pdlarzb man page on DragonFly

Man page or keyword search:  
man Server   44335 pages
apropos Keyword Search (all sections)
Output format
DragonFly logo
[printable version]

PDLARZB(l)			       )			    PDLARZB(l)

NAME
       PDLARZB	-  applie  a real block reflector Q or its transpose Q**T to a
       real distributed M-by-N matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1)

SYNOPSIS
       SUBROUTINE PDLARZB( SIDE, TRANS, DIRECT, STOREV, M, N, K, L, V, IV, JV,
			   DESCV, T, C, IC, JC, DESCC, WORK )

	   CHARACTER	   DIRECT, SIDE, STOREV, TRANS

	   INTEGER	   IC, IV, JC, JV, K, L, M, N

	   INTEGER	   DESCC( * ), DESCV( * )

	   DOUBLE	   PRECISION C( * ), T( * ), V( * ), WORK( * )

PURPOSE
       PDLARZB	applies	 a  real  block reflector Q or its transpose Q**T to a
       real distributed M-by-N matrix sub( C ) =  C(IC:IC+M-1,JC:JC+N-1)  from
       the left or the right.

       Q is a product of k elementary reflectors as returned by PDTZRZF.

       Currently, only STOREV = 'R' and DIRECT = 'B' are supported.

       Notes
       =====

       Each  global data object is described by an associated description vec‐
       tor.  This vector stores the information required to establish the map‐
       ping between an object element and its corresponding process and memory
       location.

       Let A be a generic term for any 2D block	 cyclicly  distributed	array.
       Such a global array has an associated description vector DESCA.	In the
       following comments, the character _ should be read as  "of  the	global
       array".

       NOTATION	       STORED IN      EXPLANATION
       ---------------	--------------	--------------------------------------
       DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
				      DTYPE_A = 1.
       CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
				      the BLACS process grid A is distribu-
				      ted over. The context itself is glo-
				      bal, but the handle (the integer
				      value) may vary.
       M_A    (global) DESCA( M_ )    The number of rows in the global
				      array A.
       N_A    (global) DESCA( N_ )    The number of columns in the global
				      array A.
       MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
				      the rows of the array.
       NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
				      the columns of the array.
       RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
				      row  of  the  array  A  is  distributed.
       CSRC_A (global) DESCA( CSRC_ ) The process column over which the
				      first column of the array A is
				      distributed.
       LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
				      array.  LLD_A >= MAX(1,LOCr(M_A)).

       Let  K  be  the	number of rows or columns of a distributed matrix, and
       assume that its process grid has dimension p x q.
       LOCr( K ) denotes the number of elements of  K  that  a	process	 would
       receive	if K were distributed over the p processes of its process col‐
       umn.
       Similarly, LOCc( K ) denotes the number of elements of K that a process
       would receive if K were distributed over the q processes of its process
       row.
       The values of LOCr() and LOCc() may be determined via  a	 call  to  the
       ScaLAPACK tool function, NUMROC:
	       LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
	       LOCc(  N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).  An upper
       bound for these quantities may be computed by:
	       LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
	       LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A

ARGUMENTS
       SIDE    (global input) CHARACTER
	       = 'L': apply Q or Q**T from the Left;
	       = 'R': apply Q or Q**T from the Right.

       TRANS   (global input) CHARACTER
	       = 'N':  No transpose, apply Q;
	       = 'T':  Transpose, apply Q**T.

       DIRECT  (global input) CHARACTER
	       Indicates how H is formed from a product of elementary  reflec‐
	       tors  =	'F':  H = H(1) H(2) . . . H(k) (Forward, not supported
	       yet)
	       = 'B': H = H(k) . . . H(2) H(1) (Backward)

       STOREV  (global input) CHARACTER
	       Indicates how the vectors which define the  elementary  reflec‐
	       tors are stored:
	       = 'C': Columnwise			(not supported yet)
	       = 'R': Rowwise

       M       (global input) INTEGER
	       The  number of rows to be operated on i.e the number of rows of
	       the distributed submatrix sub( C ). M >= 0.

       N       (global input) INTEGER
	       The number of columns to be operated on i.e the number of  col‐
	       umns of the distributed submatrix sub( C ). N >= 0.

       K       (global input) INTEGER
	       The  order  of the matrix T (= the number of elementary reflec‐
	       tors whose product defines the block reflector).

       L       (global input) INTEGER
	       The columns of the distributed submatrix sub(  A	 )  containing
	       the  meaningful	part of the Householder reflectors.  If SIDE =
	       'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.

       V       (local input) DOUBLE PRECISION pointer into the local memory
	       to an array of dimension (LLD_V, LOCc(JV+M-1)) if SIDE  =  'L',
	       (LLD_V,	LOCc(JV+N-1))  if  SIDE	 =  'R'. It contains the local
	       pieces of the distributed vectors  V  representing  the	House‐
	       holder	transformation	as  returned  by  PDTZRZF.   LLD_V  >=
	       LOCr(IV+K-1).

       IV      (global input) INTEGER
	       The row index in the global array V indicating the first row of
	       sub( V ).

