pcrepattern man page on YellowDog

Man page or keyword search:  
man Server   18644 pages
apropos Keyword Search (all sections)
Output format
YellowDog logo
[printable version]

PCREPATTERN(3)							PCREPATTERN(3)

NAME
       PCRE - Perl-compatible regular expressions

PCRE REGULAR EXPRESSION DETAILS

       The  syntax  and semantics of the regular expressions supported by PCRE
       are described below. Regular expressions are also described in the Perl
       documentation  and  in  a  number  of books, some of which have copious
       examples.  Jeffrey Friedl's "Mastering Regular Expressions",  published
       by  O'Reilly, covers regular expressions in great detail. This descrip‐
       tion of PCRE's regular expressions is intended as reference material.

       The original operation of PCRE was on strings of	 one-byte  characters.
       However,	 there is now also support for UTF-8 character strings. To use
       this, you must build PCRE to  include  UTF-8  support,  and  then  call
       pcre_compile()  with  the  PCRE_UTF8  option.  How this affects pattern
       matching is mentioned in several places below. There is also a  summary
       of  UTF-8  features  in	the  section on UTF-8 support in the main pcre
       page.

       The remainder of this document discusses the  patterns  that  are  sup‐
       ported  by  PCRE when its main matching function, pcre_exec(), is used.
       From  release  6.0,   PCRE   offers   a	 second	  matching   function,
       pcre_dfa_exec(),	 which matches using a different algorithm that is not
       Perl-compatible. The advantages and disadvantages  of  the  alternative
       function, and how it differs from the normal function, are discussed in
       the pcrematching page.

       A regular expression is a pattern that is  matched  against  a  subject
       string  from  left  to right. Most characters stand for themselves in a
       pattern, and match the corresponding characters in the  subject.	 As  a
       trivial example, the pattern

	 The quick brown fox

       matches a portion of a subject string that is identical to itself. When
       caseless matching is specified (the PCRE_CASELESS option), letters  are
       matched	independently  of case. In UTF-8 mode, PCRE always understands
       the concept of case for characters whose values are less than  128,  so
       caseless	 matching  is always possible. For characters with higher val‐
       ues, the concept of case is supported if PCRE is compiled with  Unicode
       property	 support,  but	not  otherwise.	  If  you want to use caseless
       matching for characters 128 and above, you must	ensure	that  PCRE  is
       compiled with Unicode property support as well as with UTF-8 support.

       The  power  of  regular	expressions  comes from the ability to include
       alternatives and repetitions in the pattern. These are encoded  in  the
       pattern by the use of metacharacters, which do not stand for themselves
       but instead are interpreted in some special way.

       There are two different sets of metacharacters: those that  are	recog‐
       nized  anywhere in the pattern except within square brackets, and those
       that are recognized in square brackets. Outside	square	brackets,  the
       metacharacters are as follows:

	 \	general escape character with several uses
	 ^	assert start of string (or line, in multiline mode)
	 $	assert end of string (or line, in multiline mode)
	 .	match any character except newline (by default)
	 [	start character class definition
	 |	start of alternative branch
	 (	start subpattern
	 )	end subpattern
	 ?	extends the meaning of (
		also 0 or 1 quantifier
		also quantifier minimizer
	 *	0 or more quantifier
	 +	1 or more quantifier
		also "possessive quantifier"
	 {	start min/max quantifier

       Part  of	 a  pattern  that is in square brackets is called a "character
       class". In a character class the only metacharacters are:

	 \	general escape character
	 ^	negate the class, but only if the first character
	 -	indicates character range
	 [	POSIX character class (only if followed by POSIX
		  syntax)
	 ]	terminates the character class

       The following sections describe the use of each of the metacharacters.

BACKSLASH

       The backslash character has several uses. Firstly, if it is followed by
       a  non-alphanumeric  character,	it takes away any special meaning that
       character may have. This	 use  of  backslash  as	 an  escape  character
       applies both inside and outside character classes.

       For  example,  if  you want to match a * character, you write \* in the
       pattern.	 This escaping action applies whether  or  not	the  following
       character  would	 otherwise be interpreted as a metacharacter, so it is
       always safe to precede a non-alphanumeric  with	backslash  to  specify
       that  it stands for itself. In particular, if you want to match a back‐
       slash, you write \\.

       If a pattern is compiled with the PCRE_EXTENDED option,	whitespace  in
       the  pattern (other than in a character class) and characters between a
       # outside a character class and the next newline character are ignored.
       An  escaping backslash can be used to include a whitespace or # charac‐
       ter as part of the pattern.

       If you want to remove the special meaning from a	 sequence  of  charac‐
       ters,  you can do so by putting them between \Q and \E. This is differ‐
       ent from Perl in that $ and  @  are  handled  as	 literals  in  \Q...\E
       sequences  in  PCRE, whereas in Perl, $ and @ cause variable interpola‐
       tion. Note the following examples:

	 Pattern	    PCRE matches   Perl matches

	 \Qabc$xyz\E	    abc$xyz	   abc followed by the
					     contents of $xyz
	 \Qabc\$xyz\E	    abc\$xyz	   abc\$xyz
	 \Qabc\E\$\Qxyz\E   abc$xyz	   abc$xyz

       The \Q...\E sequence is recognized both inside  and  outside  character
       classes.

   Non-printing characters

       A second use of backslash provides a way of encoding non-printing char‐
       acters in patterns in a visible manner. There is no restriction on  the
       appearance  of non-printing characters, apart from the binary zero that
       terminates a pattern, but when a pattern	 is  being  prepared  by  text
       editing,	 it  is	 usually  easier  to  use  one of the following escape
       sequences than the binary character it represents:

	 \a	   alarm, that is, the BEL character (hex 07)
	 \cx	   "control-x", where x is any character
	 \e	   escape (hex 1B)
	 \f	   formfeed (hex 0C)
	 \n	   newline (hex 0A)
	 \r	   carriage return (hex 0D)
	 \t	   tab (hex 09)
	 \ddd	   character with octal code ddd, or backreference
	 \xhh	   character with hex code hh
	 \x{hhh..} character with hex code hhh..

       The precise effect of \cx is as follows: if x is a lower	 case  letter,
       it  is converted to upper case. Then bit 6 of the character (hex 40) is
       inverted.  Thus \cz becomes hex 1A, but \c{ becomes hex 3B,  while  \c;
       becomes hex 7B.

       After  \x, from zero to two hexadecimal digits are read (letters can be
       in upper or lower case). Any number of hexadecimal  digits  may	appear
       between	\x{  and  },  but the value of the character code must be less
       than 256 in non-UTF-8 mode, and less than 2**31 in UTF-8 mode (that is,
       the  maximum  hexadecimal  value is 7FFFFFFF). If characters other than
       hexadecimal digits appear between \x{ and }, or if there is  no	termi‐
       nating  }, this form of escape is not recognized.  Instead, the initial
       \x will be interpreted as a basic hexadecimal escape, with no following
       digits, giving a character whose value is zero.

       Characters whose value is less than 256 can be defined by either of the
       two syntaxes for \x. There is no difference in the way  they  are  han‐
       dled. For example, \xdc is exactly the same as \x{dc}.

       After  \0  up  to  two further octal digits are read. In both cases, if
       there are fewer than two digits, just those that are present are	 used.
       Thus  the sequence \0\x\07 specifies two binary zeros followed by a BEL
       character (code value 7). Make sure you supply  two  digits  after  the
       initial	zero  if the pattern character that follows is itself an octal
       digit.

