glBlendFunc man page on DragonFly

Man page or keyword search:  
man Server   44335 pages
apropos Keyword Search (all sections)
Output format
DragonFly logo
[printable version]

GLBLENDFUNC()							 GLBLENDFUNC()

NAME
       glBlendFunc - specify pixel arithmetic

C SPECIFICATION
       void glBlendFunc( GLenum sfactor,
			 GLenum dfactor )

       delim $$

PARAMETERS
       sfactor	Specifies  how the red, green, blue, and alpha source blending
		factors are computed.  Nine symbolic constants	are  accepted:
		GL_ZERO,    GL_ONE,    GL_DST_COLOR,   GL_ONE_MINUS_DST_COLOR,
		GL_SRC_ALPHA,	   GL_ONE_MINUS_SRC_ALPHA,	 GL_DST_ALPHA,
		GL_ONE_MINUS_DST_ALPHA, and GL_SRC_ALPHA_SATURATE. The initial
		value is GL_ONE.

       dfactor	Specifies how the red,	green,	blue,  and  alpha  destination
		blending  factors  are computed.  Eight symbolic constants are
		accepted:	 GL_ZERO,	 GL_ONE,	 GL_SRC_COLOR,
		GL_ONE_MINUS_SRC_COLOR,	 GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA,
		GL_DST_ALPHA, and GL_ONE_MINUS_DST_ALPHA. The initial value is
		GL_ZERO.

DESCRIPTION
       In  RGBA	 mode,	pixels	can  be drawn using a function that blends the
       incoming (source) RGBA values with the RGBA values that are already  in
       the  frame buffer (the destination values).  Blending is initially dis‐
       abled.  Use glEnable and glDisable with argument GL_BLEND to enable and
       disable blending.

       glBlendFunc  defines  the  operation  of	 blending  when it is enabled.
       sfactor specifies which of nine methods is used	to  scale  the	source
       color  components.  dfactor specifies which of eight methods is used to
       scale the destination color components.	The  eleven  possible  methods
       are  described  in the following table.	Each method defines four scale
       factors, one each for red, green, blue, and alpha.

       In the table and in subsequent equations, source and destination	 color
       components  are	referred to as $(R sub s , G sub s , B sub s , A sub s
       )$ and $(R sub d , G sub d , B sub d , A sub d )$.  They are understood
       to  have integer values between 0 and $(k sub R , k sub G , k sub B , k
       sub A )$, where

			      $k sub c ~=~ 2 sup m sub c - 1$

       and $(m sub R , m sub G , m sub B , m sub A )$ is the  number  of  red,
       green, blue, and alpha bitplanes.

       Source  and  destination scale factors are referred to as $(s sub R , s
       sub G , s sub B , s sub A )$ and $(d sub R , d sub G , d sub B , d  sub
       A  )$.  The scale factors described in the table, denoted $(f sub R , f
       sub G , f sub B , f sub A )$, represent either  source  or  destination
       factors.	 All scale factors have range [0,1].

┌───────────────────────┬────────────────────────────────────────────────────────────────────────────────────────────────────────────┐
│      parameter	│			     $(f sub R , ~~ f sub G , ~~ f sub B , ~~ f sub A )$			     │
├───────────────────────┼────────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│	GL_ZERO		│					      $(0, ~0, ~0, ~0 )$					     │
│	 GL_ONE		│					      $(1, ~1, ~1, ~1 )$					     │
│     GL_SRC_COLOR	│	    $(R sub s / k sub R , ~G sub s / k sub G , ~B sub s / k sub B , ~A sub s / k sub A )$	     │
│GL_ONE_MINUS_SRC_COLOR │ $(1, ~1, ~1, ~1 ) ~-~ (R sub s / k sub R , ~G sub s / k sub G , ~B sub s / k sub B , ~A sub s / k sub A )$ │
│     GL_DST_COLOR	│	    $(R sub d / k sub R , ~G sub d / k sub G , ~B sub d / k sub B , ~A sub d / k sub A )$	     │
│GL_ONE_MINUS_DST_COLOR │ $(1, ~1, ~1, ~1 ) ~-~ (R sub d / k sub R , ~G sub d / k sub G , ~B sub d / k sub B , ~A sub d / k sub A )$ │
│     GL_SRC_ALPHA	│	    $(A sub s / k sub A , ~A sub s / k sub A , ~A sub s / k sub A , ~A sub s / k sub A )$	     │
│GL_ONE_MINUS_SRC_ALPHA │ $(1, ~1, ~1, ~1 ) ~-~ (A sub s / k sub A , ~A sub s / k sub A , ~A sub s / k sub A , ~A sub s / k sub A )$ │
│     GL_DST_ALPHA	│	    $(A sub d / k sub A , ~A sub d / k sub A , ~A sub d / k sub A , ~A sub d / k sub A )$	     │
│GL_ONE_MINUS_DST_ALPHA │ $(1, ~1, ~1, ~1 ) ~-~ (A sub d / k sub A , ~A sub d / k sub A , ~A sub d / k sub A , ~A sub d / k sub A )$ │
│GL_SRC_ALPHA_SATURATE	│					      $(i, ~i, ~i, ~1 )$					     │
└───────────────────────┴────────────────────────────────────────────────────────────────────────────────────────────────────────────┘
       In the table,