       JV      (global input) INTEGER
	       The  column  index  in  the global array V indicating the first
	       column of sub( V ).

       DESCV   (global and local input) INTEGER array of dimension DLEN_.
	       The array descriptor for the distributed matrix V.

       T       (local input) DOUBLE PRECISION array, dimension MB_V by MB_V
	       The lower triangular matrix T  in  the  representation  of  the
	       block reflector.

       C       (local input/local output) DOUBLE PRECISION pointer into the
	       local memory to an array of dimension (LLD_C,LOCc(JC+N-1)).  On
	       entry, the M-by-N distributed matrix sub( C ). On exit, sub(  C
	       )  is overwritten by Q*sub( C ) or Q'*sub( C ) or sub( C )*Q or
	       sub( C )*Q'.

       IC      (global input) INTEGER
	       The row index in the global array C indicating the first row of
	       sub( C ).

       JC      (global input) INTEGER
	       The  column  index  in  the global array C indicating the first
	       column of sub( C ).

       DESCC   (global and local input) INTEGER array of dimension DLEN_.
	       The array descriptor for the distributed matrix C.

       WORK    (local workspace) DOUBLE PRECISION array, dimension (LWORK)
	       If STOREV = 'C', if SIDE = 'L', LWORK >= ( NqC0 + MpC0  )  *  K
	       else  if SIDE = 'R', LWORK >= ( NqC0 + MAX( NpV0 + NUMROC( NUM‐
	       ROC( N+ICOFFC, NB_V, 0, 0, NPCOL ), NB_V, 0, 0, LCMQ ), MpC0  )
	       )  *  K	end if else if STOREV = 'R', if SIDE = 'L', LWORK >= (
	       MpC0 + MAX( MqV0 + NUMROC( NUMROC( M+IROFFC, MB_V, 0, 0,	 NPROW
	       ),  MB_V,  0, 0, LCMP ), NqC0 ) ) * K else if SIDE = 'R', LWORK
	       >= ( MpC0 + NqC0 ) * K end if end if

	       where LCMQ = LCM / NPCOL with LCM = ICLM( NPROW, NPCOL ),

	       IROFFV = MOD( IV-1, MB_V ), ICOFFV = MOD( JV-1, NB_V ), IVROW =
	       INDXG2P( IV, MB_V, MYROW, RSRC_V, NPROW ), IVCOL = INDXG2P( JV,
	       NB_V, MYCOL, CSRC_V, NPCOL ), MqV0 =  NUMROC(  M+ICOFFV,	 NB_V,
	       MYCOL,  IVCOL,  NPCOL  ), NpV0 = NUMROC( N+IROFFV, MB_V, MYROW,
	       IVROW, NPROW ),

	       IROFFC = MOD( IC-1, MB_C ), ICOFFC = MOD( JC-1, NB_C ), ICROW =
	       INDXG2P( IC, MB_C, MYROW, RSRC_C, NPROW ), ICCOL = INDXG2P( JC,
	       NB_C, MYCOL, CSRC_C, NPCOL ), MpC0 =  NUMROC(  M+IROFFC,	 MB_C,
	       MYROW,  ICROW,  NPROW  ), NpC0 = NUMROC( N+ICOFFC, MB_C, MYROW,
	       ICROW, NPROW ), NqC0 = NUMROC( N+ICOFFC,	 NB_C,	MYCOL,	ICCOL,
	       NPCOL ),

	       ILCM,  INDXG2P  and NUMROC are ScaLAPACK tool functions; MYROW,
	       MYCOL, NPROW and NPCOL can be determined by calling the subrou‐
	       tine BLACS_GRIDINFO.

	       Alignment requirements ======================

	       The     distributed     submatrices     V(IV:*,	  JV:*)	   and
	       C(IC:IC+M-1,JC:JC+N-1) must verify some	alignment  properties,
	       namely the following expressions should be true:

	       If STOREV = 'Columnwise' If SIDE = 'Left', ( MB_V.EQ.MB_C .AND.
	       IROFFV.EQ.IROFFC .AND. IVROW.EQ.ICROW ) If SIDE	=  'Right',  (
	       MB_V.EQ.NB_C  .AND.  IROFFV.EQ.ICOFFC  ) else if STOREV = 'Row‐
	       wise' If SIDE = 'Left', ( NB_V.EQ.MB_C .AND. ICOFFV.EQ.IROFFC )
	       If  SIDE = 'Right', ( NB_V.EQ.NB_C .AND. ICOFFV.EQ.ICOFFC .AND.
	       IVCOL.EQ.ICCOL ) end if

ScaLAPACK version 1.7		13 August 2001			    PDLARZB(l)
[top]

List of man pages available for DragonFly

Copyright (c) for man pages and the logo by the respective OS vendor.

For those who want to learn more, the polarhome community provides shell access and support.

[legal] [privacy] [GNU] [policy] [cookies] [netiquette] [sponsors] [FAQ]
Tweet
Polarhome, production since 1999.
Member of Polarhome portal.
Based on Fawad Halim's script.
....................................................................
Vote for polarhome
Free Shell Accounts :: the biggest list on the net