       The handling of a backslash followed by a digit other than 0 is compli‐
       cated.  Outside a character class, PCRE reads it and any following dig‐
       its as a decimal number. If the number is less than  10,	 or  if	 there
       have been at least that many previous capturing left parentheses in the
       expression, the entire  sequence	 is  taken  as	a  back	 reference.  A
       description  of how this works is given later, following the discussion
       of parenthesized subpatterns.

       Inside a character class, or if the decimal number is  greater  than  9
       and  there have not been that many capturing subpatterns, PCRE re-reads
       up to three octal digits following the backslash, and generates a  sin‐
       gle byte from the least significant 8 bits of the value. Any subsequent
       digits stand for themselves.  For example:

	 \040	is another way of writing a space
	 \40	is the same, provided there are fewer than 40
		   previous capturing subpatterns
	 \7	is always a back reference
	 \11	might be a back reference, or another way of
		   writing a tab
	 \011	is always a tab
	 \0113	is a tab followed by the character "3"
	 \113	might be a back reference, otherwise the
		   character with octal code 113
	 \377	might be a back reference, otherwise
		   the byte consisting entirely of 1 bits
	 \81	is either a back reference, or a binary zero
		   followed by the two characters "8" and "1"

       Note that octal values of 100 or greater must not be  introduced	 by  a
       leading zero, because no more than three octal digits are ever read.

       All  the	 sequences  that  define a single byte value or a single UTF-8
       character (in UTF-8 mode) can be used both inside and outside character
       classes.	 In  addition,	inside	a  character class, the sequence \b is
       interpreted as the backspace character (hex 08), and the sequence \X is
       interpreted  as	the  character	"X".  Outside a character class, these
       sequences have different meanings (see below).

   Generic character types

       The third use of backslash is for specifying generic  character	types.
       The following are always recognized:

	 \d	any decimal digit
	 \D	any character that is not a decimal digit
	 \s	any whitespace character
	 \S	any character that is not a whitespace character
	 \w	any "word" character
	 \W	any "non-word" character

       Each pair of escape sequences partitions the complete set of characters
       into two disjoint sets. Any given character matches one, and only  one,
       of each pair.

       These character type sequences can appear both inside and outside char‐
       acter classes. They each match one character of the  appropriate	 type.
       If  the current matching point is at the end of the subject string, all
       of them fail, since there is no character to match.

       For compatibility with Perl, \s does not match the VT  character	 (code
       11).   This makes it different from the the POSIX "space" class. The \s
       characters are HT (9), LF (10), FF (12), CR (13), and space (32).

       A "word" character is an underscore or any character less than 256 that
       is  a  letter  or  digit.  The definition of letters and digits is con‐
       trolled by PCRE's low-valued character tables, and may vary if  locale-
       specific	 matching is taking place (see "Locale support" in the pcreapi
       page). For example, in the  "fr_FR"  (French)  locale,  some  character
       codes  greater  than  128  are used for accented letters, and these are
       matched by \w.

       In UTF-8 mode, characters with values greater than 128 never match  \d,
       \s, or \w, and always match \D, \S, and \W. This is true even when Uni‐
       code character property support is available. The use of	 locales  with
       Unicode is discouraged.

   Unicode character properties

       When PCRE is built with Unicode character property support, three addi‐
       tional escape sequences to match	 character  properties	are  available
       when UTF-8 mode is selected. They are:

	 \p{xx}	  a character with the xx property
	 \P{xx}	  a character without the xx property
	 \X	  an extended Unicode sequence

       The  property  names represented by xx above are limited to the Unicode
       script names, the general category properties, and "Any", which matches
       any character (including newline). Other properties such as "InMusical‐
       Symbols" are not currently supported by PCRE. Note  that	 \P{Any}  does
       not match any characters, so always causes a match failure.

       Sets of Unicode characters are defined as belonging to certain scripts.
       A character from one of these sets can be matched using a script	 name.
       For example:

	 \p{Greek}
	 \P{Han}

       Those  that are not part of an identified script are lumped together as
       "Common". The current list of scripts is:

       Arabic, Armenian, Bengali, Bopomofo, Braille,  Buginese,	 Buhid,	 Cana‐
       dian_Aboriginal,	 Cherokee, Common, Coptic, Cypriot, Cyrillic, Deseret,
       Devanagari, Ethiopic, Georgian, Glagolitic,  Gothic,  Greek,  Gujarati,
       Gurmukhi,  Han,	Hangul, Hanunoo, Hebrew, Hiragana, Inherited, Kannada,
       Katakana, Kharoshthi, Khmer, Lao, Latin,	 Limbu,	 Linear_B,  Malayalam,
       Mongolian, Myanmar, New_Tai_Lue, Ogham, Old_Italic, Old_Persian, Oriya,
       Osmanya, Runic, Shavian, Sinhala, Syloti_Nagri, Syriac,	Tagalog,  Tag‐
       banwa,	Tai_Le,	  Tamil,  Telugu,  Thaana,  Thai,  Tibetan,  Tifinagh,
       Ugaritic, Yi.

       Each character has exactly one general category property, specified  by
       a two-letter abbreviation. For compatibility with Perl, negation can be
       specified by including a circumflex between the opening brace  and  the
       property name. For example, \p{^Lu} is the same as \P{Lu}.

       If only one letter is specified with \p or \P, it includes all the gen‐
       eral category properties that start with that letter. In this case,  in
       the  absence of negation, the curly brackets in the escape sequence are
       optional; these two examples have the same effect:

	 \p{L}
	 \pL

       The following general category property codes are supported:

	 C     Other
	 Cc    Control
	 Cf    Format
	 Cn    Unassigned
	 Co    Private use
	 Cs    Surrogate

	 L     Letter
	 Ll    Lower case letter
	 Lm    Modifier letter
	 Lo    Other letter
	 Lt    Title case letter
	 Lu    Upper case letter

	 M     Mark
	 Mc    Spacing mark
	 Me    Enclosing mark
	 Mn    Non-spacing mark

	 N     Number
	 Nd    Decimal number
	 Nl    Letter number
	 No    Other number

	 P     Punctuation
	 Pc    Connector punctuation
	 Pd    Dash punctuation
	 Pe    Close punctuation
	 Pf    Final punctuation
	 Pi    Initial punctuation
	 Po    Other punctuation
	 Ps    Open punctuation

	 S     Symbol
	 Sc    Currency symbol
	 Sk    Modifier symbol
	 Sm    Mathematical symbol
	 So    Other symbol

	 Z     Separator
	 Zl    Line separator
	 Zp    Paragraph separator
	 Zs    Space separator

       The special property L& is also supported: it matches a character  that
       has  the	 Lu,  Ll, or Lt property, in other words, a letter that is not
       classified as a modifier or "other".

       The long synonyms for these properties  that  Perl  supports  (such  as
       \p{Letter})  are	 not  supported by PCRE. Nor is is permitted to prefix
       any of these properties with "Is".

       No character that is in the Unicode table has the Cn (unassigned) prop‐
       erty.  Instead, this property is assumed for any code point that is not
       in the Unicode table.

       Specifying caseless matching does not affect  these  escape  sequences.
       For example, \p{Lu} always matches only upper case letters.

       The  \X	escape	matches	 any number of Unicode characters that form an
       extended Unicode sequence. \X is equivalent to

	 (?>\PM\pM*)

       That is, it matches a character without the "mark"  property,  followed
       by  zero	 or  more  characters with the "mark" property, and treats the
       sequence as an atomic group (see below).	 Characters  with  the	"mark"
       property are typically accents that affect the preceding character.

       Matching	 characters  by Unicode property is not fast, because PCRE has
       to search a structure that contains  data  for  over  fifteen  thousand
       characters. That is why the traditional escape sequences such as \d and
       \w do not use Unicode properties in PCRE.

