.  An event consists of the event's name, optional event-
       specific parameters and OOB information.	 An event may be sent from the
       kernel, from a wheel or from a session.

       An application creates an event with "post", "yield", "call" or even
       "signal".  POE::Kernel creates events in response external stimulus
       (signals, select, etc).

       Event Handlers

       An event is handled by a function called an event handler, which is
       some code that is designated to be called when a particular event is
       dispatched.  See "Event Handler Management" and POE::Session.

       The term state is often used in place of event handler, especially when
       treating sessions as event driven state machines.

       Handlers are always called in scalar context for asynchronous events
       (i.e. via post()).  Synchronous events, invoked with call(), are
       handled in the same context that call() was called.

       Event handlers may not directly return references to objects in the
       "POE" namespace.	 POE::Kernel will stringify these references to
       prevent timing issues with certain objects' destruction.	 For example,
       this error handler would cause errors because a deleted wheel would not
       be destructed when one might think:

	 sub handle_error {
	   warn "Got an error";
	   delete $_[HEAP]{wheel};
	 }

       The delete() call returns the deleted wheel member, which is then
       returned implicitly by handle_error().

   Using POE with Other Event Loops
       POE::Kernel supports any number of event loops.	Two are included in
       the base distribution.  Historically, POE included other loops but they
       were moved into a separate distribution.	 You can find them and other
       loops on the CPAN.

       POE's public interfaces remain the same regardless of the event loop
       being used.  Since most graphical toolkits include some form of event
       loop, back-end code should be portable to all of them.

       POE's cooperation with other event loops lets POE be embedded into
       other software.	The common underlying event loop drives both the
       application and POE.  For example, by using POE::Loop::Glib, one can
       embed POE into Vim, irssi, and so on.  Application scripts can then
       take advantage of POE::Component::Client::HTTP (and everything else) to
       do large-scale work without blocking the rest of the program.

       Because this is Perl, there are multiple ways to load an alternate
       event loop.  The simplest way is to load the event loop before loading
       POE::Kernel.

	 use Gtk;
	 use POE;

       Remember that POE loads POE::Kernel internally.

       POE::Kernel examines the modules loaded before it and detects that Gtk
       has been loaded.	 If POE::Loop::Gtk is available, POE loads and hooks
       it into POE::Kernel automatically.

       It's less mysterious to load the appropriate POE::Loop class directly.
       Their names follow the format "POE::Loop::$loop_module_name", where
       $loop_module_name is the name of the event loop module after each "::"
       has been substituted with an underscore. It can be abbreviated using
       POE's loader magic.

	 use POE qw( Loop::Event_Lib );

       POE also recognizes XS loops, they reside in the
       "POE::XS::Loop::$loop_module_name" namespace.  Using them may give you
       a performance improvement on your platform, as the eventloop are some
       of the hottest code in the system.  As always, benchmark your
       application against various loops to see which one is best for your
       workload and platform.

	 use POE qw( XS::Loop::EPoll );

       Please don't load the loop modules directly, because POE will not have
       a chance to initialize it's internal structures yet. Code written like
       this will throw errors on startup. It might look like a bug in POE, but
       it's just the way POE is designed.

	 use POE::Loop::IO_Poll;
	 use POE;

       POE::Kernel also supports configuration directives on its own "use"
       line.  A loop explicitly specified this way will override the search
       logic.

	 use POE::Kernel { loop => "Glib" };

       Finally, one may specify the loop class by setting the POE::Loop or
       POE::XS:Loop class name in the POE_EVENT_LOOP environment variable.
       This mechanism was added for tests that need to specify the loop from a
       distance.

	 BEGIN { $ENV{POE_EVENT_LOOP} = "POE::XS::Loop::Poll" }
	 use POE;

       Of course this may also be set from your shell:

	 % export POE_EVENT_LOOP='POE::XS::Loop::Poll'
	 % make test

       Many external event loops support their own callback mechanisms.
       POE::Session's "postback()" and "callback()" methods return plain Perl
       code references that will generate POE events when called.
       Applications can pass these code references to event loops for use as
       callbacks.

       POE's distribution includes two event loop interfaces.  CPAN holds
       several more:

       POE::Loop::Select (bundled)

       By default POE uses its select() based loop to drive its event system.
       This is perhaps the least efficient loop, but it is also the most
       portable.  POE optimizes for correctness above all.

       POE::Loop::IO_Poll (bundled)

       The IO::Poll event loop provides an alternative that theoretically
       scales better than select().

       POE::Loop::Event (separate distribution)

       This event loop provides interoperability with other modules that use
       Event.  It may also provide a performance boost because Event is
       written in a compiled language.	Unfortunately, this makes Event less
       portable than Perl's built-in select().

       POE::Loop::Gtk (separate distribution)

       This event loop allows programs to work under the Gtk graphical
       toolkit.

       POE::Loop::Tk (separate distribution)

       This event loop allows programs to work under the Tk graphical toolkit.
       Tk has some restrictions that require POE to behave oddly.

       Tk's event loop will not run unless one or more widgets are created.
       POE must therefore create such a widget before it can run. POE::Kernel
       exports $poe_main_window so that the application developer may use the
       widget (which is a MainWindow), since POE doesn't need it other than
       for dispatching events.

       Creating and using a different MainWindow often has an undesired
       outcome.

       POE::Loop::EV (separate distribution)

       POE::Loop::EV allows POE-based programs to use the EV event library
       with little or no change.

       POE::Loop::Glib (separate distribution)

       POE::Loop::Glib allows POE-based programs to use Glib with little or no
       change.	It also supports embedding POE-based programs into
       applications that already use Glib.  For example, we have heard that
       POE has successfully embedded into vim, irssi and xchat via this loop.

       POE::Loop::Kqueue (separate distribution)

       POE::Loop::Kqueue allows POE-based programs to transparently use the
       BSD kqueue event library on operating systems that support it.

       POE::Loop::Prima (separate distribution)

       POE::Loop::Prima allows POE-based programs to use Prima's event loop
       with little or no change.  It allows POE libraries to be used within
       Prima applications.

       POE::Loop::Wx (separate distribution)

       POE::Loop::Wx allows POE-based programs to use Wx's event loop with
       little or no change.  It allows POE libraries to be used within Wx
       applications, such as Padre.

       POE::XS::Loop::EPoll (separate distribution)

       POE::XS::Loop::EPoll allows POE components to transparently use the
       EPoll event library on operating systems that support it.

       POE::XS::Loop::Poll (separate distribution)

       POE::XS::Loop::Poll is a higher-performance C-based libpoll event loop.
       It replaces some of POE's hot Perl code with C for better performance.

       Other Event Loops (separate distributions)

       POE may be extended to handle other event loops.	 Developers are
       invited to work with us to support their favorite loops.

PUBLIC METHODS
       POE::Kernel encapsulates a lot of features.  The documentation for each
       set of features is grouped by purpose.

   Kernel Management and Accessors
       ID

       ID() currently returns POE::Kernel's unique identifier.	Every Kernel
       instance is assigned a globally unique ID at birth.  has_forked()
       alters the ID so that each forked process has a unique one, too.

	 % perl -wl -MPOE -e 'print $poe_kernel->ID'
	 macbookpoe.local-4d5305de-0000e6b8-00000001

       The content of these IDs may change from time to time.  Your code
       should not depend upon the current format.

       Deprecation Warning 2011-02-09

       Your code should not depend upon ID() remaining unique.	The uniqueness
       will be removed in a future release of POE.  If you require unique IDs,
       please see one of the fine GUID and/or UUID modules on the CPAN:

	 http://search.cpan.org/search?query=GUID&mode=dist
	 http://search.cpan.org/search?query=UUID&mode=dist

       POE doesn't require globally or universally unique kernel IDs.  The
       creation and maintenance of these IDs adds overhead to POE::Kernel's
       has_forked() method.  Other modules do it better, upon demand, without
       incurring overhead for those who don't need them.

       run

       run() runs POE::Kernel's event dispatcher.  It will not return until
       all sessions have ended.	 run() is a class method so a POE::Kernel
       reference is not needed to start a program's execution.

	 use POE;
	 POE::Session->create( ... ); # one or more
	 POE::Kernel->run();	      # set them all running
	 exit;

       POE implements the Reactor pattern at its core.	Events are dispatched
       to functions and methods through callbacks.  The code behind run()
       waits for and dispatches events.

       run() will not return until every session has ended.  This includes
       sessions that were created while run() was running.

       POE::Kernel will print a strong message if a program creates sessions
       but fails to call run().	 Prior to this warning, we received tons of
       bug reports along the lines of "my POE program isn't doing anything".
       It turned out that people forgot to start an event dispatcher, so
       events were never dispatched.

       If the lack of a run() call is deliberate, perhaps because some other
       event loop already has control, you can avoid the message by calling it
       before creating a session.  run() at that point will initialize POE and
       return immediately.  POE::Kernel will be satisfied that run() was
       called, although POE will not have actually taken control of the event
       loop.

	 use POE;
	 POE::Kernel->run(); # silence the warning
	 POE::Session->create( ... );
	 exit;

       Note, however, that this varies from one event loop to another.	If a
       particular POE::Loop implementation doesn't support it, that's probably
       a bug.  Please file a bug report with the owner of the relevant
       POE::Loop module.

       run_one_timeslice

       run_one_timeslice() dispatches any events that are due to be delivered.
       These events include timers that are due, asynchronous messages that
       need to be delivered, signals that require handling, and notifications
       for files with pending I/O.  Do not rely too much on event ordering.
       run_one_timeslice() is defined by the underlying event loop, and its
       timing may vary.

       run() is implemented similar to

	 run_one_timeslice() while $session_count > 0;

       run_one_timeslice() can be used to keep running POE::Kernel's
       dispatcher while emulating blocking behavior.  The pattern is
       implemented with a flag that is set when some asynchronous event
       occurs.	A loop calls run_one_timeslice() until that flag is set.  For
       example:

	 my $done = 0;

	 sub handle_some_event {
	   $done = 1;
	 }

	 $kernel->run_one_timeslice() while not $done;

       Do be careful.  The above example will spin if POE::Kernel is done but
       $done is never set.  The loop will never be done, even though there's
       nothing left that will set $done.

       run_while SCALAR_REF

       run_while() is an experimental version of run_one_timeslice() that will
       only return when there are no more active sessions, or the value of the
       referenced scalar becomes false.