		     $i ~=~  min (A sub s , ~k sub A - A sub d ) ~/~ k sub A$

       To  determine  the  blended RGBA values of a pixel when drawing in RGBA
       mode, the system uses the following equations:

		     $R sub d ~=~ min ( k sub R , ~~ R sub s s sub R + R sub d d sub R )$
		     $G sub d ~=~ min ( k sub G , ~~ G sub s s sub G + G sub d d sub G )$
		     $B sub d ~=~ min ( k sub B , ~~ B sub s s sub B + B sub d d sub B )$
		     $A sub d ~=~ min ( k sub A , ~~ A sub s s sub A + A sub d d sub A )$

       Despite the apparent precision of the above equations, blending	arith‐
       metic  is  not exactly specified, because blending operates with impre‐
       cise integer color values.  However, a  blend  factor  that  should  be
       equal  to  1  is guaranteed not to modify its multiplicand, and a blend
       factor equal to 0 reduces its multiplicand to  0.   For	example,  when
       sfactor	is GL_SRC_ALPHA, dfactor is GL_ONE_MINUS_SRC_ALPHA, and $A sub
       s$ is equal to $k sub A$, the equations reduce to simple replacement:

		     $R sub d ~=~ R sub s$
		     $G sub d ~=~ G sub s$
		     $B sub d ~=~ B sub s$
		     $A sub d ~=~ A sub s$

EXAMPLES
       Transparency is best implemented using  blend  function	(GL_SRC_ALPHA,
       GL_ONE_MINUS_SRC_ALPHA)	with  primitives sorted from farthest to near‐
       est.  Note that this transparency  calculation  does  not  require  the
       presence of alpha bitplanes in the frame buffer.

       Blend  function	(GL_SRC_ALPHA,	GL_ONE_MINUS_SRC_ALPHA) is also useful
       for rendering antialiased points and lines in arbitrary order.

       Polygon	 antialiasing	 is    optimized    using    blend    function
       (GL_SRC_ALPHA_SATURATE,	GL_ONE)	 with  polygons sorted from nearest to
       farthest.  (See the glEnable, glDisable reference page and the GL_POLY‐
       GON_SMOOTH argument for information on polygon antialiasing.)  Destina‐
       tion alpha bitplanes, which must be present for this blend function  to
       operate correctly, store the accumulated coverage.

NOTES
       Incoming	 (source) alpha is correctly thought of as a material opacity,
       ranging from 1.0 ($K sub A$), representing  complete  opacity,  to  0.0
       (0), representing complete
       transparency.

       When more than one color buffer is enabled for drawing, the GL performs
       blending separately for each enabled buffer, using the contents of that
       buffer for destination color.  (See glDrawBuffer.)

       Blending	 affects  only	RGBA  rendering.  It is ignored by color index
       renderers.

ERRORS
       GL_INVALID_ENUM is generated if either sfactor or  dfactor  is  not  an
       accepted value.

       GL_INVALID_OPERATION  is	 generated  if glBlendFunc is executed between
       the execution of glBegin and the corresponding execution of glEnd.

ASSOCIATED GETS
       glGet with argument GL_BLEND_SRC
       glGet with argument GL_BLEND_DST
       glIsEnabled with argument GL_BLEND

SEE ALSO
       glAlphaFunc, glClear, glDrawBuffer, glEnable, glLogicOp, glStencilFunc

								 GLBLENDFUNC()
[top]

List of man pages available for DragonFly

Copyright (c) for man pages and the logo by the respective OS vendor.

For those who want to learn more, the polarhome community provides shell access and support.

[legal] [privacy] [GNU] [policy] [cookies] [netiquette] [sponsors] [FAQ]
Tweet
Polarhome, production since 1999.
Member of Polarhome portal.
Based on Fawad Halim's script.
....................................................................
Vote for polarhome
Free Shell Accounts :: the biggest list on the net