   Simple assertions

       The fourth use of backslash is for certain simple assertions. An asser‐
       tion  specifies a condition that has to be met at a particular point in
       a match, without consuming any characters from the subject string.  The
       use  of subpatterns for more complicated assertions is described below.
       The backslashed assertions are:

	 \b	matches at a word boundary
	 \B	matches when not at a word boundary
	 \A	matches at start of subject
	 \Z	matches at end of subject or before newline at end
	 \z	matches at end of subject
	 \G	matches at first matching position in subject

       These assertions may not appear in character classes (but note that  \b
       has a different meaning, namely the backspace character, inside a char‐
       acter class).

       A word boundary is a position in the subject string where  the  current
       character  and  the previous character do not both match \w or \W (i.e.
       one matches \w and the other matches \W), or the start or  end  of  the
       string if the first or last character matches \w, respectively.

       The  \A,	 \Z,  and \z assertions differ from the traditional circumflex
       and dollar (described in the next section) in that they only ever match
       at  the	very start and end of the subject string, whatever options are
       set. Thus, they are independent of multiline mode. These	 three	asser‐
       tions are not affected by the PCRE_NOTBOL or PCRE_NOTEOL options, which
       affect only the behaviour of the circumflex and dollar  metacharacters.
       However,	 if the startoffset argument of pcre_exec() is non-zero, indi‐
       cating that matching is to start at a point other than the beginning of
       the  subject,  \A  can never match. The difference between \Z and \z is
       that \Z matches before a newline that is	 the  last  character  of  the
       string  as well as at the end of the string, whereas \z matches only at
       the end.

       The \G assertion is true only when the current matching position is  at
       the  start point of the match, as specified by the startoffset argument
       of pcre_exec(). It differs from \A when the  value  of  startoffset  is
       non-zero.  By calling pcre_exec() multiple times with appropriate argu‐
       ments, you can mimic Perl's /g option, and it is in this kind of imple‐
       mentation where \G can be useful.

       Note,  however,	that  PCRE's interpretation of \G, as the start of the
       current match, is subtly different from Perl's, which defines it as the
       end  of	the  previous  match. In Perl, these can be different when the
       previously matched string was empty. Because PCRE does just  one	 match
       at a time, it cannot reproduce this behaviour.

       If  all	the alternatives of a pattern begin with \G, the expression is
       anchored to the starting match position, and the "anchored" flag is set
       in the compiled regular expression.

CIRCUMFLEX AND DOLLAR

       Outside a character class, in the default matching mode, the circumflex
       character is an assertion that is true only  if	the  current  matching
       point  is  at the start of the subject string. If the startoffset argu‐
       ment of pcre_exec() is non-zero, circumflex  can	 never	match  if  the
       PCRE_MULTILINE  option  is  unset. Inside a character class, circumflex
       has an entirely different meaning (see below).

       Circumflex need not be the first character of the pattern if  a	number
       of  alternatives are involved, but it should be the first thing in each
       alternative in which it appears if the pattern is ever  to  match  that
       branch.	If all possible alternatives start with a circumflex, that is,
       if the pattern is constrained to match only at the start	 of  the  sub‐
       ject,  it  is  said  to be an "anchored" pattern. (There are also other
       constructs that can cause a pattern to be anchored.)

       A dollar character is an assertion that is true	only  if  the  current
       matching	 point	is  at	the  end of the subject string, or immediately
       before a newline character that is the last character in the string (by
       default).  Dollar  need	not  be the last character of the pattern if a
       number of alternatives are involved, but it should be the last item  in
       any  branch  in	which  it appears.  Dollar has no special meaning in a
       character class.

       The meaning of dollar can be changed so that it	matches	 only  at  the
       very  end  of  the string, by setting the PCRE_DOLLAR_ENDONLY option at
       compile time. This does not affect the \Z assertion.

       The meanings of the circumflex and dollar characters are changed if the
       PCRE_MULTILINE option is set. When this is the case, they match immedi‐
       ately after and	immediately  before  an	 internal  newline  character,
       respectively,  in addition to matching at the start and end of the sub‐
       ject string. For example,  the  pattern	/^abc$/	 matches  the  subject
       string  "def\nabc"  (where \n represents a newline character) in multi‐
       line mode, but not otherwise.  Consequently, patterns that are anchored
       in  single line mode because all branches start with ^ are not anchored
       in multiline mode, and a match for  circumflex  is  possible  when  the
       startoffset   argument	of  pcre_exec()	 is  non-zero.	The  PCRE_DOL‐
       LAR_ENDONLY option is ignored if PCRE_MULTILINE is set.

       Note that the sequences \A, \Z, and \z can be used to match  the	 start
       and  end of the subject in both modes, and if all branches of a pattern
       start with \A it is always anchored, whether PCRE_MULTILINE is  set  or
       not.

FULL STOP (PERIOD, DOT)

       Outside a character class, a dot in the pattern matches any one charac‐
       ter in the subject, including a non-printing  character,	 but  not  (by
       default)	 newline.   In	UTF-8 mode, a dot matches any UTF-8 character,
       which might be more than one byte long, except (by default) newline. If
       the  PCRE_DOTALL	 option	 is set, dots match newlines as well. The han‐
       dling of dot is entirely independent of the handling of circumflex  and
       dollar,	the  only  relationship	 being	that they both involve newline
       characters. Dot has no special meaning in a character class.

MATCHING A SINGLE BYTE

       Outside a character class, the escape sequence \C matches any one byte,
       both  in	 and  out of UTF-8 mode. Unlike a dot, it can match a newline.
       The feature is provided in Perl in order to match individual  bytes  in
       UTF-8  mode.  Because  it  breaks  up  UTF-8 characters into individual
       bytes, what remains in the string may be a malformed UTF-8 string.  For
       this reason, the \C escape sequence is best avoided.

       PCRE  does  not	allow \C to appear in lookbehind assertions (described
       below), because in UTF-8 mode this would make it impossible  to	calcu‐
       late the length of the lookbehind.

SQUARE BRACKETS AND CHARACTER CLASSES

       An opening square bracket introduces a character class, terminated by a
       closing square bracket. A closing square bracket on its own is not spe‐
       cial. If a closing square bracket is required as a member of the class,
       it should be the first data character in the class  (after  an  initial
       circumflex, if present) or escaped with a backslash.

       A  character  class matches a single character in the subject. In UTF-8
       mode, the character may occupy more than one byte. A matched  character
       must be in the set of characters defined by the class, unless the first
       character in the class definition is a circumflex, in  which  case  the
       subject	character  must	 not  be in the set defined by the class. If a
       circumflex is actually required as a member of the class, ensure it  is
       not the first character, or escape it with a backslash.

       For  example, the character class [aeiou] matches any lower case vowel,
       while [^aeiou] matches any character that is not a  lower  case	vowel.
       Note that a circumflex is just a convenient notation for specifying the
       characters that are in the class by enumerating those that are  not.  A
       class  that starts with a circumflex is not an assertion: it still con‐
       sumes a character from the subject string, and therefore	 it  fails  if
       the current pointer is at the end of the string.

       In  UTF-8 mode, characters with values greater than 255 can be included
       in a class as a literal string of bytes, or by using the	 \x{  escaping
       mechanism.