       Here's a version of the run_one_timeslice() example using run_while()
       instead:

	 my $job_count = 3;

	 sub handle_some_event {
	   $job_count--;
	 }

	 $kernel->run_while(\$job_count);

       has_forked

	   my $pid = fork();
	   die "Unable to fork" unless defined $pid;
	   unless( $pid ) {
	       $poe_kernel->has_forked;
	   }

       Inform the kernel that it is now running in a new process.  This allows
       the kernel to reset some internal data to adjust to the new situation.

       has_forked() must be called in the child process if you wish to run the
       same kernel.  However, if you want the child process to have new
       kernel, you must call "stop" instead.

       Note: POE's internals will detect if a fork occurred before "run()" and
       will call "has_forked()" automatically. If you are unsure whether you
       need to call it or not, please enable "ASSERT_USAGE" and POE will emit
       a warning if it's necessary.

       stop

       stop() causes POE::Kernel->run() to return early.  It does this by
       emptying the event queue, freeing all used resources, and stopping
       every active session.  stop() is not meant to be used lightly.  Proceed
       with caution.

       Caveats:

       The session that calls stop() will not be fully DESTROYed until it
       returns.	 Invoking an event handler in the session requires a reference
       to that session, and weak references are prohibited in POE for backward
       compatibility reasons, so it makes sense that the last session won't be
       garbage collected right away.

       Sessions are not notified about their destruction.  If anything relies
       on _stop being delivered, it will break and/or leak memory.

       stop() is still considered experimental.	 It was added to improve
       fork() support for POE::Wheel::Run.  If it proves unfixably
       problematic, it will be removed without much notice.

       stop() is advanced magic.  Programmers who think they need it are
       invited to become familiar with its source.

       See "Running POE::Kernel in the Child" in POE::Wheel::Run for an
       example of how to use this facility.

   Asynchronous Messages (FIFO Events)
       Asynchronous messages are events that are dispatched in the order in
       which they were enqueued (the first one in is the first one out,
       otherwise known as first-in/first-out, or FIFO order).  These methods
       enqueue new messages for delivery.  The act of enqueuing a message
       keeps the sender alive at least until the message is delivered.

       post DESTINATION, EVENT_NAME [, PARAMETER_LIST]

       post() enqueues a message to be dispatched to a particular DESTINATION
       session.	 The message will be handled by the code associated with
       EVENT_NAME.  If a PARAMETER_LIST is included, its values will also be
       passed along.

	 POE::Session->create(
	   inline_states => {
	     _start => sub {
	       $_[KERNEL]->post( $_[SESSION], "event_name", 0 );
	     },
	     event_name => sub {
	       print "$_[ARG0]\n";
	       $_[KERNEL]->post( $_[SESSION], "event_name", $_[ARG0] + 1 );
	     },
	   }
	 );

       post() returns a Boolean value indicating whether the message was
       successfully enqueued.  If post() returns false, $! is set to explain
       the failure:

       ESRCH ("No such process") - The DESTINATION session did not exist at
       the time post() was called.

       yield EVENT_NAME [, PARAMETER_LIST]

       yield() is a shortcut for post() where the destination session is the
       same as the sender.  This example is equivalent to the one for post():

	 POE::Session->create(
	   inline_states => {
	     _start => sub {
	       $_[KERNEL]->yield( "event_name", 0 );
	     },
	     event_name => sub {
	       print "$_[ARG0]\n";
	       $_[KERNEL]->yield( "event_name", $_[ARG0] + 1 );
	     },
	   }
	 );

       As with post(), yield() returns right away, and the enqueued EVENT_NAME
       is dispatched later.  This may be confusing if you're already familiar
       with threading.

       yield() should always succeed, so it does not return a meaningful
       value.

   Synchronous Messages
       It is sometimes necessary for code to be invoked right away.  For
       example, some resources must be serviced right away, or they'll
       faithfully continue reporting their readiness.  These reports would
       appear as a stream of duplicate events.	Synchronous events can also
       prevent data from going stale between the time an event is enqueued and
       the time it's delivered.

       Synchronous event handlers preempt POE's event queue, so they should
       perform simple tasks of limited duration.  Synchronous events that need
       to do more than just service a resource should pass the resource's
       information to an asynchronous handler.	Otherwise synchronous
       operations will occur out of order in relation to asynchronous events.
       It's very easy to have race conditions or break causality this way, so
       try to avoid it unless you're okay with the consequences.

       POE provides these ways to call message handlers right away.

       call DESTINATION, EVENT_NAME [, PARAMETER_LIST]

       call()'s semantics are nearly identical to post()'s.  call() invokes a
       DESTINATION's handler associated with an EVENT_NAME.  An optional
       PARAMETER_LIST will be passed along to the message's handler.  The
       difference, however, is that the handler will be invoked immediately,
       even before call() returns.

       call() returns the value returned by the EVENT_NAME handler.  It can do
       this because the handler is invoked before call() returns.  call() can
       therefore be used as an accessor, although there are better ways to
       accomplish simple accessor behavior.

	 POE::Session->create(
	   inline_states => {
	     _start => sub {
	       print "Got: ", $_[KERNEL]->call($_[SESSION], "do_now"), "\n";
	     },
	     do_now => sub {
	       return "some value";
	     }
	   }
	 );

       The POE::Wheel classes uses call() to synchronously deliver I/O
       notifications.  This avoids a host of race conditions.

       call() may fail in the same way and for the same reasons as post().  On
       failure, $! is set to some nonzero value indicating why.	 Since call()
       may return undef as a matter of course, it's recommended that $! be
       checked for the error condition as well as the explanation.

       ESRCH ("No such process") - The DESTINATION session did not exist at
       the time post() was called.

   Timer Events (Delayed Messages)
       It's often useful to wait for a certain time or until a certain amount
       of time has passed.  POE supports this with events that are deferred
       until either an absolute time ("alarms") or until a certain duration of
       time has elapsed ("delays").

       Timer interfaces are further divided into two groups.  One group
       identifies timers by the names of their associated events.  Another
       group identifies timers by a unique identifier returned by the timer
       constructors.  Technically, the two are both name-based, but the
       "identifier-based" timers provide a second, more specific handle to
       identify individual timers.

       Timers may only be set up for the current session.  This design was
       modeled after alarm() and SIGALRM, which only affect the current UNIX
       process.	 Each session has a separate namespace for timer names.	 Timer
       methods called in one session cannot affect the timers in another.  As
       you may have noticed, quite a lot of POE's API is designed to prevent
       sessions from interfering with each other.

       The best way to simulate deferred inter-session messages is to send an
       immediate message that causes the destination to set a timer.  The
       destination's timer then defers the action requested of it.  This way
       is preferred because the time spent communicating the request between
       sessions may not be trivial, especially if the sessions are separated
       by a network.  The destination can determine how much time remains on
       the requested timer and adjust its wait time accordingly.

       Name-Based Timers

       Name-based timers are identified by the event names used to set them.
       It is possible for different sessions to use the same timer event
       names, since each session is a separate compartment with its own timer
       namespace.  It is possible for a session to have multiple timers for a
       given event, but results may be surprising.  Be careful to use the
       right timer methods.

       The name-based timer methods are alarm(), alarm_add(), delay(), and
       delay_add().

       alarm EVENT_NAME [, EPOCH_TIME [, PARAMETER_LIST] ]

       alarm() clears all existing timers in the current session with the same
       EVENT_NAME.  It then sets a new timer, named EVENT_NAME, that will fire
       EVENT_NAME at the current session when EPOCH_TIME has been reached.  An
       optional PARAMETER_LIST may be passed along to the timer's handler.

       Omitting the EPOCH_TIME and subsequent parameters causes alarm() to
       clear the EVENT_NAME timers in the current session without setting a
       new one.

       EPOCH_TIME is the UNIX epoch time.  You know, seconds since midnight,
       1970-01-01.  POE uses Time::HiRes::time(), which allows EPOCH_TIME to
       be (or include) fractional seconds.

       POE supports fractional seconds, but accuracy falls off steeply after
       1/100 second.  Mileage will vary depending on your CPU speed and your
       OS time resolution.

       Be sure to use Time::HiRes::time() rather than Perl's built-in time()
       if sub-second accuracy matters at all.  The built-in time() returns
       floor(Time::HiRes::time()), which is nearly always some fraction of a
       second in the past.  For example the high-resolution time might be
       1200941422.89996.  At that same instant, time() would be 1200941422.
       An alarm for time() + 0.5 would be 0.39996 seconds in the past, so it
       would be dispatched immediately (if not sooner).

       POE's event queue is time-ordered, so a timer due before time() will be
       delivered ahead of other events but not before timers with even earlier
       due times.  Therefore an alarm() with an EPOCH_TIME before time() jumps
       ahead of the queue.

       All timers are implemented identically internally, regardless of how
       they are set.  alarm() will therefore blithely clear timers set by
       other means.

	 POE::Session->create(
	   inline_states => {
	     _start => sub {
	       $_[KERNEL]->alarm( tick => time() + 1, 0 );
	     },
	     tick => sub {
	       print "tick $_[ARG0]\n";
	       $_[KERNEL]->alarm( tock => time() + 1, $_[ARG0] + 1 );
	     },
	     tock => sub {
	       print "tock $_[ARG0]\n";
	       $_[KERNEL]->alarm( tick => time() + 1, $_[ARG0] + 1 );
	     },
	   }
	 );

       alarm() returns 0 on success or a true value on failure.	 Usually
       EINVAL to signal an invalid parameter, such as an undefined EVENT_NAME.

       alarm_add EVENT_NAME, EPOCH_TIME [, PARAMETER_LIST]

       alarm_add() is used to add a new alarm timer named EVENT_NAME without
       clearing existing timers.  EPOCH_TIME is a required parameter.
       Otherwise the semantics are identical to alarm().

       A program may use alarm_add() without first using alarm().

