MATH-ELEM(2)MATH-ELEM(2)NAME
Math: cbrt, sqrt, pow, pow10, hypot, exp, expm1, log, log10, log1p,
cos, cosh, sin, sinh, tan, tanh, acos, asin, acosh, asinh, atan, atanh,
atan2, lgamma, erf, erfc, j0, j1, y0, y1, jn, yn - elementary functions
of applied mathematics
SYNOPSIS
include "math.m";
math := load Math Math->PATH;
cbrt, sqrt: fn(x: real): real;
pow: fn(x, y: real): real;
pow10: fn(p: int): real;
hypot: fn(x, y: real): real;
exp, expm1, log, log10, log1p: fn(x: real): real;
cos, cosh, sin, sinh, tan, tanh: fn(x: real): real;
acos, asin, acosh, asinh, atan, atanh: fn(x: real): real;
atan2: fn(y, x: real) of real;
lgamma: fn(x: real): (int,real);
erf, erfc: fn(x: real): real;
j0, j1, y0, y1: fn(x: real): real;
jn, yn: fn(n: int, x: real): real;
DESCRIPTION
These routines implement the basic elementary functions of applied
mathematics.
Sqrt(x) computes the square root of x, cbrt(x) the cube root. Pow(x,y)
computes x raised to the exponent y; pow10 raises 10 to the integer
power n. Hypot(x,y) computes sqrt(x*x+y*y).
Exp(x) returns the exponential function of x, and expm1(x) is exp(x)-1.
Log(x) returns the natural logarithm of x, while log10(x) returns the
logarithm base 10 and log1p(x) returns the logarithm of 1+x.
The trigonometric functions use radians. The ranges of the inverse
functions are: acos in [0,π]; asin in [-π/2,π/2]; atan in [-π/2,π/2];
and atan2(y,x) = arctan(y/x) in [-π,π];
The gamma function is implemented by lgamma(x); the tuple it returns,
say (s,lg), encodes the gamma function by Γ(x) = s*exp(lg).
The hyperbolic trigonometric functions sinh etc. behave as expected.
Erf is the error function and erfc(x) is 1-erf(x).
The Bessel functions are computed by j0, j1, jn, y0, y1, and yn.
SOURCE
/libinterp/math.c
SEE ALSOmath-intro(2)MATH-ELEM(2)