       When  caseless  matching	 is set, any letters in a class represent both
       their upper case and lower case versions, so for	 example,  a  caseless
       [aeiou]	matches	 "A"  as well as "a", and a caseless [^aeiou] does not
       match "A", whereas a caseful version would. In UTF-8 mode, PCRE	always
       understands  the	 concept  of case for characters whose values are less
       than 128, so caseless matching is always possible. For characters  with
       higher  values,	the  concept  of case is supported if PCRE is compiled
       with Unicode property support, but not otherwise.  If you want  to  use
       caseless	 matching  for	characters 128 and above, you must ensure that
       PCRE is compiled with Unicode property support as well  as  with	 UTF-8
       support.

       The  newline character is never treated in any special way in character
       classes, whatever the setting  of  the  PCRE_DOTALL  or	PCRE_MULTILINE
       options is. A class such as [^a] will always match a newline.

       The  minus (hyphen) character can be used to specify a range of charac‐
       ters in a character  class.  For	 example,  [d-m]  matches  any	letter
       between	d  and	m,  inclusive.	If  a minus character is required in a
       class, it must be escaped with a backslash  or  appear  in  a  position
       where  it cannot be interpreted as indicating a range, typically as the
       first or last character in the class.

       It is not possible to have the literal character "]" as the end charac‐
       ter  of a range. A pattern such as [W-]46] is interpreted as a class of
       two characters ("W" and "-") followed by a literal string "46]", so  it
       would  match  "W46]"  or	 "-46]". However, if the "]" is escaped with a
       backslash it is interpreted as the end of range, so [W-\]46] is	inter‐
       preted  as a class containing a range followed by two other characters.
       The octal or hexadecimal representation of "]" can also be used to  end
       a range.

       Ranges  operate in the collating sequence of character values. They can
       also  be	 used  for  characters	specified  numerically,	 for   example
       [\000-\037].  In UTF-8 mode, ranges can include characters whose values
       are greater than 255, for example [\x{100}-\x{2ff}].

       If a range that includes letters is used when caseless matching is set,
       it matches the letters in either case. For example, [W-c] is equivalent
       to [][\\^_`wxyzabc], matched caselessly,	 and  in  non-UTF-8  mode,  if
       character tables for the "fr_FR" locale are in use, [\xc8-\xcb] matches
       accented E characters in both cases. In UTF-8 mode, PCRE	 supports  the
       concept	of  case for characters with values greater than 128 only when
       it is compiled with Unicode property support.

       The character types \d, \D, \p, \P, \s, \S, \w, and \W may also	appear
       in  a  character	 class,	 and add the characters that they match to the
       class. For example, [\dABCDEF] matches any hexadecimal digit. A circum‐
       flex  can  conveniently	be used with the upper case character types to
       specify a more restricted set of characters  than  the  matching	 lower
       case  type.  For example, the class [^\W_] matches any letter or digit,
       but not underscore.

       The only metacharacters that are recognized in  character  classes  are
       backslash,  hyphen  (only  where	 it can be interpreted as specifying a
       range), circumflex (only at the start), opening	square	bracket	 (only
       when  it can be interpreted as introducing a POSIX class name - see the
       next section), and the terminating  closing  square  bracket.  However,
       escaping other non-alphanumeric characters does no harm.

POSIX CHARACTER CLASSES

       Perl supports the POSIX notation for character classes. This uses names
       enclosed by [: and :] within the enclosing square brackets.  PCRE  also
       supports this notation. For example,

	 [01[:alpha:]%]

       matches "0", "1", any alphabetic character, or "%". The supported class
       names are

	 alnum	  letters and digits
	 alpha	  letters
	 ascii	  character codes 0 - 127
	 blank	  space or tab only
	 cntrl	  control characters
	 digit	  decimal digits (same as \d)
	 graph	  printing characters, excluding space
	 lower	  lower case letters
	 print	  printing characters, including space
	 punct	  printing characters, excluding letters and digits
	 space	  white space (not quite the same as \s)
	 upper	  upper case letters
	 word	  "word" characters (same as \w)
	 xdigit	  hexadecimal digits

       The "space" characters are HT (9), LF (10), VT (11), FF (12), CR	 (13),
       and  space  (32). Notice that this list includes the VT character (code
       11). This makes "space" different to \s, which does not include VT (for
       Perl compatibility).

       The  name  "word"  is  a Perl extension, and "blank" is a GNU extension
       from Perl 5.8. Another Perl extension is negation, which	 is  indicated
       by a ^ character after the colon. For example,

	 [12[:^digit:]]

       matches	"1", "2", or any non-digit. PCRE (and Perl) also recognize the
       POSIX syntax [.ch.] and [=ch=] where "ch" is a "collating element", but
       these are not supported, and an error is given if they are encountered.

       In UTF-8 mode, characters with values greater than 128 do not match any
       of the POSIX character classes.

VERTICAL BAR

       Vertical bar characters are used to separate alternative patterns.  For
       example, the pattern

	 gilbert|sullivan

       matches	either "gilbert" or "sullivan". Any number of alternatives may
       appear, and an empty  alternative  is  permitted	 (matching  the	 empty
       string).	  The  matching	 process  tries each alternative in turn, from
       left to right, and the first one that succeeds is used. If the alterna‐
       tives  are within a subpattern (defined below), "succeeds" means match‐
       ing the rest of the main pattern as well as the alternative in the sub‐
       pattern.

INTERNAL OPTION SETTING

       The  settings  of  the  PCRE_CASELESS, PCRE_MULTILINE, PCRE_DOTALL, and
       PCRE_EXTENDED options can be changed  from  within  the	pattern	 by  a
       sequence	 of  Perl  option  letters  enclosed between "(?" and ")". The
       option letters are

	 i  for PCRE_CASELESS
	 m  for PCRE_MULTILINE
	 s  for PCRE_DOTALL
	 x  for PCRE_EXTENDED

       For example, (?im) sets caseless, multiline matching. It is also possi‐
       ble to unset these options by preceding the letter with a hyphen, and a
       combined setting and unsetting such as (?im-sx), which sets  PCRE_CASE‐
       LESS  and PCRE_MULTILINE while unsetting PCRE_DOTALL and PCRE_EXTENDED,
       is also permitted. If a	letter	appears	 both  before  and  after  the
       hyphen, the option is unset.

       When  an option change occurs at top level (that is, not inside subpat‐
       tern parentheses), the change applies to the remainder of  the  pattern
       that follows.  If the change is placed right at the start of a pattern,
       PCRE extracts it into the global options (and it will therefore show up
       in data extracted by the pcre_fullinfo() function).

       An option change within a subpattern affects only that part of the cur‐
       rent pattern that follows it, so

	 (a(?i)b)c

       matches abc and aBc and no other strings (assuming PCRE_CASELESS is not
       used).	By  this means, options can be made to have different settings
       in different parts of the pattern. Any changes made in one  alternative
       do  carry  on  into subsequent branches within the same subpattern. For
       example,

	 (a(?i)b|c)

       matches "ab", "aB", "c", and "C", even though  when  matching  "C"  the
       first  branch  is  abandoned before the option setting. This is because
       the effects of option settings happen at compile time. There  would  be
       some very weird behaviour otherwise.

       The  PCRE-specific  options PCRE_UNGREEDY and PCRE_EXTRA can be changed
       in the same way as the Perl-compatible options by using the  characters
       U  and X respectively. The (?X) flag setting is special in that it must
       always occur earlier in the pattern than any of the additional features
       it  turns on, even when it is at top level. It is best to put it at the
       start.

SUBPATTERNS

       Subpatterns are delimited by parentheses (round brackets), which can be
       nested.	Turning part of a pattern into a subpattern does two things:

       1. It localizes a set of alternatives. For example, the pattern

	 cat(aract|erpillar|)

       matches	one  of the words "cat", "cataract", or "caterpillar". Without
       the parentheses, it would match "cataract",  "erpillar"	or  the	 empty
       string.