	 POE::Session->create(
	   inline_states => {
	     _start => sub {
	       $_[KERNEL]->alarm_add( tick => time() + 1.0, 1_000_000 );
	       $_[KERNEL]->alarm_add( tick => time() + 1.5, 2_000_000 );
	     },
	     tick => sub {
	       print "tick $_[ARG0]\n";
	       $_[KERNEL]->alarm_add( tock => time() + 1, $_[ARG0] + 1 );
	     },
	     tock => sub {
	       print "tock $_[ARG0]\n";
	       $_[KERNEL]->alarm_add( tick => time() + 1, $_[ARG0] + 1 );
	     },
	   }
	 );

       alarm_add() returns 0 on success or EINVAL if EVENT_NAME or EPOCH_TIME
       is undefined.

       delay EVENT_NAME [, DURATION_SECONDS [, PARAMETER_LIST] ]

       delay() clears all existing timers in the current session with the same
       EVENT_NAME.  It then sets a new timer, named EVENT_NAME, that will fire
       EVENT_NAME at the current session when DURATION_SECONDS have elapsed
       from "now".  An optional PARAMETER_LIST may be passed along to the
       timer's handler.

       Omitting the DURATION_SECONDS and subsequent parameters causes delay()
       to clear the EVENT_NAME timers in the current session without setting a
       new one.

       DURATION_SECONDS may be or include fractional seconds.  As with all of
       POE's timers, accuracy falls off steeply after 1/100 second.  Mileage
       will vary depending on your CPU speed and your OS time resolution.

       POE's event queue is time-ordered, so a timer due before time() will be
       delivered ahead of other events but not before timers with even earlier
       due times.  Therefore a delay () with a zero or negative
       DURATION_SECONDS jumps ahead of the queue.

       delay() may be considered a shorthand form of alarm(), but there are
       subtle differences in timing issues.  This code is roughly equivalent
       to the alarm() example.

	 POE::Session->create(
	   inline_states => {
	     _start => sub {
	       $_[KERNEL]->delay( tick => 1, 0 );
	     },
	     tick => sub {
	       print "tick $_[ARG0]\n";
	       $_[KERNEL]->delay( tock => 1, $_[ARG0] + 1 );
	     },
	     tock => sub {
	       print "tock $_[ARG0]\n";
	       $_[KERNEL]->delay( tick => 1, $_[ARG0] + 1 );
	     },
	   }
	 );

       delay() returns 0 on success or a reason for failure: EINVAL if
       EVENT_NAME is undefined.

       delay_add EVENT_NAME, DURATION_SECONDS [, PARAMETER_LIST]

       delay_add() is used to add a new delay timer named EVENT_NAME without
       clearing existing timers.  DURATION_SECONDS is a required parameter.
       Otherwise the semantics are identical to delay().

       A program may use delay_add() without first using delay().

	 POE::Session->create(
	   inline_states => {
	     _start => sub {
	       $_[KERNEL]->delay_add( tick => 1.0, 1_000_000 );
	       $_[KERNEL]->delay_add( tick => 1.5, 2_000_000 );
	     },
	     tick => sub {
	       print "tick $_[ARG0]\n";
	       $_[KERNEL]->delay_add( tock => 1, $_[ARG0] + 1 );
	     },
	     tock => sub {
	       print "tock $_[ARG0]\n";
	       $_[KERNEL]->delay_add( tick => 1, $_[ARG0] + 1 );
	     },
	   }
	 );

       delay_add() returns 0 on success or EINVAL if EVENT_NAME or EPOCH_TIME
       is undefined.

       Identifier-Based Timers

       A second way to manage timers is through identifiers.  Setting an alarm
       or delay with the "identifier" methods allows a program to manipulate
       several timers with the same name in the same session.  As covered in
       alarm() and delay() however, it's possible to mix named and identified
       timer calls, but the consequences may not always be expected.

       alarm_set EVENT_NAME, EPOCH_TIME [, PARAMETER_LIST]

       alarm_set() sets an alarm, returning a unique identifier that can be
       used to adjust or remove the alarm later.  Unlike alarm(), it does not
       first clear existing timers with the same EVENT_NAME.  Otherwise the
       semantics are identical to alarm().

	 POE::Session->create(
	   inline_states => {
	     _start => sub {
	       $_[HEAP]{alarm_id} = $_[KERNEL]->alarm_set(
		 party => time() + 1999
	       );
	       $_[KERNEL]->delay(raid => 1);
	     },
	     raid => sub {
	       $_[KERNEL]->alarm_remove( delete $_[HEAP]{alarm_id} );
	     },
	   }
	 );

       alarm_set() returns false if it fails and sets $! with the explanation.
       $! will be EINVAL if EVENT_NAME or TIME is undefined.

       alarm_adjust ALARM_ID, DELTA_SECONDS

       alarm_adjust() adjusts an existing timer's due time by DELTA_SECONDS,
       which may be positive or negative.  It may even be zero, but that's not
       as useful.  On success, it returns the timer's new due time since the
       start of the UNIX epoch.

       It's possible to alarm_adjust() timers created by delay_set() as well
       as alarm_set().

       This example moves an alarm's due time ten seconds earlier.

	 use POSIX qw(strftime);

	 POE::Session->create(
	   inline_states => {
	     _start => sub {
	       $_[HEAP]{alarm_id} = $_[KERNEL]->alarm_set(
		 party => time() + 1999
	       );
	       $_[KERNEL]->delay(postpone => 1);
	     },
	     postpone => sub {
	       my $new_time = $_[KERNEL]->alarm_adjust(
		 $_[HEAP]{alarm_id}, -10
	       );
	       print(
		 "Now we're gonna party like it's ",
		 strftime("%F %T", gmtime($new_time)), "\n"
	       );
	     },
	   }
	 );

       alarm_adjust() returns Boolean false if it fails, setting $! to the
       reason why.  $! may be EINVAL if ALARM_ID or DELTA_SECONDS are
       undefined.  It may be ESRCH if ALARM_ID no longer refers to a pending
       timer.  $! may also contain EPERM if ALARM_ID is valid but belongs to a
       different session.

       alarm_remove ALARM_ID

       alarm_remove() removes the alarm identified by ALARM_ID.	 ALARM_ID
       comes from a previous alarm_set() or delay_set() call.

       Upon success, alarm_remove() returns something true based on its
       context.	 In a list context, it returns three things: The removed
       alarm's event name, the UNIX time it was due to go off, and a reference
       to the PARAMETER_LIST (if any) assigned to the timer when it was
       created.	 If necessary, the timer can be re-set with this information.

	 POE::Session->create(
	   inline_states => {
	     _start => sub {
	       $_[HEAP]{alarm_id} = $_[KERNEL]->alarm_set(
		 party => time() + 1999
	       );
	       $_[KERNEL]->delay(raid => 1);
	     },
	     raid => sub {
	       my ($name, $time, $param) = $_[KERNEL]->alarm_remove(
		 $_[HEAP]{alarm_id}
	       );
	       print(
		 "Removed alarm for event $name due at $time with @$param\n"
	       );

	       # Or reset it, if you'd like.  Possibly after modification.
	       $_[KERNEL]->alarm_set($name, $time, @$param);
	     },
	   }
	 );

       In a scalar context, it returns a reference to a list of the three
       things above.

	 # Remove and reset an alarm.
	 my $alarm_info = $_[KERNEL]->alarm_remove( $alarm_id );
	 my $new_id = $_[KERNEL]->alarm_set(
	   $alarm_info[0], $alarm_info[1], @{$alarm_info[2]}
	 );

       Upon failure, however, alarm_remove() returns a Boolean false value and
       sets $! with the reason why the call failed:

       EINVAL ("Invalid argument") indicates a problem with one or more
       parameters, usually an undefined ALARM_ID.

       ESRCH ("No such process") indicates that ALARM_ID did not refer to a
       pending alarm.

       EPERM ("Operation not permitted").  A session cannot remove an alarm it
       does not own.

       alarm_remove_all

       alarm_remove_all() removes all the pending timers for the current
       session, regardless of creation method or type.	This method takes no
       arguments.  It returns information about the alarms that were removed,
       either as a list of alarms or a list reference depending whether
       alarm_remove_all() is called in scalar or list context.

       Each removed alarm's information is identical to the format explained
       in alarm_remove().

	 sub some_event_handler {
	   my @removed_alarms = $_[KERNEL]->alarm_remove_all();
	   foreach my $alarm (@removed_alarms) {
	     my ($name, $time, $param) = @$alarm;
	     ...;
	   }
	 }

       delay_set EVENT_NAME, DURATION_SECONDS [, PARAMETER_LIST]

       delay_set() sets a timer for DURATION_SECONDS in the future.  The timer
       will be dispatched to the code associated with EVENT_NAME in the
       current session.	 An optional PARAMETER_LIST will be passed through to
       the handler.  It returns the same sort of things that alarm_set() does.

	 POE::Session->create(
	   inline_states => {
	     _start => sub {
	       $_[KERNEL]->delay_set("later", 5, "hello", "world");
	     },
	     later => sub {
	       print "@_[ARG0..#$_]\n";
	     }
	   }
	 );

       delay_adjust ALARM_ID, SECONDS_FROM_NOW

       delay_adjust() changes a timer's due time to be SECONDS_FROM_NOW.  It's
       useful for refreshing watchdog- or timeout-style timers.	 On success it
       returns the new absolute UNIX time the timer will be due.

       It's possible for delay_adjust() to adjust timers created by
       alarm_set() as well as delay_set().

	 use POSIX qw(strftime);

	 POE::Session->create(
	   inline_states => {
	     # Setup.
	     # ... omitted.

	     got_input => sub {
	       my $new_time = $_[KERNEL]->delay_adjust(
		 $_[HEAP]{input_timeout}, 60
	       );
	       print(
		 "Refreshed the input timeout.	Next may occur at ",
		 strftime("%F %T", gmtime($new_time)), "\n"
	       );
	     },
	   }
	 );

       On failure it returns Boolean false and sets $! to a reason for the
       failure.	 See the explanation of $! for alarm_adjust().

       delay_remove is not needed

       There is no delay_remove().  Timers are all identical internally, so
       alarm_remove() will work with timer IDs returned by delay_set().

       delay_remove_all is not needed

       There is no delay_remove_all().	Timers are all identical internally,
       so alarm_remove_all() clears them all regardless how they were created.

