pclarfb man page on DragonFly

Man page or keyword search:  
man Server   44335 pages
apropos Keyword Search (all sections)
Output format
DragonFly logo
[printable version]

PCLARFB(l)			       )			    PCLARFB(l)

NAME
       PCLARFB - applie a complex block reflector Q or its conjugate transpose
       Q**H  to	 a  complex  M-by-N  distributed  matrix  sub(	C  )  denoting
       C(IC:IC+M-1,JC:JC+N-1), from the left or the right

SYNOPSIS
       SUBROUTINE PCLARFB( SIDE,  TRANS,  DIRECT,  STOREV, M, N, K, V, IV, JV,
			   DESCV, T, C, IC, JC, DESCC, WORK )

	   CHARACTER	   SIDE, TRANS, DIRECT, STOREV

	   INTEGER	   IC, IV, JC, JV, K, M, N

	   INTEGER	   DESCC( * ), DESCV( * )

	   COMPLEX	   C( * ), T( * ), V( * ), WORK( * )

PURPOSE
       PCLARFB applies a complex block reflector Q or its conjugate  transpose
       Q**H  to	 a  complex  M-by-N  distributed  matrix  sub(	C  )  denoting
       C(IC:IC+M-1,JC:JC+N-1), from the left or the right.  Notes
       =====

       Each global data object is described by an associated description  vec‐
       tor.  This vector stores the information required to establish the map‐
       ping between an object element and its corresponding process and memory
       location.

       Let  A  be  a generic term for any 2D block cyclicly distributed array.
       Such a global array has an associated description vector DESCA.	In the
       following  comments,  the  character _ should be read as "of the global
       array".

       NOTATION	       STORED IN      EXPLANATION
       ---------------	--------------	--------------------------------------
       DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
				      DTYPE_A = 1.
       CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
				      the BLACS process grid A is distribu-
				      ted over. The context itself is glo-
				      bal, but the handle (the integer
				      value) may vary.
       M_A    (global) DESCA( M_ )    The number of rows in the global
				      array A.
       N_A    (global) DESCA( N_ )    The number of columns in the global
				      array A.
       MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
				      the rows of the array.
       NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
				      the columns of the array.
       RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
				      row  of  the  array  A  is  distributed.
       CSRC_A (global) DESCA( CSRC_ ) The process column over which the
				      first column of the array A is
				      distributed.
       LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
				      array.  LLD_A >= MAX(1,LOCr(M_A)).

       Let K be the number of rows or columns of  a  distributed  matrix,  and
       assume that its process grid has dimension p x q.
       LOCr(  K	 )  denotes  the  number of elements of K that a process would
       receive if K were distributed over the p processes of its process  col‐
       umn.
       Similarly, LOCc( K ) denotes the number of elements of K that a process
       would receive if K were distributed over the q processes of its process
       row.
       The  values  of	LOCr()	and LOCc() may be determined via a call to the
       ScaLAPACK tool function, NUMROC:
	       LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
	       LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).  An	 upper
       bound for these quantities may be computed by:
	       LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
	       LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A

ARGUMENTS
       SIDE    (global input) CHARACTER
	       = 'L': apply Q or Q**H from the Left;
	       = 'R': apply Q or Q**H from the Right.

       TRANS   (global input) CHARACTER
	       = 'N':  No transpose, apply Q;
	       = 'C':  Conjugate transpose, apply Q**H.

       DIRECT  (global input) CHARACTER
	       Indicates  how Q is formed from a product of elementary reflec‐
	       tors = 'F': Q = H(1) H(2) . . . H(k) (Forward)
	       = 'B': Q = H(k) . . . H(2) H(1) (Backward)

       STOREV  (global input) CHARACTER
	       Indicates how the vectors which define the  elementary  reflec‐
	       tors are stored:
	       = 'C': Columnwise
	       = 'R': Rowwise

       M       (global input) INTEGER
	       The  number of rows to be operated on i.e the number of rows of
	       the distributed submatrix sub( C ). M >= 0.

       N       (global input) INTEGER
	       The number of columns to be operated on i.e the number of  col‐
	       umns of the distributed submatrix sub( C ). N >= 0.

       K       (global input) INTEGER
	       The  order  of the matrix T (= the number of elementary reflec‐
	       tors whose product defines the block reflector).

       V       (local input) COMPLEX pointer into the local memory
	       to an array of dimension ( LLD_V, LOCc(JV+K-1) )	 if  STOREV  =
	       'C',  (	LLD_V, LOCc(JV+M-1)) if STOREV = 'R' and SIDE = 'L', (
	       LLD_V, LOCc(JV+N-1) ) if STOREV = 'R' and SIDE = 'R'.  It  con‐
	       tains  the local pieces of the distributed vectors V represent‐
	       ing the Householder transformation.  See further	 details.   If
	       STOREV  =  'C' and SIDE = 'L', LLD_V >= MAX(1,LOCr(IV+M-1)); if
	       STOREV = 'C' and SIDE = 'R', LLD_V >=  MAX(1,LOCr(IV+N-1));  if
	       STOREV = 'R', LLD_V >= LOCr(IV+K-1).

       IV      (global input) INTEGER
	       The row index in the global array V indicating the first row of
	       sub( V ).