       2.  It  sets  up	 the  subpattern as a capturing subpattern. This means
       that, when the whole pattern  matches,  that  portion  of  the  subject
       string that matched the subpattern is passed back to the caller via the
       ovector argument of pcre_exec(). Opening parentheses are	 counted  from
       left  to	 right	(starting  from 1) to obtain numbers for the capturing
       subpatterns.

       For example, if the string "the red king" is matched against  the  pat‐
       tern

	 the ((red|white) (king|queen))

       the captured substrings are "red king", "red", and "king", and are num‐
       bered 1, 2, and 3, respectively.

       The fact that plain parentheses fulfil  two  functions  is  not	always
       helpful.	  There are often times when a grouping subpattern is required
       without a capturing requirement. If an opening parenthesis is  followed
       by  a question mark and a colon, the subpattern does not do any captur‐
       ing, and is not counted when computing the  number  of  any  subsequent
       capturing  subpatterns. For example, if the string "the white queen" is
       matched against the pattern

	 the ((?:red|white) (king|queen))

       the captured substrings are "white queen" and "queen", and are numbered
       1  and 2. The maximum number of capturing subpatterns is 65535, and the
       maximum depth of nesting of all subpatterns, both  capturing  and  non-
       capturing, is 200.

       As  a  convenient shorthand, if any option settings are required at the
       start of a non-capturing subpattern,  the  option  letters  may	appear
       between the "?" and the ":". Thus the two patterns

	 (?i:saturday|sunday)
	 (?:(?i)saturday|sunday)

       match exactly the same set of strings. Because alternative branches are
       tried from left to right, and options are not reset until  the  end  of
       the  subpattern is reached, an option setting in one branch does affect
       subsequent branches, so the above patterns match "SUNDAY"  as  well  as
       "Saturday".

NAMED SUBPATTERNS

       Identifying  capturing  parentheses  by number is simple, but it can be
       very hard to keep track of the numbers in complicated  regular  expres‐
       sions.  Furthermore,  if	 an  expression	 is  modified, the numbers may
       change. To help with this difficulty, PCRE supports the naming of  sub‐
       patterns,  something  that  Perl	 does  not  provide. The Python syntax
       (?P<name>...) is used. Names consist  of	 alphanumeric  characters  and
       underscores, and must be unique within a pattern.

       Named  capturing	 parentheses  are  still  allocated numbers as well as
       names. The PCRE API provides function calls for extracting the name-to-
       number  translation table from a compiled pattern. There is also a con‐
       venience function for extracting a captured substring by name. For fur‐
       ther details see the pcreapi documentation.

REPETITION

       Repetition  is  specified  by  quantifiers, which can follow any of the
       following items:

	 a literal data character
	 the . metacharacter
	 the \C escape sequence
	 the \X escape sequence (in UTF-8 mode with Unicode properties)
	 an escape such as \d that matches a single character
	 a character class
	 a back reference (see next section)
	 a parenthesized subpattern (unless it is an assertion)

       The general repetition quantifier specifies a minimum and maximum  num‐
       ber  of	permitted matches, by giving the two numbers in curly brackets
       (braces), separated by a comma. The numbers must be  less  than	65536,
       and the first must be less than or equal to the second. For example:

	 z{2,4}

       matches	"zz",  "zzz",  or  "zzzz". A closing brace on its own is not a
       special character. If the second number is omitted, but	the  comma  is
       present,	 there	is  no upper limit; if the second number and the comma
       are both omitted, the quantifier specifies an exact number of  required
       matches. Thus

	 [aeiou]{3,}

       matches at least 3 successive vowels, but may match many more, while

	 \d{8}

       matches	exactly	 8  digits. An opening curly bracket that appears in a
       position where a quantifier is not allowed, or one that does not	 match
       the  syntax of a quantifier, is taken as a literal character. For exam‐
       ple, {,6} is not a quantifier, but a literal string of four characters.

       In UTF-8 mode, quantifiers apply to UTF-8  characters  rather  than  to
       individual bytes. Thus, for example, \x{100}{2} matches two UTF-8 char‐
       acters, each of which is represented by a two-byte sequence. Similarly,
       when Unicode property support is available, \X{3} matches three Unicode
       extended sequences, each of which may be several bytes long  (and  they
       may be of different lengths).

       The quantifier {0} is permitted, causing the expression to behave as if
       the previous item and the quantifier were not present.

       For convenience (and historical compatibility) the  three  most	common
       quantifiers have single-character abbreviations:

	 *    is equivalent to {0,}
	 +    is equivalent to {1,}
	 ?    is equivalent to {0,1}

       It  is  possible	 to construct infinite loops by following a subpattern
       that can match no characters with a quantifier that has no upper limit,
       for example:

	 (a?)*

       Earlier versions of Perl and PCRE used to give an error at compile time
       for such patterns. However, because there are cases where this  can  be
       useful,	such  patterns	are now accepted, but if any repetition of the
       subpattern does in fact match no characters, the loop is forcibly  bro‐
       ken.

       By  default,  the quantifiers are "greedy", that is, they match as much
       as possible (up to the maximum  number  of  permitted  times),  without
       causing	the  rest of the pattern to fail. The classic example of where
       this gives problems is in trying to match comments in C programs. These
       appear  between	/*  and	 */ and within the comment, individual * and /
       characters may appear. An attempt to match C comments by	 applying  the
       pattern

	 /\*.*\*/

       to the string

	 /* first comment */  not comment  /* second comment */

       fails,  because it matches the entire string owing to the greediness of
       the .*  item.

       However, if a quantifier is followed by a question mark, it  ceases  to
       be greedy, and instead matches the minimum number of times possible, so
       the pattern

	 /\*.*?\*/

       does the right thing with the C comments. The meaning  of  the  various
       quantifiers  is	not  otherwise	changed,  just the preferred number of
       matches.	 Do not confuse this use of question mark with its  use	 as  a
       quantifier  in its own right. Because it has two uses, it can sometimes
       appear doubled, as in

	 \d??\d

       which matches one digit by preference, but can match two if that is the
       only way the rest of the pattern matches.

       If the PCRE_UNGREEDY option is set (an option which is not available in
       Perl), the quantifiers are not greedy by default, but  individual  ones
       can  be	made  greedy  by following them with a question mark. In other
       words, it inverts the default behaviour.

       When a parenthesized subpattern is quantified  with  a  minimum	repeat
       count  that is greater than 1 or with a limited maximum, more memory is
       required for the compiled pattern, in proportion to  the	 size  of  the
       minimum or maximum.

       If a pattern starts with .* or .{0,} and the PCRE_DOTALL option (equiv‐
       alent to Perl's /s) is set, thus allowing the . to match newlines,  the
       pattern	is implicitly anchored, because whatever follows will be tried
       against every character position in the subject string, so there is  no
       point  in  retrying  the overall match at any position after the first.
       PCRE normally treats such a pattern as though it were preceded by \A.

       In cases where it is known that the subject  string  contains  no  new‐
       lines,  it  is  worth setting PCRE_DOTALL in order to obtain this opti‐
       mization, or alternatively using ^ to indicate anchoring explicitly.

       However, there is one situation where the optimization cannot be	 used.
       When  .*	  is  inside  capturing	 parentheses that are the subject of a
       backreference elsewhere in the pattern, a match at the start may	 fail,
       and a later one succeed. Consider, for example:

	 (.*)abc\1

       If  the subject is "xyz123abc123" the match point is the fourth charac‐
       ter. For this reason, such a pattern is not implicitly anchored.