       Comparison

       Below is a table to help compare the various delayed message-sending
       methods

	 +-----------+------------------+---------------------+------------+
	 |	     | time argument	| clears other events | returns on |
	 | method    | passed to method | of the same name    | success	   |
	 +-----------+------------------+---------------------+------------+
	 | delay_set | seconds from now | N		      | alarm_id   |
	 | delay     | seconds from now | Y		      | 0 (false)  |
	 | alarm_set | unix epoch time	| N		      | alarm_id   |
	 | alarm     | unix epoch time	| Y		      | 0 (false)  |
	 +-----------+------------------+---------------------+------------+

   Session Identifiers (IDs and Aliases)
       A session may be referred to by its object references (either blessed
       or stringified), a session ID, or one or more symbolic names we call
       aliases.

       Every session is represented by an object, so session references are
       fairly straightforward.	POE::Kernel may reference these objects.  For
       instance, post() may use $_[SENDER] as a destination:

	 POE::Session->create(
	   inline_states => {
	     _start => sub { $_[KERNEL]->alias_set("echoer") },
	     ping => sub {
	       $_[KERNEL]->post( $_[SENDER], "pong", @_[ARG0..$#_] );
	     }
	   }
	 );

       POE also recognized stringified Session objects for convenience and as
       a form of weak reference.  Here $_[SENDER] is wrapped in quotes to
       stringify it:

	 POE::Session->create(
	   inline_states => {
	     _start => sub { $_[KERNEL]->alias_set("echoer") },
	     ping => sub {
	       $_[KERNEL]->post( "$_[SENDER]", "pong", @_[ARG0..$#_] );
	     }
	   }
	 );

       Every session is assigned a unique ID at creation time.	No two active
       sessions will have the same ID, but IDs may be reused over time.	 The
       combination of a kernel ID and a session ID should be sufficient as a
       global unique identifier.

	 POE::Session->create(
	   inline_states => {
	     _start => sub { $_[KERNEL]->alias_set("echoer") },
	     ping => sub {
	       $_[KERNEL]->delay(
		 pong_later => rand(5), $_[SENDER]->ID, @_[ARG0..$#_]
	       );
	     },
	     pong_later => sub {
	       $_[KERNEL]->post( $_[ARG0], "pong", @_[ARG1..$#_] );
	     }
	   }
	 );

       Kernels also maintain a global session namespace or dictionary from
       which may be used to map a symbolic aliases to a session. Once an alias
       is mapping has been created, that alias may be used to refer to the
       session wherever a session may be specified.

       In the previous examples, each echoer service has set an "echoer"
       alias.  Another session can post a ping request to the echoer session
       by using that alias rather than a session object or ID.	For example:

	 POE::Session->create(
	   inline_states => {
	     _start => sub { $_[KERNEL]->post(echoer => ping => "whee!" ) },
	     pong => sub { print "@_[ARG0..$#_]\n" }
	   }
	 );

       A session with an alias will not stop until all other activity has
       stopped.	 Aliases are treated as a kind of event watcher.  Events come
       from active sessions.  Aliases therefore become useless when there are
       no active sessions left.	 Rather than leaving the program running in a
       "zombie" state, POE detects this deadlock condition and triggers a
       cleanup.	 See "Signal Classes" for more information.

       alias_set ALIAS

       alias_set() maps an ALIAS in POE::Kernel's dictionary to the current
       session. The ALIAS may then be used nearly everywhere a session
       reference, stringified reference, or ID is expected.

       Sessions may have more than one alias.  Each alias must be defined in a
       separate alias_set() call.  A single alias may not refer to more than
       one session.

       Multiple alias examples are above.

       alias_set() returns 0 on success, or a nonzero failure indicator:
       EEXIST ("File exists") indicates that the alias is already assigned to
       to a different session.

       alias_remove ALIAS

       alias_remove() removes an ALIAS for the current session from
       POE::Kernel's dictionary.  The ALIAS will no longer refer to the
       current session.	 This does not negatively affect events already posted
       to POE's queue.	Alias resolution occurs at post() time, not at
       delivery time.

	 POE::Session->create(
	   inline_states => {
	     _start => sub {
	       $_[KERNEL]->alias_set("short_window");
	       $_[KERNEL]->delay(close_window => 1);
	     },
	     close_window => {
	       $_[KERNEL]->alias_remove("short_window");
	     }
	   }
	 );

       alias_remove() returns 0 on success or a nonzero failure code:  ESRCH
       ("No such process") indicates that the ALIAS is not currently in
       POE::Kernel's dictionary.  EPERM ("Operation not permitted") means that
       the current session may not remove the ALIAS because it is in use by
       some other session.

       alias_resolve ALIAS

       alias_resolve() returns a session reference corresponding to a given
       ALIAS.  Actually, the ALIAS may be a stringified session reference, a
       session ID, or an alias previously registered by alias_set().

       One use for alias_resolve() is to detect whether another session has
       gone away:

	 unless (defined $_[KERNEL]->alias_resolve("Elvis")) {
	   print "Elvis has left the building.\n";
	 }

       As previously mentioned, alias_resolve() returns a session reference or
       undef on failure.  Failure also sets $! to ESRCH ("No such process")
       when the ALIAS is not currently in POE::Kernel's.

       alias_list [SESSION_REFERENCE]

       alias_list() returns a list of aliases associated with a specific
       SESSION, or with the current session if SESSION is omitted.
       alias_list() returns an empty list if the requested SESSION has no
       aliases.

       SESSION may be a session reference (blessed or stringified), a session
       ID, or a session alias.

	 POE::Session->create(
	   inline_states => {
	     $_[KERNEL]->alias_set("mi");
	     print(
	       "The names I call myself: ",
	       join(", ", $_[KERNEL]->alias_list()),
	       "\n"
	     );
	   }
	 );

       ID_id_to_session SESSION_ID

       ID_id_to_session() translates a session ID into a session reference.
       It's a special-purpose subset of alias_resolve(), so it's a little
       faster and somewhat less flexible.

	 unless (defined $_[KERNEL]->ID_id_to_session($session_id)) {
	   print "Session $session_id doesn't exist.\n";
	 }

       ID_id_to_session() returns undef if a lookup failed.  $! will be set to
       ESRCH ("No such process").

       ID_session_to_id SESSION_REFERENCE

       ID_session_to_id() converts a blessed or stringified SESSION_REFERENCE
       into a session ID.  It's more practical for stringified references, as
       programs can call the POE::Session ID() method on the blessed ones.
       These statements are equivalent:

	 $id = $_[SENDER]->ID();
	 $id = $_[KERNEL]->ID_session_to_id($_[SENDER]);
	 $id = $_[KERNEL]->ID_session_to_id("$_[SENDER]");

       As with other POE::Kernel lookup methods, ID_session_to_id() returns
       undef on failure, setting $! to ESRCH ("No such process").

   I/O Watchers (Selects)
       No event system would be complete without the ability to asynchronously
       watch for I/O events.  POE::Kernel implements the lowest level
       watchers, which are called "selects" because they were historically
       implemented using Perl's built-in select(2) function.

       Applications handle I/O readiness events by performing some activity on
       the underlying filehandle.  Read-readiness might be handled by reading
       from the handle.	 Write-readiness by writing to it.

       All I/O watcher events include two parameters.  "ARG0" contains the
       handle that is ready for work.  "ARG1" contains an integer describing
       what's ready.

	 sub handle_io {
	   my ($handle, $mode) = @_[ARG0, ARG1];
	   print "File $handle is ready for ";
	   if ($mode == 0) {
	     print "reading";
	   }
	   elsif ($mode == 1) {
	     print "writing";
	   }
	   elsif ($mode == 2) {
	     print "out-of-band reading";
	   }
	   else {
	     die "unknown mode $mode";
	   }
	   print "\n";
	   # ... do something here
	 }

       The remaining parameters, @_[ARG2..$%_], contain additional parameters
       that were passed to the POE::Kernel method that created the watcher.

       POE::Kernel conditions filehandles to be 8-bit clean and non-blocking.
       Programs that need them conditioned differently should set them up
       after starting POE I/O watchers. If you are running a Perl older than
       5.8.1 and is using tied filehandles, you need to set non-blocking mode
       yourself as IO::Handle does not work well.  See
       <https://rt.cpan.org/Ticket/Display.html?id=67545> for more info.

       I/O watchers will prevent sessions from stopping.

       select_read FILE_HANDLE [, EVENT_NAME [, ADDITIONAL_PARAMETERS] ]

       select_read() starts or stops the current session from watching for
       incoming data on a given FILE_HANDLE.  The watcher is started if
       EVENT_NAME is specified, or stopped if it's not.
       ADDITIONAL_PARAMETERS, if specified, will be passed to the EVENT_NAME
       handler as @_[ARG2..$#_].

	 POE::Session->create(
	   inline_states => {
	     _start => sub {
	       $_[HEAP]{socket} = IO::Socket::INET->new(
		 PeerAddr => "localhost",
		 PeerPort => 25,
	       );
	       $_[KERNEL]->select_read( $_[HEAP]{socket}, "got_input" );
	       $_[KERNEL]->delay(timed_out => 1);
	     },
	     got_input => sub {
	       my $socket = $_[ARG0];
	       while (sysread($socket, my $buf = "", 8192)) {
		 print $buf;
	       }
	     },
	     timed_out => sub {
	       $_[KERNEL]->select_read( delete $_[HEAP]{socket} );
	     },
	   }
	 );

       select_read() does not return anything significant.

       select_write FILE_HANDLE [, EVENT_NAME [, ADDITIONAL_PARAMETERS] ]

       select_write() follows the same semantics as select_read(), but it
       starts or stops a watcher that looks for write-readiness.  That is,
       when EVENT_NAME is delivered, it means that FILE_HANDLE is ready to be
       written to.

       select_write() does not return anything significant.

       select_expedite FILE_HANDLE [, EVENT_NAME [, ADDITIONAL_PARAMETERS] ]

       select_expedite() does the same sort of thing as select_read() and
       select_write(), but it watches a FILE_HANDLE for out-of-band data ready
       to be input from a FILE_HANDLE.	Hardly anybody uses this, but it
       exists for completeness' sake.

       An EVENT_NAME event will be delivered whenever the FILE_HANDLE can be
       read from out-of-band.  Out-of-band data is considered "expedited"
       because it is often ahead of a socket's normal data.

       select_expedite() does not return anything significant.

       select_pause_read FILE_HANDLE

       select_pause_read() is a lightweight way to pause a FILE_HANDLE input
       watcher without performing all the bookkeeping of a select_read().
       It's used with select_resume_read() to implement input flow control.

       Input that occurs on FILE_HANDLE will backlog in the operating system
       buffers until select_resume_read() is called.

