pcunmbr man page on DragonFly

Man page or keyword search:  
man Server   44335 pages
apropos Keyword Search (all sections)
Output format
DragonFly logo
[printable version]

PCUNMBR(l)			       )			    PCUNMBR(l)

NAME
       PCUNMBR	-  VECT = 'Q', PCUNMBR overwrites the general complex distrib‐
       uted M-by-N matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with  SIDE	=  'L'
       SIDE = 'R' TRANS = 'N'

SYNOPSIS
       SUBROUTINE PCUNMBR( VECT,  SIDE, TRANS, M, N, K, A, IA, JA, DESCA, TAU,
			   C, IC, JC, DESCC, WORK, LWORK, INFO )

	   CHARACTER	   SIDE, TRANS, VECT

	   INTEGER	   IA, IC, INFO, JA, JC, K, LWORK, M, N

	   INTEGER	   DESCA( * ), DESCC( * )

	   COMPLEX	   A( * ), C( * ), TAU( * ), WORK( * )

PURPOSE
       If VECT = 'Q', PCUNMBR overwrites the general complex distributed M-by-
       N  matrix  sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with SIDE = 'L' SIDE = 'R'
       TRANS = 'N': Q * sub( C ) sub( C ) * Q TRANS = 'C':	Q**H * sub(  C
       )       sub( C ) * Q**H

       If VECT = 'P', PCUNMBR overwrites sub( C ) with

			    SIDE = 'L'		 SIDE = 'R'
       TRANS = 'N':	 P * sub( C )	       sub( C ) * P
       TRANS = 'C':	 P**H * sub( C )       sub( C ) * P**H

       Here  Q	and  P**H  are	the unitary distributed matrices determined by
       PCGEBRD when reducing a	complex	 distributed  matrix  A(IA:*,JA:*)  to
       bidiagonal form: A(IA:*,JA:*) = Q * B * P**H. Q and P**H are defined as
       products of elementary reflectors H(i) and G(i) respectively.

       Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the order
       of the unitary matrix Q or P**H that is applied.

       If VECT = 'Q', A(IA:*,JA:*) is assumed to have been an NQ-by-K matrix:
       if nq >= k, Q = H(1) H(2) . . . H(k);
       if nq < k, Q = H(1) H(2) . . . H(nq-1).

       If VECT = 'P', A(IA:*,JA:*) is assumed to have been a K-by-NQ matrix:
       if k < nq, P = G(1) G(2) . . . G(k);
       if k >= nq, P = G(1) G(2) . . . G(nq-1).

       Notes
       =====

       Each  global data object is described by an associated description vec‐
       tor.  This vector stores the information required to establish the map‐
       ping between an object element and its corresponding process and memory
       location.

       Let A be a generic term for any 2D block	 cyclicly  distributed	array.
       Such a global array has an associated description vector DESCA.	In the
       following comments, the character _ should be read as  "of  the	global
       array".

       NOTATION	       STORED IN      EXPLANATION
       ---------------	--------------	--------------------------------------
       DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
				      DTYPE_A = 1.
       CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
				      the BLACS process grid A is distribu-
				      ted over. The context itself is glo-
				      bal, but the handle (the integer
				      value) may vary.
       M_A    (global) DESCA( M_ )    The number of rows in the global
				      array A.
       N_A    (global) DESCA( N_ )    The number of columns in the global
				      array A.
       MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
				      the rows of the array.
       NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
				      the columns of the array.
       RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
				      row  of  the  array  A  is  distributed.
       CSRC_A (global) DESCA( CSRC_ ) The process column over which the
				      first column of the array A is
				      distributed.
       LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
				      array.  LLD_A >= MAX(1,LOCr(M_A)).

       Let  K  be  the	number of rows or columns of a distributed matrix, and
       assume that its process grid has dimension p x q.
       LOCr( K ) denotes the number of elements of  K  that  a	process	 would
       receive	if K were distributed over the p processes of its process col‐
       umn.
       Similarly, LOCc( K ) denotes the number of elements of K that a process
       would receive if K were distributed over the q processes of its process
       row.
       The values of LOCr() and LOCc() may be determined via  a	 call  to  the
       ScaLAPACK tool function, NUMROC:
	       LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
	       LOCc(  N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).  An upper
       bound for these quantities may be computed by:
	       LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
	       LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A

ARGUMENTS
       VECT    (global input) CHARACTER
	       = 'Q': apply Q or Q**H;
	       = 'P': apply P or P**H.

       SIDE    (global input) CHARACTER
	       = 'L': apply Q, Q**H, P or P**H from the Left;
	       = 'R': apply Q, Q**H, P or P**H from the Right.