       When a capturing subpattern is repeated, the value captured is the sub‐
       string that matched the final iteration. For example, after

	 (tweedle[dume]{3}\s*)+

       has matched "tweedledum tweedledee" the value of the captured substring
       is "tweedledee". However, if there are  nested  capturing  subpatterns,
       the  corresponding captured values may have been set in previous itera‐
       tions. For example, after

	 /(a|(b))+/

       matches "aba" the value of the second captured substring is "b".

ATOMIC GROUPING AND POSSESSIVE QUANTIFIERS

       With both maximizing and minimizing repetition, failure of what follows
       normally	 causes	 the repeated item to be re-evaluated to see if a dif‐
       ferent number of repeats allows the rest of the pattern to match. Some‐
       times  it is useful to prevent this, either to change the nature of the
       match, or to cause it fail earlier than it otherwise  might,  when  the
       author of the pattern knows there is no point in carrying on.

       Consider,  for  example, the pattern \d+foo when applied to the subject
       line

	 123456bar

       After matching all 6 digits and then failing to match "foo", the normal
       action  of  the matcher is to try again with only 5 digits matching the
       \d+ item, and then with	4,  and	 so  on,  before  ultimately  failing.
       "Atomic	grouping"  (a  term taken from Jeffrey Friedl's book) provides
       the means for specifying that once a subpattern has matched, it is  not
       to be re-evaluated in this way.

       If  we  use atomic grouping for the previous example, the matcher would
       give up immediately on failing to match "foo" the first time. The nota‐
       tion  is	 a  kind  of special parenthesis, starting with (?> as in this
       example:

	 (?>\d+)foo

       This kind of parenthesis "locks up" the	part of the  pattern  it  con‐
       tains  once  it	has matched, and a failure further into the pattern is
       prevented from backtracking into it. Backtracking past it  to  previous
       items, however, works as normal.

       An  alternative	description  is that a subpattern of this type matches
       the string of characters that an	 identical  standalone	pattern	 would
       match, if anchored at the current point in the subject string.

       Atomic grouping subpatterns are not capturing subpatterns. Simple cases
       such as the above example can be thought of as a maximizing repeat that
       must  swallow  everything  it can. So, while both \d+ and \d+? are pre‐
       pared to adjust the number of digits they match in order	 to  make  the
       rest of the pattern match, (?>\d+) can only match an entire sequence of
       digits.

       Atomic groups in general can of course contain arbitrarily  complicated
       subpatterns,  and  can  be  nested. However, when the subpattern for an
       atomic group is just a single repeated item, as in the example above, a
       simpler	notation,  called  a "possessive quantifier" can be used. This
       consists of an additional + character  following	 a  quantifier.	 Using
       this notation, the previous example can be rewritten as

	 \d++foo

       Possessive   quantifiers	  are	always	greedy;	 the  setting  of  the
       PCRE_UNGREEDY option is ignored. They are a convenient notation for the
       simpler	forms  of atomic group. However, there is no difference in the
       meaning or processing of a possessive  quantifier  and  the  equivalent
       atomic group.

       The possessive quantifier syntax is an extension to the Perl syntax. It
       originates in Sun's Java package.

       When a pattern contains an unlimited repeat inside  a  subpattern  that
       can  itself  be	repeated  an  unlimited number of times, the use of an
       atomic group is the only way to avoid some  failing  matches  taking  a
       very long time indeed. The pattern

	 (\D+|<\d+>)*[!?]

       matches	an  unlimited number of substrings that either consist of non-
       digits, or digits enclosed in <>, followed by either ! or  ?.  When  it
       matches, it runs quickly. However, if it is applied to

	 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

       it  takes  a  long  time	 before reporting failure. This is because the
       string can be divided between the internal \D+ repeat and the  external
       *  repeat  in  a	 large	number of ways, and all have to be tried. (The
       example uses [!?] rather than a single character at  the	 end,  because
       both  PCRE  and	Perl have an optimization that allows for fast failure
       when a single character is used. They remember the last single  charac‐
       ter  that  is required for a match, and fail early if it is not present
       in the string.) If the pattern is changed so that  it  uses  an	atomic
       group, like this:

	 ((?>\D+)|<\d+>)*[!?]

       sequences of non-digits cannot be broken, and failure happens quickly.

BACK REFERENCES

       Outside a character class, a backslash followed by a digit greater than
       0 (and possibly further digits) is a back reference to a capturing sub‐
       pattern	earlier	 (that is, to its left) in the pattern, provided there
       have been that many previous capturing left parentheses.

       However, if the decimal number following the backslash is less than 10,
       it  is  always  taken  as a back reference, and causes an error only if
       there are not that many capturing left parentheses in the  entire  pat‐
       tern.  In  other words, the parentheses that are referenced need not be
       to the left of the reference for numbers less than 10. See the  subsec‐
       tion  entitled  "Non-printing  characters" above for further details of
       the handling of digits following a backslash.

       A back reference matches whatever actually matched the  capturing  sub‐
       pattern	in  the	 current subject string, rather than anything matching
       the subpattern itself (see "Subpatterns as subroutines" below for a way
       of doing that). So the pattern

	 (sens|respons)e and \1ibility

       matches	"sense and sensibility" and "response and responsibility", but
       not "sense and responsibility". If caseful matching is in force at  the
       time  of the back reference, the case of letters is relevant. For exam‐
       ple,

	 ((?i)rah)\s+\1

       matches "rah rah" and "RAH RAH", but not "RAH  rah",  even  though  the
       original capturing subpattern is matched caselessly.

       Back  references	 to named subpatterns use the Python syntax (?P=name).
       We could rewrite the above example as follows:

	 (?<p1>(?i)rah)\s+(?P=p1)

       There may be more than one back reference to the same subpattern. If  a
       subpattern  has	not actually been used in a particular match, any back
       references to it always fail. For example, the pattern

	 (a|(bc))\2

       always fails if it starts to match "a" rather than "bc". Because	 there
       may  be	many  capturing parentheses in a pattern, all digits following
       the backslash are taken as part of a potential back  reference  number.
       If the pattern continues with a digit character, some delimiter must be
       used to terminate the back reference. If the  PCRE_EXTENDED  option  is
       set,  this  can	be  whitespace.	 Otherwise an empty comment (see "Com‐
       ments" below) can be used.

       A back reference that occurs inside the parentheses to which it	refers
       fails  when  the subpattern is first used, so, for example, (a\1) never
       matches.	 However, such references can be useful inside	repeated  sub‐
       patterns. For example, the pattern

	 (a|b\1)+

       matches any number of "a"s and also "aba", "ababbaa" etc. At each iter‐
       ation of the subpattern,	 the  back  reference  matches	the  character
       string  corresponding  to  the previous iteration. In order for this to
       work, the pattern must be such that the first iteration does  not  need
       to  match the back reference. This can be done using alternation, as in
       the example above, or by a quantifier with a minimum of zero.

ASSERTIONS

       An assertion is a test on the characters	 following  or	preceding  the
       current	matching  point that does not actually consume any characters.
       The simple assertions coded as \b, \B, \A, \G, \Z,  \z,	^  and	$  are
       described above.

       More  complicated  assertions  are  coded as subpatterns. There are two
       kinds: those that look ahead of the current  position  in  the  subject
       string,	and  those  that  look	behind	it. An assertion subpattern is
       matched in the normal way, except that it does not  cause  the  current
       matching position to be changed.

       Assertion  subpatterns  are  not	 capturing subpatterns, and may not be
       repeated, because it makes no sense to assert the  same	thing  several
       times.  If  any kind of assertion contains capturing subpatterns within
       it, these are counted for the purposes of numbering the capturing  sub‐
       patterns in the whole pattern.  However, substring capturing is carried
       out only for positive assertions, because it does not  make  sense  for
       negative assertions.