       A side effect of bypassing the select_read() bookkeeping is that a
       paused FILE_HANDLE will not prematurely stop the current session.

       select_pause_read() does not return anything significant.

       select_resume_read FILE_HANDLE

       select_resume_read() resumes a FILE_HANDLE input watcher that was
       previously paused by select_pause_read().  See select_pause_read() for
       more discussion on lightweight input flow control.

       Data backlogged in the operating system due to a select_pause_read()
       call will become available after select_resume_read() is called.

       select_resume_read() does not return anything significant.

       select_pause_write FILE_HANDLE

       select_pause_write() pauses a FILE_HANDLE output watcher the same way
       select_pause_read() does for input.  Please see select_pause_read() for
       further discussion.

       select_resume_write FILE_HANDLE

       select_resume_write() resumes a FILE_HANDLE output watcher the same way
       that select_resume_read() does for input.  See select_resume_read() for
       further discussion.

       select FILE_HANDLE [, EV_READ [, EV_WRITE [, EV_EXPEDITE [, ARGS] ] ] ]

       POE::Kernel's select() method sets or clears a FILE_HANDLE's read,
       write and expedite watchers at once.  It's a little more expensive than
       calling select_read(), select_write() and select_expedite() manually,
       but it's significantly more convenient.

       Defined event names enable their corresponding watchers, and undefined
       event names disable them.  This turns off all the watchers for a
       FILE_HANDLE:

	 sub stop_io {
	   $_[KERNEL]->select( $_[HEAP]{file_handle} );
	 }

       This statement:

	 $_[KERNEL]->select( $file_handle, undef, "write_event", undef, @stuff );

       is equivalent to:

	 $_[KERNEL]->select_read( $file_handle );
	 $_[KERNEL]->select_write( $file_handle, "write_event", @stuff );
	 $_[KERNEL]->select_expedite( $file_handle );

       POE::Kernel's select() should not be confused with Perl's built-in
       select() function.

       As with the other I/O watcher methods, select() does not return a
       meaningful value.

   Session Management
       Sessions are dynamic.  They may be created and destroyed during a
       program's lifespan.  When a session is created, it becomes the "child"
       of the current session.	The creator -- the current session -- becomes
       its "parent" session.  This is loosely modeled after UNIX processes.

       The most common session management is done by creating new sessions and
       allowing them to eventually stop.

       Every session has a parent, even the very first session created.
       Sessions without obvious parents are children of the program's
       POE::Kernel instance.

       Child sessions will keep their parents active.  See "Session Lifespans"
       for more about why sessions stay alive.

       The parent/child relationship tree also governs the way many signals
       are dispatched.	See "Common Signal Dispatching" for more information
       on that.

       Session Management Events (_start, _stop, _parent, _child)

       POE::Kernel provides four session management events: _start, _stop,
       _parent and _child.  They are invoked synchronously whenever a session
       is newly created or just about to be destroyed.

       _start
	 _start should be familiar by now.  POE dispatches the _start event to
	 initialize a session after it has been registered under POE::Kernel.
	 What is not readily apparent, however, is that it is invoked before
	 the POE::Session constructor returns.

	 Within the _start handler, the event's sender is the session that
	 created the new session.  Otherwise known as the new session's
	 parent.  Sessions created before POE::Kernel->run() is called will be
	 descendents of the program's POE::Kernel singleton.

	 The _start handler's return value is passed to the parent session in
	 a _child event, along with the notification that the parent's new
	 child was created successfully.  See the discussion of _child for
	 more details.

	   POE::Session->create(
	     inline_states => { _start=> \&_start },
	     args => [ $some, $args ]
	   );

	   sub _start {
	     my ( $some, $args ) = @_[ ARG0, ARG1 ];
	     # ....
	   }

       _stop
	 _stop is a little more mysterious.  POE calls a _stop handler when a
	 session is irrevocably about to be destroyed.	Part of session
	 destruction is the forcible reclamation of its resources (events,
	 timers, message events, etc.) so it's not possible to post() a
	 message from _stop's handler.	A program is free to try, but the
	 event will be destroyed before it has a chance to be dispatched.

	 the _stop handler's return value is passed to the parent's _child
	 event.	 See _child for more details.

	 _stop is usually invoked when a session has no further reason to
	 live, although signals may cause them to stop sooner.

	 The corresponding _child handler is invoked synchronously just after
	 _stop returns.

       _parent
	 _parent is used to notify a child session when its parent has
	 changed.  This usually happens when a session is first created.  It
	 can also happen when a child session is detached from its parent. See
	 detach_child and "detach_myself".

	 _parent's ARG0 contains the session's previous parent, and ARG1
	 contains its new parent.

	   sub _parent {
	     my ( $old_parent, $new_parent ) = @_[ ARG0, ARG1 ];
	     print(
	       "Session ", $_[SESSION]->ID,
	       " parent changed from session ", $old_parent->ID,
	       " to session ", $new_parent->ID,
	       "\n"
	     );
	   }

       _child
	 _child notifies one session when a child session has been created,
	 destroyed, or reassigned to or from another parent.  It's usually
	 dispatched when sessions are created or destroyed.  It can also
	 happen when a session is detached from its parent.

	 _child includes some information in the "arguments" portion of @_.
	 Typically ARG0, ARG1 and ARG2, but these may be overridden by a
	 different POE::Session class:

	 ARG0 contains a string describing what has happened to the child.
	 The string may be 'create' (the child session has been created),
	 'gain' (the child has been given by another session), or 'lose' (the
	 child session has stopped or been given away).

	 In all cases, ARG1 contains a reference to the child session.

	 In the 'create' case, ARG2 holds the value returned by the child
	 session's _start handler.  Likewise, ARG2 holds the _stop handler's
	 return value for the 'lose' case.

	   sub _child {
	     my( $reason, $child ) = @_[ ARG0, ARG1 ];
	     if( $reason eq 'create' ) {
	       my $retval = $_[ ARG2 ];
	     }
	     # ...
	   }

       The events are delivered in specific orders.

       When a new session is created:

       1.  The session's constructor is called.

       2.  The session is put into play.  That is, POE::Kernel enters the
	   session into its bookkeeping.

       3.  The new session receives _start.

       4.  The parent session receives _child ('create'), the new session
	   reference, and the new session's _start's return value.

       5.  The session's constructor returns.

       When an old session stops:

       1.  If the session has children of its own, they are given to the
	   session's parent.  This triggers one or more _child ('gain') events
	   in the parent, and a _parent in each child.

       2.  Once divested of its children, the stopping session receives a
	   _stop event.

       3.  The stopped session's parent receives a _child ('lose') event with
	   the departing child's reference and _stop handler's return value.

       4.  The stopped session is removed from play, as are all its remaining
	   resources.

       5.  The parent session is checked for idleness.	If so, garbage
	   collection will commence on it, and it too will be stopped

       When a session is detached from its parent:

       1.  The parent session of the session being detached is notified with a
	   _child ('lose') event.  The _stop handler's return value is undef
	   since the child is not actually stopping.

       2.  The detached session is notified with a _parent event that its new
	   parent is POE::Kernel itself.

       3.  POE::Kernel's bookkeeping data is adjusted to reflect the change of
	   parentage.

       4.  The old parent session is checked for idleness.  If so, garbage
	   collection will commence on it, and it too will be stopped

       Session Management Methods

       These methods allow sessions to be detached from their parents in the
       rare cases where the parent/child relationship gets in the way.

       detach_child CHILD_SESSION

       detach_child() detaches a particular CHILD_SESSION from the current
       session.	 On success, the CHILD_SESSION will become a child of the
       POE::Kernel instance, and detach_child() will return true.  On failure
       however, detach_child() returns false and sets $! to explain the nature
       of the failure:

       ESRCH ("No such process").
	   The CHILD_SESSION is not a valid session.

       EPERM ("Operation not permitted").
	   The CHILD_SESSION exists, but it is not a child of the current
	   session.

       detach_child() will generate "_parent" and/or "_child" events to the
       appropriate sessions.  See Session Management Events for a detailed
       explanation of these events.  See above for the order the events are
       generated.

       detach_myself

       detach_myself() detaches the current session from its current parent.
       The new parent will be the running POE::Kernel instance.	 It returns
       true on success.	 On failure it returns false and sets $! to explain
       the nature of the failure:

       EPERM ("Operation not permitted").
	   The current session is already a child of POE::Kernel, so it may
	   not be detached.

       detach_child() will generate "_parent" and/or "_child" events to the
       appropriate sessions.  See Session Management Events for a detailed
       explanation of these events.  See above for the order the events are
       generated.

   Signals
       POE::Kernel provides methods through which a program can register
       interest in signals that come along, can deliver its own signals
       without resorting to system calls, and can indicate that signals have
       been handled so that default behaviors are not necessary.

       Signals are action at a distance by nature, and their implementation
       requires widespread synchronization between sessions (and reentrancy in
       the dispatcher, but that's an implementation detail).  Perfecting the
       semantics has proven difficult, but POE tries to do the Right Thing
       whenever possible.

       POE does not register %SIG handlers for signals until sig() is called
       to watch for them.  Therefore a signal's default behavior occurs for
       unhandled signals.  That is, SIGINT will gracelessly stop a program,
       SIGWINCH will do nothing, SIGTSTP will pause a program, and so on.

       Signal Classes

       There are three signal classes.	Each class defines a default behavior
       for the signal and whether the default can be overridden.  They are:

       Benign, advisory, or informative signals

       These are three names for the same signal class.	 Signals in this class
       notify a session of an event but do not terminate the session if they
       are not handled.

       It is possible for an application to create its own benign signals.
       See "signal" below.

       Terminal signals

       Terminal signals will kill sessions if they are not handled by a
       "sig_handled"() call.  The OS signals that usually kill or dump a
       process are considered terminal in POE, but they never trigger a
       coredump.  These are: HUP, INT, QUIT and TERM.

       There are two terminal signals created by and used within POE:

       DIE "DIE" notifies sessions that a Perl exception has occurred.	See
	   "Exception Handling" for details.

       IDLE
	   The "IDLE" signal is used to notify leftover sessions that a
	   program has run out of things to do.

       Nonmaskable signals

       Nonmaskable signals are terminal regardless whether sig_handled() is
       called.	The term comes from "NMI", the non-maskable CPU interrupt
       usually generated by an unrecoverable hardware exception.