       TRANS   (global input) CHARACTER
	       = 'N':  No transpose, apply Q or P;
	       = 'C':  Conjugate transpose, apply Q**H or P**H.

       M       (global input) INTEGER
	       The number of rows to be operated on i.e the number of rows  of
	       the distributed submatrix sub( C ). M >= 0.

       N       (global input) INTEGER
	       The  number of columns to be operated on i.e the number of col‐
	       umns of the distributed submatrix sub( C ). N >= 0.

       K       (global input) INTEGER
	       If VECT = 'Q', the number of columns in the  original  distrib‐
	       uted  matrix  reduced by PCGEBRD.  If VECT = 'P', the number of
	       rows in the original distributed matrix reduced by PCGEBRD.   K
	       >= 0.

       A       (local input) COMPLEX pointer into the local memory
	       to   an	array  of  dimension  (LLD_A,LOCc(JA+MIN(NQ,K)-1))  if
	       VECT='Q', and (LLD_A,LOCc(JA+NQ-1)) if VECT = 'P'. NQ  =	 M  if
	       SIDE  = 'L', and NQ = N otherwise. The vectors which define the
	       elementary reflectors H(i) and G(i), whose  products  determine
	       the  matrices  Q and P, as returned by PCGEBRD.	If VECT = 'Q',
	       LLD_A  >=  max(1,LOCr(IA+NQ-1));	 if  VECT  =  'P',  LLD_A   >=
	       max(1,LOCr(IA+MIN(NQ,K)-1)).

       IA      (global input) INTEGER
	       The row index in the global array A indicating the first row of
	       sub( A ).

       JA      (global input) INTEGER
	       The column index in the global array  A	indicating  the	 first
	       column of sub( A ).

       DESCA   (global and local input) INTEGER array of dimension DLEN_.
	       The array descriptor for the distributed matrix A.

       TAU     (local input) COMPLEX array, dimension
	       LOCc(JA+MIN(NQ,K)-1)  if	 VECT  =  'Q', LOCr(IA+MIN(NQ,K)-1) if
	       VECT = 'P', TAU(i) must contain the scalar factor of  the  ele‐
	       mentary	 reflector  H(i)  or G(i), which determines Q or P, as
	       returned by PDGEBRD in its array argument TAUQ or TAUP.	TAU is
	       tied to the distributed matrix A.

       C       (local input/local output) COMPLEX pointer into the
	       local memory to an array of dimension (LLD_C,LOCc(JC+N-1)).  On
	       entry, the local pieces of the distributed matrix  sub(C).   On
	       exit,  if  VECT='Q',  sub(  C ) is overwritten by Q*sub( C ) or
	       Q'*sub( C ) or sub( C )*Q' or sub( C )*Q; if VECT='P, sub( C  )
	       is  overwritten	by  P*sub( C ) or P'*sub( C ) or sub( C )*P or
	       sub( C )*P'.

       IC      (global input) INTEGER
	       The row index in the global array C indicating the first row of
	       sub( C ).

       JC      (global input) INTEGER
	       The  column  index  in  the global array C indicating the first
	       column of sub( C ).

       DESCC   (global and local input) INTEGER array of dimension DLEN_.
	       The array descriptor for the distributed matrix C.

       WORK    (local workspace/local output) COMPLEX array,
	       dimension (LWORK) On exit,  WORK(1)  returns  the  minimal  and
	       optimal LWORK.

       LWORK   (local or global input) INTEGER
	       The dimension of the array WORK.	 LWORK is local input and must
	       be at least If SIDE = 'L', NQ = M; if( (VECT = 'Q' and NQ >= K)
	       or  (VECT  <>  'Q'  and	NQ > K) ), IAA=IA; JAA=JA; MI=M; NI=N;
	       ICC=IC; JCC=JC; else IAA=IA+1; JAA=JA; MI=M-1; NI=N;  ICC=IC+1;
	       JCC=JC;	end if else if SIDE = 'R', NQ = N; if( (VECT = 'Q' and
	       NQ >= K) or (VECT <> 'Q' and NQ > K) ), IAA=IA;	JAA=JA;	 MI=M;
	       NI=N;  ICC=IC;  JCC=JC;	else  IAA=IA;  JAA=JA+1; MI=M; NI=N-1;
	       ICC=IC; JCC=JC+1; end if end if