       JV      (global input) INTEGER
	       The column index in the global array  V	indicating  the	 first
	       column of sub( V ).

       DESCV   (global and local input) INTEGER array of dimension DLEN_.
	       The array descriptor for the distributed matrix V.

       T       (local input) COMPLEX array, dimension MB_V by MB_V
	       if  STOREV  =  'R' and NB_V by NB_V if STOREV = 'C'. The trian-
	       gular matrix T in the representation of the block reflector.

       C       (local input/local output) COMPLEX pointer into the
	       local memory to an array of dimension (LLD_C,LOCc(JC+N-1)).  On
	       entry,  the M-by-N distributed matrix sub( C ). On exit, sub( C
	       ) is overwritten by Q*sub( C ) or Q'*sub( C ) or sub( C )*Q  or
	       sub( C )*Q'.

       IC      (global input) INTEGER
	       The row index in the global array C indicating the first row of
	       sub( C ).

       JC      (global input) INTEGER
	       The column index in the global array  C	indicating  the	 first
	       column of sub( C ).

       DESCC   (global and local input) INTEGER array of dimension DLEN_.
	       The array descriptor for the distributed matrix C.

       WORK    (local workspace) COMPLEX array, dimension (LWORK)
	       If  STOREV  =  'C', if SIDE = 'L', LWORK >= ( NqC0 + MpC0 ) * K
	       else if SIDE = 'R', LWORK >= ( NqC0 + MAX( NpV0 + NUMROC(  NUM‐
	       ROC(  N+ICOFFC, NB_V, 0, 0, NPCOL ), NB_V, 0, 0, LCMQ ), MpC0 )
	       ) * K end if else if STOREV = 'R', if SIDE = 'L',  LWORK	 >=  (
	       MpC0  + MAX( MqV0 + NUMROC( NUMROC( M+IROFFC, MB_V, 0, 0, NPROW
	       ), MB_V, 0, 0, LCMP ), NqC0 ) ) * K else if SIDE =  'R',	 LWORK
	       >= ( MpC0 + NqC0 ) * K end if end if

	       where LCMQ = LCM / NPCOL with LCM = ICLM( NPROW, NPCOL ),

	       IROFFV = MOD( IV-1, MB_V ), ICOFFV = MOD( JV-1, NB_V ), IVROW =
	       INDXG2P( IV, MB_V, MYROW, RSRC_V, NPROW ), IVCOL = INDXG2P( JV,
	       NB_V,  MYCOL,  CSRC_V,  NPCOL ), MqV0 = NUMROC( M+ICOFFV, NB_V,
	       MYCOL, IVCOL, NPCOL ), NpV0 = NUMROC(  N+IROFFV,	 MB_V,	MYROW,
	       IVROW, NPROW ),

	       IROFFC = MOD( IC-1, MB_C ), ICOFFC = MOD( JC-1, NB_C ), ICROW =
	       INDXG2P( IC, MB_C, MYROW, RSRC_C, NPROW ), ICCOL = INDXG2P( JC,
	       NB_C,  MYCOL,  CSRC_C,  NPCOL ), MpC0 = NUMROC( M+IROFFC, MB_C,
	       MYROW, ICROW, NPROW ), NpC0 = NUMROC(  N+ICOFFC,	 MB_C,	MYROW,
	       ICROW,  NPROW  ),  NqC0 = NUMROC( N+ICOFFC, NB_C, MYCOL, ICCOL,
	       NPCOL ),

	       ILCM, INDXG2P and NUMROC are ScaLAPACK tool  functions;	MYROW,
	       MYCOL, NPROW and NPCOL can be determined by calling the subrou‐
	       tine BLACS_GRIDINFO.

	       Alignment requirements ======================

	       The    distributed    submatrices     V(IV:*,	 JV:*)	   and
	       C(IC:IC+M-1,JC:JC+N-1)  must  verify some alignment properties,
	       namely the following expressions should be true:

	       If STOREV = 'Columnwise' If SIDE = 'Left', ( MB_V.EQ.MB_C .AND.
	       IROFFV.EQ.IROFFC	 .AND.	IVROW.EQ.ICROW	) If SIDE = 'Right', (
	       MB_V.EQ.NB_C .AND. IROFFV.EQ.ICOFFC ) else if  STOREV  =	 'Row‐
	       wise' If SIDE = 'Left', ( NB_V.EQ.MB_C .AND. ICOFFV.EQ.IROFFC )
	       If SIDE = 'Right', ( NB_V.EQ.NB_C .AND. ICOFFV.EQ.ICOFFC	 .AND.
	       IVCOL.EQ.ICCOL ) end if

ScaLAPACK version 1.7		13 August 2001			    PCLARFB(l)
[top]

List of man pages available for DragonFly

Copyright (c) for man pages and the logo by the respective OS vendor.

For those who want to learn more, the polarhome community provides shell access and support.

[legal] [privacy] [GNU] [policy] [cookies] [netiquette] [sponsors] [FAQ]
Tweet
Polarhome, production since 1999.
Member of Polarhome portal.
Based on Fawad Halim's script.
....................................................................
Vote for polarhome
Free Shell Accounts :: the biggest list on the net