       Sessions that receive a non-maskable signal will unavoidably stop.  POE
       implements two non-maskable signals:

       ZOMBIE
	   This non-maskable signal is fired if a program has received an
	   "IDLE" signal but neither restarted nor exited.  The program has
	   become a zombie (that is, it's neither dead nor alive, and only
	   exists to consume braaaains ...er...	 memory).  The "ZOMBIE" signal
	   acts like a cricket bat to the head, bringing the zombie down, for
	   good.

       UIDESTROY
	   This non-maskable signal indicates that a program's user interface
	   has been closed, and the program should take the user's hint and
	   buzz off as well.  It's usually generated when a particular GUI
	   widget is closed.

       Common Signal Dispatching

       Most signals are not dispatched to a single session.  POE's session
       lineage (parents and children) form a sort of family tree.  When a
       signal is sent to a session, it first passes through any children (and
       grandchildren, and so on) that are also interested in the signal.

       In the case of terminal signals, if any of the sessions a signal passes
       through calls "sig_handled"(), then the signal is considered taken care
       of.  However if none of them do, then the entire session tree rooted at
       the destination session is terminated.  For example, consider this tree
       of sessions:

	 POE::Kernel
	   Session 2
	     Session 4
	     Session 5
	   Session 3
	     Session 6
	     Session 7

       POE::Kernel is the parent of sessions 2 and 3.  Session 2 is the parent
       of sessions 4 and 5.  And session 3 is the parent of 6 and 7.

       A signal sent to Session 2 may also be dispatched to session 4 and 5
       because they are 2's children.  Sessions 4 and 5 will only receive the
       signal if they have registered the appropriate watcher.	If the signal
       is terminal, and none of the signal watchers in sessions 2, 4 and 5
       called "sig_handled()", all 3 sessions will be terminated.

       The program's POE::Kernel instance is considered to be a session for
       the purpose of signal dispatch.	So any signal sent to POE::Kernel will
       propagate through every interested session in the entire program.  This
       is in fact how OS signals are handled: A global signal handler is
       registered to forward the signal to POE::Kernel.

       Signal Semantics

       All signals come with the signal name in ARG0.  The signal name is as
       it appears in %SIG, with one exception: Child process signals are
       always "CHLD" even if the current operating system recognizes them as
       "CLD".

       Certain signals have special semantics:

       SIGCHLD

       SIGCLD

       Both "SIGCHLD" and "SIGCLD" indicate that a child process has exited or
       been terminated by some signal.	The actual signal name varies between
       operating systems, but POE uses "CHLD" regardless.

       Interest in "SIGCHLD" is registered using the "sig_child" method.  The
       "sig"() method also works, but it's not as nice.

       The "SIGCHLD" event includes three parameters:

       ARG0
	   "ARG0" contains the string 'CHLD' (even if the OS calls it SIGCLD,
	   SIGMONKEY, or something else).

       ARG1
	   "ARG1" contains the process ID of the finished child process.

       ARG2
	   And "ARG2" holds the value of $? for the finished process.

       Example:

	 sub sig_CHLD {
	   my( $name, $PID, $exit_val ) = @_[ ARG0, ARG1, ARG2 ];
	   # ...
	 }

       SIGPIPE

       SIGPIPE is rarely used since POE provides events that do the same
       thing.  Nevertheless SIGPIPE is supported if you need it.  Unlike most
       events, however, SIGPIPE is dispatched directly to the active session
       when it's caught.  Barring race conditions, the active session should
       be the one that caused the OS to send the signal in the first place.

       The SIGPIPE signal will still propagate to child sessions.

       ARG0 is "PIPE".	There is no other information associated with this
       signal.

       SIGWINCH

       Window resizes can generate a large number of signals very quickly.
       This may not be a problem when using perl 5.8.0 or later, but earlier
       versions may not take kindly to such abuse.  You have been warned.

       ARG0 is "WINCH".	 There is no other information associated with this
       signal.

       Exception Handling

       POE::Kernel provides only one form of exception handling: the "DIE"
       signal.

       When exception handling is enabled (the default), POE::Kernel wraps
       state invocation in "eval{}".  If the event handler raises an
       exception, generally with "die", POE::Kernel will dispatch a "DIE"
       signal to the event's destination session.

       "ARG0" is the signal name, "DIE".

       "ARG1" is a hashref describing the exception:

       error_str
	   The text of the exception.  In other words, $@.

       dest_session
	   Session object of the state that the raised the exception.  In
	   other words, $_[SESSION] in the function that died.

       event
	   Name of the event that died.

       source_session
	   Session object that sent the original event.	 That is, $_[SENDER]
	   in the function that died.

       from_state
	   State from which the original event was sent.  That is,
	   $_[CALLER_STATE] in the function that died.

       file
	   Name of the file the event was sent from.  That is, $_[CALLER_FILE]
	   in the function that died.

       line
	   Line number the event was sent from.	 That is, $_[CALLER_LINE] in
	   the function that died.

       Note that the preceding discussion assumes you are using POE::Session's
       call semantics.

       Note that the "DIE" signal is sent to the session that raised the
       exception, not the session that sent the event that caused the
       exception to be raised.

	 sub _start {
	   $poe_kernel->sig( DIE => 'sig_DIE' );
	   $poe_kernel->yield( 'some_event' );
	 }

	 sub some_event {
	   die "I didn't like that!";
	 }

	 sub sig_DIE {
	   my( $sig, $ex ) = @_[ ARG0, ARG1 ];
	   # $sig is 'DIE'
	   # $ex is the exception hash
	   warn "$$: error in $ex->{event}: $ex->{error_str}";
	   $poe_kernel->sig_handled();

	   # Send the signal to session that sent the original event.
	   if( $ex->{source_session} ne $_[SESSION] ) {
	     $poe_kernel->signal( $ex->{source_session}, 'DIE', $sig, $ex );
	   }
	 }

       POE::Kernel's built-in exception handling can be disabled by setting
       the "POE::Kernel::CATCH_EXCEPTIONS" constant to zero.  As with other
       compile-time configuration constants, it must be set before POE::Kernel
       is compiled:

	 BEGIN {
	   package POE::Kernel;
	   use constant CATCH_EXCEPTIONS => 0;
	 }
	 use POE;

       or

	 sub POE::Kernel::CATCH_EXCEPTIONS () { 0 }
	 use POE;

   Signal Watcher Methods
       And finally the methods themselves.

       sig SIGNAL_NAME [, EVENT_NAME [, LIST] ]

       sig() registers or unregisters an EVENT_NAME event for a particular
       SIGNAL_NAME, with an optional LIST of parameters that will be passed to
       the signal's handler---after any data that comes wit the signal.

       If EVENT_NAME is defined, the signal handler is registered.  Otherwise
       it's unregistered.

       Each session can register only one handler per SIGNAL_NAME.  Subsequent
       registrations will replace previous ones.  Multiple sessions may
       however watch the same signal.

       SIGNAL_NAMEs are generally the same as members of %SIG, with two
       exceptions.  First, "CLD" is an alias for "CHLD" (although see
       "sig_child").  And second, it's possible to send and handle signals
       created by the application and have no basis in the operating system.

	 sub handle_start {
	   $_[KERNEL]->sig( INT => "event_ui_shutdown" );
	   $_[KERNEL]->sig( bat => "holy_searchlight_batman" );
	   $_[KERNEL]->sig( signal => "main_screen_turn_on" );
	 }

       The operating system may never be able to generate the last two
       signals, but a POE session can by using POE::Kernel's "signal"()
       method.

       Later on the session may decide not to handle the signals:

	 sub handle_ui_shutdown {
	   $_[KERNEL]->sig( "INT" );
	   $_[KERNEL]->sig( "bat" );
	   $_[KERNEL]->sig( "signal" );
	 }

       More than one session may register interest in the same signal, and a
       session may clear its own signal watchers without affecting those in
       other sessions.

       sig() does not return a meaningful value.

       sig_child PROCESS_ID [, EVENT_NAME [, LIST] ]

       sig_child() is a convenient way to deliver an EVENT_NAME event when a
       particular PROCESS_ID has exited.  An optional LIST of parameters will
       be passed to the signal handler after the waitpid() information.

       The watcher can be cleared at any time by calling sig_child() with just
       the PROCESS_ID.

       A session may register as many sig_child() handlers as necessary, but a
       session may only have one per PROCESS_ID.

       sig_child() watchers are one-shot.  They automatically unregister
       themselves once the EVENT_NAME has been delivered.  There's no point in
       continuing to watch for a signal that will never come again.  Other
       signal handlers persist until they are cleared.

       sig_child() watchers keep a session alive for as long as they are
       active.	This is unique among signal watchers.

       Programs that wish to reliably reap child processes should be sure to
       call sig_child() before returning from the event handler that forked
       the process.  Otherwise POE::Kernel may have an opportunity to call
       waitpid() before an appropriate event watcher has been registered.

       sig_child() does not return a meaningful value.

	 sub forked_parent {
	   my( $heap, $pid, $details ) = @_[ HEAP, ARG0, ARG1 ];
	   $poe_kernel->sig_child( $pid, 'sig_child', $details );
	 }

	 sub sig_child {
	   my( $heap, $sig, $pid, $exit_val, $details ) = @_[ HEAP, ARG0..ARG3 ];
	   my $details = delete $heap->{ $pid };
	   warn "$$: Child $pid exited"
	   # .... also, $details has been passed from forked_parent()
	   # through sig_child()
	 }

       sig_handled

       sig_handled() informs POE::Kernel that the currently dispatched signal
       has been handled by the currently active session. If the signal is
       terminal, the sig_handled() call prevents POE::Kernel from stopping the
       sessions that received the signal.

       A single signal may be dispatched to several sessions.  Only one needs
       to call sig_handled() to prevent the entire group from being stopped.
       If none of them call it, however, then they are all stopped together.

       sig_handled() does not return a meaningful value.

	 sub _start {
	   $_[KERNEL]->sig( INT => 'sig_INT' );
	 }

	 sub sig_INT {
	   warn "$$ SIGINT";
	   $_[KERNEL]->sig_handled();
	 }

       signal SESSION, SIGNAL_NAME [, ARGS_LIST]

       signal() posts a SIGNAL_NAME signal to a specific SESSION with an
       optional ARGS_LIST that will be passed to every interested handler.  As
       mentioned elsewhere, the signal may be delivered to SESSION's children,
       grandchildren, and so on.  And if SESSION is the POE::Kernel itself,
       then all interested sessions will receive the signal.