   Lookahead assertions

       Lookahead assertions start with (?= for positive assertions and (?! for
       negative assertions. For example,

	 \w+(?=;)

       matches a word followed by a semicolon, but does not include the	 semi‐
       colon in the match, and

	 foo(?!bar)

       matches	any  occurrence	 of  "foo" that is not followed by "bar". Note
       that the apparently similar pattern

	 (?!foo)bar

       does not find an occurrence of "bar"  that  is  preceded	 by  something
       other  than "foo"; it finds any occurrence of "bar" whatsoever, because
       the assertion (?!foo) is always true when the next three characters are
       "bar". A lookbehind assertion is needed to achieve the other effect.

       If you want to force a matching failure at some point in a pattern, the
       most convenient way to do it is	with  (?!)  because  an	 empty	string
       always  matches, so an assertion that requires there not to be an empty
       string must always fail.

   Lookbehind assertions

       Lookbehind assertions start with (?<= for positive assertions and  (?<!
       for negative assertions. For example,

	 (?<!foo)bar

       does  find  an  occurrence  of "bar" that is not preceded by "foo". The
       contents of a lookbehind assertion are restricted  such	that  all  the
       strings it matches must have a fixed length. However, if there are sev‐
       eral alternatives, they do not all have to have the same fixed  length.
       Thus

	 (?<=bullock|donkey)

       is permitted, but

	 (?<!dogs?|cats?)

       causes  an  error at compile time. Branches that match different length
       strings are permitted only at the top level of a lookbehind  assertion.
       This  is	 an  extension	compared  with	Perl (at least for 5.8), which
       requires all branches to match the same length of string. An  assertion
       such as

	 (?<=ab(c|de))

       is  not	permitted,  because  its single top-level branch can match two
       different lengths, but it is acceptable if rewritten to	use  two  top-
       level branches:

	 (?<=abc|abde)

       The  implementation  of lookbehind assertions is, for each alternative,
       to temporarily move the current position back by the  fixed  width  and
       then try to match. If there are insufficient characters before the cur‐
       rent position, the match is deemed to fail.

       PCRE does not allow the \C escape (which matches a single byte in UTF-8
       mode)  to appear in lookbehind assertions, because it makes it impossi‐
       ble to calculate the length of the lookbehind. The \X escape, which can
       match different numbers of bytes, is also not permitted.

       Atomic  groups can be used in conjunction with lookbehind assertions to
       specify efficient matching at the end of the subject string. Consider a
       simple pattern such as

	 abcd$

       when  applied  to  a  long string that does not match. Because matching
       proceeds from left to right, PCRE will look for each "a" in the subject
       and  then  see  if what follows matches the rest of the pattern. If the
       pattern is specified as

	 ^.*abcd$

       the initial .* matches the entire string at first, but when this	 fails
       (because there is no following "a"), it backtracks to match all but the
       last character, then all but the last two characters, and so  on.  Once
       again  the search for "a" covers the entire string, from right to left,
       so we are no better off. However, if the pattern is written as

	 ^(?>.*)(?<=abcd)

       or, equivalently, using the possessive quantifier syntax,

	 ^.*+(?<=abcd)

       there can be no backtracking for the .* item; it	 can  match  only  the
       entire  string.	The subsequent lookbehind assertion does a single test
       on the last four characters. If it fails, the match fails  immediately.
       For  long  strings, this approach makes a significant difference to the
       processing time.

   Using multiple assertions

       Several assertions (of any sort) may occur in succession. For example,

	 (?<=\d{3})(?<!999)foo

       matches "foo" preceded by three digits that are not "999". Notice  that
       each  of	 the  assertions is applied independently at the same point in
       the subject string. First there is a  check  that  the  previous	 three
       characters  are	all  digits,  and  then there is a check that the same
       three characters are not "999".	This pattern does not match "foo" pre‐
       ceded  by  six  characters,  the first of which are digits and the last
       three of which are not "999". For example, it  doesn't  match  "123abc‐
       foo". A pattern to do that is

	 (?<=\d{3}...)(?<!999)foo

       This  time  the	first assertion looks at the preceding six characters,
       checking that the first three are digits, and then the second assertion
       checks that the preceding three characters are not "999".

       Assertions can be nested in any combination. For example,

	 (?<=(?<!foo)bar)baz

       matches	an occurrence of "baz" that is preceded by "bar" which in turn
       is not preceded by "foo", while

	 (?<=\d{3}(?!999)...)foo

       is another pattern that matches "foo" preceded by three digits and  any
       three characters that are not "999".

CONDITIONAL SUBPATTERNS

       It  is possible to cause the matching process to obey a subpattern con‐
       ditionally or to choose between two alternative subpatterns,  depending
       on  the result of an assertion, or whether a previous capturing subpat‐
       tern matched or not. The two possible forms of  conditional  subpattern
       are

	 (?(condition)yes-pattern)
	 (?(condition)yes-pattern|no-pattern)

       If  the	condition is satisfied, the yes-pattern is used; otherwise the
       no-pattern (if present) is used. If there are more  than	 two  alterna‐
       tives in the subpattern, a compile-time error occurs.

       There are three kinds of condition. If the text between the parentheses
       consists of a sequence of digits, the condition	is  satisfied  if  the
       capturing  subpattern of that number has previously matched. The number
       must be greater than zero. Consider the following pattern,  which  con‐
       tains  non-significant white space to make it more readable (assume the
       PCRE_EXTENDED option) and to divide it into three  parts	 for  ease  of
       discussion:

	 ( \( )?    [^()]+    (?(1) \) )

       The  first  part	 matches  an optional opening parenthesis, and if that
       character is present, sets it as the first captured substring. The sec‐
       ond  part  matches one or more characters that are not parentheses. The
       third part is a conditional subpattern that tests whether the first set
       of parentheses matched or not. If they did, that is, if subject started
       with an opening parenthesis, the condition is true, and so the yes-pat‐
       tern  is	 executed  and	a  closing parenthesis is required. Otherwise,
       since no-pattern is not present, the  subpattern	 matches  nothing.  In
       other  words,  this  pattern  matches  a	 sequence  of non-parentheses,
       optionally enclosed in parentheses.

       If the condition is the string (R), it is satisfied if a recursive call
       to  the pattern or subpattern has been made. At "top level", the condi‐
       tion is false.  This  is	 a  PCRE  extension.  Recursive	 patterns  are
       described in the next section.

       If  the	condition  is  not  a sequence of digits or (R), it must be an
       assertion.  This may be a positive or negative lookahead or  lookbehind
       assertion.  Consider  this  pattern,  again  containing non-significant
       white space, and with the two alternatives on the second line:

	 (?(?=[^a-z]*[a-z])
	 \d{2}-[a-z]{3}-\d{2}  |  \d{2}-\d{2}-\d{2} )

       The condition  is  a  positive  lookahead  assertion  that  matches  an
       optional	 sequence of non-letters followed by a letter. In other words,
       it tests for the presence of at least one letter in the subject.	 If  a
       letter  is found, the subject is matched against the first alternative;
       otherwise it is	matched	 against  the  second.	This  pattern  matches
       strings	in  one	 of the two forms dd-aaa-dd or dd-dd-dd, where aaa are
       letters and dd are digits.

COMMENTS

       The sequence (?# marks the start of a comment that continues up to  the
       next  closing  parenthesis.  Nested  parentheses are not permitted. The
       characters that make up a comment play no part in the pattern  matching
       at all.