	       If VECT = 'Q', If SIDE = 'L', LWORK >= MAX(  (NB_A*(NB_A-1))/2,
	       (NqC0 + MpC0)*NB_A ) + NB_A * NB_A else if SIDE = 'R', LWORK >=
	       MAX( (NB_A*(NB_A-1))/2, ( NqC0 + MAX( NpA0  +  NUMROC(  NUMROC(
	       NI+ICOFFC,  NB_A,  0,  0,  NPCOL	 ), NB_A, 0, 0, LCMQ ), MpC0 )
	       )*NB_A ) + NB_A * NB_A end if else if VECT <> 'Q',  if  SIDE  =
	       'L', LWORK >= MAX( (MB_A*(MB_A-1))/2, ( MpC0 + MAX( MqA0 + NUM‐
	       ROC( NUMROC( MI+IROFFC, MB_A, 0, 0, NPROW ), MB_A, 0,  0,  LCMP
	       ),  NqC0	 ) )*MB_A ) + MB_A * MB_A else if SIDE = 'R', LWORK >=
	       MAX( (MB_A*(MB_A-1))/2, (MpC0 + NqC0)*MB_A ) + MB_A * MB_A  end
	       if end if

	       where  LCMP = LCM / NPROW, LCMQ = LCM / NPCOL, with LCM = ICLM(
	       NPROW, NPCOL ),

	       IROFFA = MOD( IAA-1, MB_A ), ICOFFA = MOD( JAA-1, NB_A ), IAROW
	       =  INDXG2P( IAA, MB_A, MYROW, RSRC_A, NPROW ), IACOL = INDXG2P(
	       JAA, NB_A, MYCOL, CSRC_A, NPCOL ), MqA0	=  NUMROC(  MI+ICOFFA,
	       NB_A,  MYCOL,  IACOL,  NPCOL ), NpA0 = NUMROC( NI+IROFFA, MB_A,
	       MYROW, IAROW, NPROW ),

	       IROFFC = MOD( ICC-1, MB_C ), ICOFFC = MOD( JCC-1, NB_C ), ICROW
	       =  INDXG2P( ICC, MB_C, MYROW, RSRC_C, NPROW ), ICCOL = INDXG2P(
	       JCC, NB_C, MYCOL, CSRC_C, NPCOL ), MpC0	=  NUMROC(  MI+IROFFC,
	       MB_C,  MYROW,  ICROW,  NPROW ), NqC0 = NUMROC( NI+ICOFFC, NB_C,
	       MYCOL, ICCOL, NPCOL ),

	       INDXG2P and NUMROC are ScaLAPACK tool functions; MYROW,	MYCOL,
	       NPROW  and  NPCOL  can  be determined by calling the subroutine
	       BLACS_GRIDINFO.

	       If LWORK = -1, then LWORK is global input and a workspace query
	       is assumed; the routine only calculates the minimum and optimal
	       size for all work arrays. Each of these values is  returned  in
	       the  first  entry of the corresponding work array, and no error
	       message is issued by PXERBLA.

       INFO    (global output) INTEGER
	       = 0:  successful exit
	       < 0:  If the i-th argument is an array and the j-entry  had  an
	       illegal	value, then INFO = -(i*100+j), if the i-th argument is
	       a scalar and had an illegal value, then INFO = -i.

	       Alignment requirements ======================

	       The    distributed    submatrices     A(IA:*,	 JA:*)	   and
	       C(IC:IC+M-1,JC:JC+N-1)  must  verify some alignment properties,
	       namely the following expressions should be true:

	       If  VECT	 =  'Q',  If  SIDE  =  'L',   (	  MB_A.EQ.MB_C	 .AND.
	       IROFFA.EQ.IROFFC	 .AND.	IAROW.EQ.ICROW	)  If  SIDE  =	'R', (
	       MB_A.EQ.NB_C .AND. IROFFA.EQ.ICOFFC ) else If  SIDE  =  'L',  (
	       MB_A.EQ.MB_C   .AND.  ICOFFA.EQ.IROFFC  )  If  SIDE  =  'R',  (
	       NB_A.EQ.NB_C .AND. ICOFFA.EQ.ICOFFC .AND. IACOL.EQ.ICCOL )  end
	       if

ScaLAPACK version 1.7		13 August 2001			    PCUNMBR(l)
[top]

List of man pages available for DragonFly

Copyright (c) for man pages and the logo by the respective OS vendor.

For those who want to learn more, the polarhome community provides shell access and support.

[legal] [privacy] [GNU] [policy] [cookies] [netiquette] [sponsors] [FAQ]
Tweet
Polarhome, production since 1999.
Member of Polarhome portal.
Based on Fawad Halim's script.
....................................................................
Vote for polarhome
Free Shell Accounts :: the biggest list on the net