       It is possible to send a signal in POE that doesn't exist in the
       operating system.  signal() places the signal directly into POE's event
       queue as if they came from the operating system, but they are not
       limited to signals recognized by kill().	 POE uses a few of these
       fictitious signals for its own global notifications.

       For example:

	 sub some_event_handler {
	   # Turn on all main screens.
	   $_[KERNEL]->signal( $_[KERNEL], "signal" );
	 }

       signal() returns true on success.  On failure, it returns false after
       setting $! to explain the nature of the failure:

       ESRCH ("No such process")
	   The SESSION does not exist.

       Because all sessions are a child of POE::Kernel, sending a signal to
       the kernel will propagate the signal to all sessions.  This is a cheap
       form of multicast.

	 $_[KERNEL]->signal( $_[KERNEL], 'shutdown' );

       signal_ui_destroy WIDGET_OBJECT

       signal_ui_destroy() associates the destruction of a particular
       WIDGET_OBJECT with the complete destruction of the program's user
       interface.  When the WIDGET_OBJECT destructs, POE::Kernel issues the
       non-maskable UIDESTROY signal, which quickly triggers mass destruction
       of all active sessions.	POE::Kernel->run() returns shortly thereafter.

	 sub setup_ui {
	   $_[HEAP]{main_widget} = Gtk->new("toplevel");
	   # ... populate the main widget here ...
	   $_[KERNEL]->signal_ui_destroy( $_[HEAP]{main_widget} );
	 }

       Detecting widget destruction is specific to each toolkit.

   Event Handler Management
       Event handler management methods let sessions hot swap their event
       handlers at run time. For example, the POE::Wheel objects use state()
       to dynamically mix their own event handlers into the sessions that
       create them.

       These methods only affect the current session; it would be rude to
       change another session's handlers.

       There is only one method in this group.	Since it may be called in
       several different ways, it may be easier to understand if each is
       documented separately.

       state EVENT_NAME [, CODE_REFERNCE]

       state() sets or removes a handler for EVENT_NAME in the current
       session.	 The function referred to by CODE_REFERENCE will be called
       whenever EVENT_NAME events are dispatched to the current session.  If
       CODE_REFERENCE is omitted, the handler for EVENT_NAME will be removed.

       A session may only have one handler for a given EVENT_NAME.  Subsequent
       attempts to set an EVENT_NAME handler will replace earlier handlers
       with the same name.

	 # Stop paying attention to input.  Say goodbye, and
	 # trigger a socket close when the message is sent.
	 sub send_final_response {
	   $_[HEAP]{wheel}->put("KTHXBYE");
	   $_[KERNEL]->state( 'on_client_input' );
	   $_[KERNEL]->state( on_flush => \&close_connection );
	 }

       state EVENT_NAME [, OBJECT_REFERENCE [, OBJECT_METHOD_NAME] ]

       Set or remove a handler for EVENT_NAME in the current session.  If an
       OBJECT_REFERENCE is given, that object will handle the event.  An
       optional OBJECT_METHOD_NAME may be provided.  If the method name is not
       given, POE will look for a method matching the EVENT_NAME instead.  If
       the OBJECT_REFERENCE is omitted, the handler for EVENT_NAME will be
       removed.

       A session may only have one handler for a given EVENT_NAME.  Subsequent
       attempts to set an EVENT_NAME handler will replace earlier handlers
       with the same name.

	 $_[KERNEL]->state( 'some_event', $self );
	 $_[KERNEL]->state( 'other_event', $self, 'other_method' );

       state EVENT_NAME [, CLASS_NAME [, CLASS_METHOD_NAME] ]

       This form of state() call is virtually identical to that of the object
       form.

       Set or remove a handler for EVENT_NAME in the current session.  If an
       CLASS_NAME is given, that class will handle the event.  An optional
       CLASS_METHOD_NAME may be provided.  If the method name is not given,
       POE will look for a method matching the EVENT_NAME instead.  If the
       CLASS_NAME is omitted, the handler for EVENT_NAME will be removed.

       A session may only have one handler for a given EVENT_NAME.  Subsequent
       attempts to set an EVENT_NAME handler will replace earlier handlers
       with the same name.

	 $_[KERNEL]->state( 'some_event', __PACKAGE__ );
	 $_[KERNEL]->state( 'other_event', __PACKAGE__, 'other_method' );

   Public Reference Counters
       The methods in this section manipulate reference counters on the
       current session or another session.

       Each session has a namespace for user-manipulated reference counters.
       These namespaces are associated with the target SESSION_ID for the
       reference counter methods, not the caller.  Nothing currently prevents
       one session from decrementing a reference counter that was incremented
       by another, but this behavior is not guaranteed to remain.  For now,
       it's up to the users of these methods to choose obscure counter names
       to avoid conflicts.

       Reference counting is a big part of POE's magic.	 Various objects
       (mainly event watchers and components) hold references to the sessions
       that own them.  "Session Lifespans" explains the concept in more
       detail.

       The ability to keep a session alive is sometimes useful in an
       application or library.	For example, a component may hold a public
       reference to another session while it processes a request from that
       session.	 In doing so, the component guarantees that the requester is
       still around when a response is eventually ready.  Keeping a reference
       to the session's object is not enough.  POE::Kernel has its own
       internal reference counting mechanism.

       refcount_increment SESSION_ID, COUNTER_NAME

       refcount_increment() increases the value of the COUNTER_NAME reference
       counter for the session identified by a SESSION_ID.  To discourage the
       use of session references, the refcount_increment() target session must
       be specified by its session ID.

       The target session will not stop until the value of any and all of its
       COUNTER_NAME reference counters are zero.  (Actually, it may stop in
       some cases, such as failing to handle a terminal signal.)

       Negative reference counters are legal.  They still must be incremented
       back to zero before a session is eligible for stopping.

	 sub handle_request {
	   # Among other things, hold a reference count on the sender.
	   $_[KERNEL]->refcount_increment( $_[SENDER]->ID, "pending request");
	   $_[HEAP]{requesters}{$request_id} = $_[SENDER]->ID;
	 }

       For this to work, the session needs a way to remember the
       $_[SENDER]->ID for a given request.  Customarily the session generates
       a request ID and uses that to track the request until it is fulfilled.

       refcount_increment() returns the resulting reference count (which may
       be zero) on success.  On failure, it returns undef and sets $! to be
       the reason for the error.

       ESRCH: The SESSION_ID does not refer to a currently active session.

       refcount_decrement SESSION_ID, COUNTER_NAME

       refcount_decrement() reduces the value of the COUNTER_NAME reference
       counter for the session identified by a SESSION_ID.  It is the
       counterpoint for refcount_increment().  Please see refcount_increment()
       for more context.

	 sub finally_send_response {
	   # Among other things, release the reference count for the
	   # requester.
	   my $requester_id = delete $_[HEAP]{requesters}{$request_id};
	   $_[KERNEL]->refcount_decrement( $requester_id, "pending request");
	 }

       The requester's $_[SENDER]->ID is remembered and removed from the heap
       (lest there be memory leaks).  It's used to decrement the reference
       counter that was incremented at the start of the request.

       refcount_decrement() returns the resulting reference count (which may
       be zero) on success.  On failure, it returns undef, and $! will be set
       to the reason for the failure:

       ESRCH: The SESSION_ID does not refer to a currently active session.

       It is not possible to discover currently active public references.  See
       POE::API::Peek.

   Kernel State Accessors
       POE::Kernel provides a few accessors into its massive brain so that
       library developers may have convenient access to necessary data without
       relying on their callers to provide it.

       These accessors expose ways to break session encapsulation.  Please use
       them sparingly and carefully.

       get_active_session

       get_active_session() returns a reference to the session that is
       currently running, or a reference to the program's POE::Kernel instance
       if no session is running at that moment.	 The value is equivalent to
       POE::Session's $_[SESSION].

       This method was added for libraries that need $_[SESSION] but don't
       want to include it as a parameter in their APIs.

	 sub some_housekeeping {
	   my( $self ) = @_;
	   my $session = $poe_kernel->get_active_session;
	   # do some housekeeping on $session
	 }

       get_active_event

       get_active_event() returns the name of the event currently being
       dispatched.  It returns an empty string when called outside event
       dispatch.  The value is equivalent to POE::Session's $_[STATE].

	 sub waypoint {
	   my( $message ) = @_;
	   my $event = $poe_kernel->get_active_event;
	   print STDERR "$$:$event:$mesage\n";
	 }

       get_event_count

       get_event_count() returns the number of events pending in POE's event
       queue.  It is exposed for POE::Loop class authors.  It may be
       deprecated in the future.

       get_next_event_time

       get_next_event_time() returns the time the next event is due, in a form
       compatible with the UNIX time() function.  It is exposed for POE::Loop
       class authors.  It may be deprecated in the future.

       poe_kernel_loop

       poe_kernel_loop() returns the name of the POE::Loop class that is used
       to detect and dispatch events.

   Session Helper Methods
       The methods in this group expose features for POE::Session class
       authors.

       session_alloc SESSION_OBJECT [, START_ARGS]

       session_alloc() allocates a session context within POE::Kernel for a
       newly created SESSION_OBJECT.  A list of optional START_ARGS will be
       passed to the session as part of the "_start" event.

       The SESSION_OBJECT is expected to follow a subset of POE::Session's
       interface.

       There is no session_free().  POE::Kernel determines when the session
       should stop and performs the necessary cleanup after dispatching _stop
       to the session.

   Miscellaneous Methods
       We don't know where to classify the methods in this section.

       new

       It is not necessary to call POE::Kernel's new() method.	Doing so will
       return the program's singleton POE::Kernel object, however.

PUBLIC EXPORTED VARIABLES
       POE::Kernel exports two variables for your coding enjoyment:
       $poe_kernel and $poe_main_window.  POE::Kernel is implicitly used by
       POE itself, so using POE gets you POE::Kernel (and its exports) for
       free.

       In more detail:

   $poe_kernel
       $poe_kernel contains a reference to the process' POE::Kernel singleton
       instance. It's mainly used for accessing POE::Kernel methods from
       places where $_[KERNEL] is not available.  It's most commonly used in
       helper libraries.