       If  the PCRE_EXTENDED option is set, an unescaped # character outside a
       character class introduces a comment that continues up to the next new‐
       line character in the pattern.

RECURSIVE PATTERNS

       Consider	 the problem of matching a string in parentheses, allowing for
       unlimited nested parentheses. Without the use of	 recursion,  the  best
       that  can  be  done  is	to use a pattern that matches up to some fixed
       depth of nesting. It is not possible to	handle	an  arbitrary  nesting
       depth.  Perl  provides  a  facility  that allows regular expressions to
       recurse (amongst other things). It does this by interpolating Perl code
       in the expression at run time, and the code can refer to the expression
       itself. A Perl pattern to solve the parentheses problem can be  created
       like this:

	 $re = qr{\( (?: (?>[^()]+) | (?p{$re}) )* \)}x;

       The (?p{...}) item interpolates Perl code at run time, and in this case
       refers recursively to the pattern in which it appears. Obviously,  PCRE
       cannot  support	the  interpolation  of Perl code. Instead, it supports
       some special syntax for recursion of the entire pattern, and  also  for
       individual subpattern recursion.

       The  special item that consists of (? followed by a number greater than
       zero and a closing parenthesis is a recursive call of the subpattern of
       the  given  number, provided that it occurs inside that subpattern. (If
       not, it is a "subroutine" call, which is described  in  the  next  sec‐
       tion.)  The special item (?R) is a recursive call of the entire regular
       expression.

       A recursive subpattern call is always treated as an atomic group.  That
       is,  once  it  has  matched some of the subject string, it is never re-
       entered, even if it contains untried alternatives and there is a subse‐
       quent matching failure.

       This  PCRE  pattern  solves  the nested parentheses problem (assume the
       PCRE_EXTENDED option is set so that white space is ignored):

	 \( ( (?>[^()]+) | (?R) )* \)

       First it matches an opening parenthesis. Then it matches any number  of
       substrings  which  can  either  be  a sequence of non-parentheses, or a
       recursive match of the pattern itself (that is, a  correctly  parenthe‐
       sized substring).  Finally there is a closing parenthesis.

       If  this	 were  part of a larger pattern, you would not want to recurse
       the entire pattern, so instead you could use this:

	 ( \( ( (?>[^()]+) | (?1) )* \) )

       We have put the pattern into parentheses, and caused the	 recursion  to
       refer  to them instead of the whole pattern. In a larger pattern, keep‐
       ing track of parenthesis numbers can be tricky. It may be  more	conve‐
       nient  to use named parentheses instead. For this, PCRE uses (?P>name),
       which is an extension to the Python syntax that	PCRE  uses  for	 named
       parentheses (Perl does not provide named parentheses). We could rewrite
       the above example as follows:

	 (?P<pn> \( ( (?>[^()]+) | (?P>pn) )* \) )

       This particular example pattern contains nested unlimited repeats,  and
       so  the	use of atomic grouping for matching strings of non-parentheses
       is important when applying the pattern to strings that  do  not	match.
       For example, when this pattern is applied to

	 (aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa()

       it  yields "no match" quickly. However, if atomic grouping is not used,
       the match runs for a very long time indeed because there	 are  so  many
       different  ways	the  + and * repeats can carve up the subject, and all
       have to be tested before failure can be reported.

       At the end of a match, the values set for any capturing subpatterns are
       those from the outermost level of the recursion at which the subpattern
       value is set.  If you want to obtain  intermediate  values,  a  callout
       function can be used (see the next section and the pcrecallout documen‐
       tation). If the pattern above is matched against

	 (ab(cd)ef)

       the value for the capturing parentheses is  "ef",  which	 is  the  last
       value  taken  on at the top level. If additional parentheses are added,
       giving

	 \( ( ( (?>[^()]+) | (?R) )* ) \)
	    ^			     ^
	    ^			     ^

       the string they capture is "ab(cd)ef", the contents of  the  top	 level
       parentheses.  If there are more than 15 capturing parentheses in a pat‐
       tern, PCRE has to obtain extra memory to store data during a recursion,
       which  it  does	by  using pcre_malloc, freeing it via pcre_free after‐
       wards. If  no  memory  can  be  obtained,  the  match  fails  with  the
       PCRE_ERROR_NOMEMORY error.

       Do  not	confuse	 the (?R) item with the condition (R), which tests for
       recursion.  Consider this pattern, which matches text in	 angle	brack‐
       ets,  allowing for arbitrary nesting. Only digits are allowed in nested
       brackets (that is, when recursing), whereas any characters are  permit‐
       ted at the outer level.

	 < (?: (?(R) \d++  | [^<>]*+) | (?R)) * >

       In  this	 pattern, (?(R) is the start of a conditional subpattern, with
       two different alternatives for the recursive and	 non-recursive	cases.
       The (?R) item is the actual recursive call.

SUBPATTERNS AS SUBROUTINES

       If the syntax for a recursive subpattern reference (either by number or
       by name) is used outside the parentheses to which it refers,  it	 oper‐
       ates  like  a  subroutine in a programming language. An earlier example
       pointed out that the pattern

	 (sens|respons)e and \1ibility

       matches "sense and sensibility" and "response and responsibility",  but
       not "sense and responsibility". If instead the pattern

	 (sens|respons)e and (?1)ibility

       is  used, it does match "sense and responsibility" as well as the other
       two strings. Such references must, however, follow  the	subpattern  to
       which they refer.

       Like recursive subpatterns, a "subroutine" call is always treated as an
       atomic group. That is, once it has matched some of the subject  string,
       it  is  never  re-entered, even if it contains untried alternatives and
       there is a subsequent matching failure.

CALLOUTS

       Perl has a feature whereby using the sequence (?{...}) causes arbitrary
       Perl  code to be obeyed in the middle of matching a regular expression.
       This makes it possible, amongst other things, to extract different sub‐
       strings that match the same pair of parentheses when there is a repeti‐
       tion.

       PCRE provides a similar feature, but of course it cannot obey arbitrary
       Perl code. The feature is called "callout". The caller of PCRE provides
       an external function by putting its entry point in the global  variable
       pcre_callout.   By default, this variable contains NULL, which disables
       all calling out.

       Within a regular expression, (?C) indicates the	points	at  which  the
       external	 function  is  to be called. If you want to identify different
       callout points, you can put a number less than 256 after the letter  C.
       The  default  value is zero.  For example, this pattern has two callout
       points:

	 (?C1)abc(?C2)def

       If the PCRE_AUTO_CALLOUT flag is passed to pcre_compile(), callouts are
       automatically  installed	 before each item in the pattern. They are all
       numbered 255.

       During matching, when PCRE reaches a callout point (and pcre_callout is
       set),  the  external function is called. It is provided with the number
       of the callout, the position in the pattern, and, optionally, one  item
       of  data	 originally supplied by the caller of pcre_exec(). The callout
       function may cause matching to proceed, to backtrack, or to fail	 alto‐
       gether. A complete description of the interface to the callout function
       is given in the pcrecallout documentation.

Last updated: 24 January 2006
Copyright (c) 1997-2006 University of Cambridge.

								PCREPATTERN(3)
[top]

List of man pages available for YellowDog

Copyright (c) for man pages and the logo by the respective OS vendor.

For those who want to learn more, the polarhome community provides shell access and support.

[legal] [privacy] [GNU] [policy] [cookies] [netiquette] [sponsors] [FAQ]
Tweet
Polarhome, production since 1999.
Member of Polarhome portal.
Based on Fawad Halim's script.
....................................................................
Vote for polarhome
Free Shell Accounts :: the biggest list on the net