   $poe_main_window
       $poe_main_window is used by graphical toolkits that require at least
       one widget to be created before their event loops are usable.  This is
       currently only Tk.

       POE::Loop::Tk creates a main window to satisfy Tk's event loop.	The
       window is given to the application since POE has no other use for it.

       $poe_main_window is undefined in toolkits that don't require a widget
       to dispatch events.

       On a related note, POE will shut down if the widget in $poe_main_window
       is destroyed.  This can be changed with POE::Kernel's
       "signal_ui_destroy" method.

DEBUGGING POE AND PROGRAMS USING IT
       POE includes quite a lot of debugging code, in the form of both fatal
       assertions and run-time traces.	They may be enabled at compile time,
       but there is no way to toggle them at run-time.	This was done to avoid
       run-time penalties in programs where debugging is not necessary.	 That
       is, in most production cases.

       Traces are verbose reminders of what's going on within POE.  Each is
       prefixed with a four-character field describing the POE subsystem that
       generated it.

       Assertions (asserts) are quiet but deadly, both in performance (they
       cause a significant run-time performance hit) and because they cause
       fatal errors when triggered.

       The assertions and traces are useful for developing programs with POE,
       but they were originally added to debug POE itself.

       Each assertion and tracing group is enabled by setting a constant in
       the POE::Kernel namespace to a true value.

	 BEGIN {
	   package POE::Kernel;
	   use constant ASSERT_DEFAULT => 1;
	 }
	 use POE;

       Or the old-fashioned (and more concise) "constant subroutine" method.
       This doesn't need the "BEGIN{}" block since subroutine definitions are
       done at compile time.

	 sub POE::Kernel::ASSERT_DEFAULT () { 1 }
	 use POE;

       The switches must be defined as constants before POE::Kernel is first
       loaded.	Otherwise Perl's compiler will not see the constants when
       first compiling POE::Kernel, and the features will not be properly
       enabled.

       Assertions and traces may also be enabled by setting shell environment
       variables.  The environment variables are named after the POE::Kernel
       constants with a "POE_" prefix.

	 POE_ASSERT_DEFAULT=1 POE_TRACE_DEFAULT=1 ./my_poe_program

       In alphabetical order:

   ASSERT_DATA
       ASSERT_DATA enables run-time data integrity checks within POE::Kernel
       and the classes that mix into it.  POE::Kernel tracks a lot of cross-
       referenced data, and this group of assertions ensures that it's
       consistent.

       Prefix: <dt>

       Environment variable: POE_ASSERT_DATA

   ASSERT_DEFAULT
       ASSERT_DEFAULT specifies the default value for assertions that are not
       explicitly enabled or disabled.	This is a quick and reliable way to
       make sure all assertions are on.

       No assertion uses ASSERT_DEFAULT directly, and this assertion flag has
       no corresponding output prefix.

       Turn on all assertions except ASSERT_EVENTS:

	 sub POE::Kernel::ASSERT_DEFAULT () { 1 }
	 sub POE::Kernel::ASSERT_EVENTS	 () { 0 }
	 use POE::Kernel;

       Prefix: (none)

       Environment variable: POE_ASSERT_DEFAULT

   ASSERT_EVENTS
       ASSERT_EVENTS mainly checks for attempts to dispatch events to sessions
       that don't exist.  This assertion can assist in the debugging of
       strange, silent cases where event handlers are not called.

       Prefix: <ev>

       Environment variable: POE_ASSERT_EVENTS

   ASSERT_FILES
       ASSERT_FILES enables some run-time checks in POE's filehandle watchers
       and the code that manages them.

       Prefix: <fh>

       Environment variable: POE_ASSERT_FILES

   ASSERT_RETVALS
       ASSERT_RETVALS upgrades failure codes from POE::Kernel's methods from
       advisory return values to fatal errors.	Most programmers don't check
       the values these methods return, so ASSERT_RETVALS is a quick way to
       validate one's assumption that all is correct.

       Prefix: <rv>

       Environment variable: POE_ASSERT_RETVALS

   ASSERT_USAGE
       ASSERT_USAGE is the counterpoint to ASSERT_RETVALS.  It enables run-
       time checks that the parameters to POE::Kernel's methods are correct.
       It's a quick (but not foolproof) way to verify a program's use of POE.

       Prefix: <us>

       Environment variable: POE_ASSERT_USAGE

   TRACE_DEFAULT
       TRACE_DEFAULT specifies the default value for traces that are not
       explicitly enabled or disabled.	This is a quick and reliable way to
       ensure your program generates copious output on the file named in
       TRACE_FILENAME or STDERR by default.

       To enable all traces except a few noisier ones:

	 sub POE::Kernel::TRACE_DEFAULT () { 1 }
	 sub POE::Kernel::TRACE_EVENTS	() { 0 }
	 use POE::Kernel;

       Prefix: (none)

       Environment variable: POE_TRACE_DEFAULT

   TRACE_DESTROY
       TRACE_DESTROY causes every POE::Session object to dump the contents of
       its $_[HEAP] when Perl destroys it.  This trace was added to help
       developers find memory leaks in their programs.

       Prefix: A line that reads "----- Session $self Leak Check -----".

       Environment variable: POE_TRACE_DESTROY

   TRACE_EVENTS
       TRACE_EVENTS enables messages pertaining to POE's event queue's
       activities: when events are enqueued, dispatched or discarded, and
       more.  It's great for determining where events go and when.
       Understandably this is one of POE's more verbose traces.

       Prefix: <ev>

       Environment variable: POE_TRACE_EVENTS

   TRACE_FILENAME
       TRACE_FILENAME specifies the name of a file where POE's tracing and
       assertion messages should go.  It's useful if you want the messages but
       have other plans for STDERR, which is where the messages go by default.

       POE's tests use this so the trace and assertion code can be
       instrumented during testing without spewing all over the terminal.

       Prefix: (none)

       Environment variable: POE_TRACE_FILENAME

   TRACE_FILES
       TRACE_FILES enables or disables traces in POE's filehandle watchers and
       the POE::Loop class that implements the lowest-level filehandle
       multiplexing.  This may be useful when tracking down strange behavior
       related to filehandles.

       Prefix: <fh>

       Environment variable: POE_TRACE_FILES

   TRACE_REFCNT
       TRACE_REFCNT governs whether POE::Kernel will trace sessions' reference
       counts.	As discussed in "Session Lifespans", POE does a lot of
       reference counting, and the current state of a session's reference
       counts determines whether the session lives or dies.  It's common for
       developers to wonder why a session stops too early or remains active
       too long.  TRACE_REFCNT can help explain why.

       Prefix: <rc>

       Environment variable: POE_TRACE_REFCNT

   TRACE_RETVALS
       TRACE_RETVALS can enable carping whenever a POE::Kernel method is about
       to fail.	 It's a non-fatal but noisier form of ASSERT_RETVALS.

       Prefix: <rv>

       Environment variable: POE_TRACE_RETVALS

   TRACE_SESSIONS
       TRACE_SESSIONS enables trace messages that pertain to session
       management.  Notice will be given when sessions are created or
       destroyed, and when the parent or child status of a session changes.

       Prefix: <ss>

       Environment variable: POE_TRACE_SESSIONS

   TRACE_SIGNALS
       TRACE_SIGNALS turns on (or off) traces in POE's signal handling
       subsystem.  Signal dispatch is one of POE's more complex parts, and the
       trace messages may help application developers understand signal
       propagation and timing.

       Prefix: <sg>

       Environment variable: POE_TRACE_SIGNALS

   USE_SIGCHLD
       Whether to use $SIG{CHLD} or to poll at an interval.

       This flag is enabled by default on Perl >= 5.8.1 as it has support for
       "safe signals". Please see perlipc for the gory details.

       You might want to disable this if you are running a version of Perl
       that is known to have bad signal handling, or if anything hijacks
       $SIG{CHLD}.  One module that is known to do this is Apache.

       Enabling this flag will cause child reaping to happen almost
       immediately, as opposed to once per "CHILD_POLLING_INTERVAL".

   CHILD_POLLING_INTERVAL
       The interval at which "wait" is called to determine if child processes
       need to be reaped and the "CHLD" signal emulated.

       Defaults to 1 second.

   USE_SIGNAL_PIPE
       The only safe way to handle signals is to implement a shared-nothing
       model.  POE builds a signal pipe that communicates between the signal
       handlers and the POE kernel loop in a safe and atomic manner.  The
       signal pipe is implemented with POE::Pipe::OneWay, using a "pipe"
       conduit on Unix.	 Unfortunately, the signal pipe is not compatible with
       Windows and is not used on that platform.

       If you wish to revert to the previous unsafe signal behaviour, you must
       set "USE_SIGNAL_PIPE" to 0, or the environment variable
       "POE_USE_SIGNAL_PIPE".

   CATCH_EXCEPTIONS
       Whether or not POE should run event handler code in an eval { } and
       deliver the "DIE" signal on errors.

       See "Exception Handling".

ENVIRONMENT VARIABLES FOR TESTING
       POE's tests are lovely, dark and deep.  These environment variables
       allow testers to take roads less traveled.

   POE_DANTIC
       Windows and Perls built for it tend to be poor at doing UNIXy things,
       although they do try.  POE being very UNIXy itself must skip a lot of
       Windows tests.  The POE_DANTIC environment variable will, when true,
       enable all these tests.	It's intended to be used from time to time to
       see whether Windows has improved in some area.

SEE ALSO
       The SEE ALSO section in POE contains a table of contents covering the
       entire POE distribution.

BUGS
       ·   There is no mechanism in place to prevent external reference count
	   names from clashing.

       ·   There is no mechanism to catch exceptions generated in another
	   session.

AUTHORS & COPYRIGHTS
       Please see POE for more information about authors and contributors.

perl v5.14.2			  2011-12-15			POE::Kernel(3)
[top]

List of man pages available for Fedora

Copyright (c) for man pages and the logo by the respective OS vendor.

For those who want to learn more, the polarhome community provides shell access and support.

[legal] [privacy] [GNU] [policy] [cookies] [netiquette] [sponsors] [FAQ]
Tweet
Polarhome, production since 1999.
Member of Polarhome portal.
Based on Fawad Halim's script.
....................................................................
Vote for polarhome
Free Shell Accounts :: the biggest list on the net