zshall man page on SuSE

Man page or keyword search:  
man Server   14857 pages
apropos Keyword Search (all sections)
Output format
SuSE logo
[printable version]

ZSHALL(1)							     ZSHALL(1)

NAME
       zshall - the Z shell meta-man page

OVERVIEW
       Because	zsh contains many features, the zsh manual has been split into
       a number of sections.  This manual page includes all the separate  man‐
       ual pages in the following order:

       zshroadmap   Informal introduction to the manual
       zshmisc	    Anything not fitting into the other sections
       zshexpn	    Zsh command and parameter expansion
       zshparam	    Zsh parameters
       zshoptions   Zsh options
       zshbuiltins  Zsh built-in functions
       zshzle	    Zsh command line editing
       zshcompwid   Zsh completion widgets
       zshcompsys   Zsh completion system
       zshcompctl   Zsh completion control
       zshmodules   Zsh loadable modules
       zshcalsys    Zsh built-in calendar functions
       zshtcpsys    Zsh built-in TCP functions
       zshzftpsys   Zsh built-in FTP client
       zshcontrib   Additional zsh functions and utilities

DESCRIPTION
       Zsh  is	a  UNIX	 command  interpreter (shell) usable as an interactive
       login shell and as a shell script command processor.  Of	 the  standard
       shells,	zsh most closely resembles ksh but includes many enhancements.
       Zsh has command line editing, builtin spelling correction, programmable
       command completion, shell functions (with autoloading), a history mech‐
       anism, and a host of other features.

AUTHOR
       Zsh was originally written by Paul Falstad <pf@zsh.org>.	  Zsh  is  now
       maintained  by  the  members of the zsh-workers mailing list <zsh-work‐
       ers@sunsite.dk>.	 The development is  currently	coordinated  by	 Peter
       Stephenson <pws@zsh.org>.  The coordinator can be contacted at <coordi‐
       nator@zsh.org>, but matters relating to the code should generally go to
       the mailing list.

AVAILABILITY
       Zsh  is available from the following anonymous FTP sites.  These mirror
       sites are kept frequently up to date.  The sites marked with (H) may be
       mirroring ftp.cs.elte.hu instead of the primary site.

       Primary site
	      ftp://ftp.zsh.org/pub/zsh/
	      http://www.zsh.org/pub/zsh/

       Australia
	      ftp://ftp.zsh.org/pub/zsh/
	      http://www.zsh.org/pub/zsh/

       Denmark
	      ftp://sunsite.dk/pub/unix/shells/zsh/

       Finland
	      ftp://ftp.funet.fi/pub/unix/shells/zsh/

       Germany
	      ftp://ftp.fu-berlin.de/pub/unix/shells/zsh/  (H)
	      ftp://ftp.gmd.de/packages/zsh/
	      ftp://ftp.uni-trier.de/pub/unix/shell/zsh/

       Hungary
	      ftp://ftp.cs.elte.hu/pub/zsh/
	      http://www.cs.elte.hu/pub/zsh/
	      ftp://ftp.kfki.hu/pub/packages/zsh/

       Israel
	      ftp://ftp.math.technion.ac.il/pub/zsh/
	      http://www.math.technion.ac.il/pub/zsh/

       Japan
	      ftp://ftp.win.ne.jp/pub/shell/zsh/

       Korea
	      ftp://linux.sarang.net/mirror/system/shell/zsh/

       Netherlands
	      ftp://ftp.demon.nl/pub/mirrors/zsh/

       Norway
	      ftp://ftp.uit.no/pub/unix/shells/zsh/

       Poland
	      ftp://sunsite.icm.edu.pl/pub/unix/shells/zsh/

       Romania
	      ftp://ftp.roedu.net/pub/mirrors/ftp.zsh.org/pub/zsh/
	      ftp://ftp.kappa.ro/pub/mirrors/ftp.zsh.org/pub/zsh/

       Slovenia
	      ftp://ftp.siol.net/mirrors/zsh/

       Sweden
	      ftp://ftp.lysator.liu.se/pub/unix/zsh/

       UK
	      ftp://ftp.net.lut.ac.uk/zsh/
	      ftp://sunsite.org.uk/packages/zsh/

       USA
	      http://zsh.open-mirror.com/

       The  up-to-date source code is available via anonymous CVS from Source‐
       forge.  See http://sourceforge.net/projects/zsh/ for details.

MAILING LISTS
       Zsh has 3 mailing lists:

       <zsh-announce@sunsite.dk>
	      Announcements about releases, major changes in the shell and the
	      monthly posting of the Zsh FAQ.  (moderated)

       <zsh-users@sunsite.dk>
	      User discussions.

       <zsh-workers@sunsite.dk>
	      Hacking, development, bug reports and patches.

       To subscribe or unsubscribe, send mail to the associated administrative
       address for the mailing list.

       <zsh-announce-subscribe@sunsite.dk>
       <zsh-users-subscribe@sunsite.dk>
       <zsh-workers-subscribe@sunsite.dk>
       <zsh-announce-unsubscribe@sunsite.dk>
       <zsh-users-unsubscribe@sunsite.dk>
       <zsh-workers-unsubscribe@sunsite.dk>

       YOU ONLY NEED TO JOIN ONE OF THE MAILING LISTS AS THEY ARE NESTED.  All
       submissions  to	zsh-announce are automatically forwarded to zsh-users.
       All submissions to zsh-users are automatically forwarded	 to  zsh-work‐
       ers.

       If  you	have  problems subscribing/unsubscribing to any of the mailing
       lists, send mail to <listmaster@zsh.org>.  The mailing lists are	 main‐
       tained by Karsten Thygesen <karthy@kom.auc.dk>.

       The  mailing  lists  are archived; the archives can be accessed via the
       administrative addresses listed above.  There is also a	hypertext  ar‐
       chive,	maintained   by	  Geoff	  Wing	 <gcw@zsh.org>,	 available  at
       http://www.zsh.org/mla/.

THE ZSH FAQ
       Zsh has a list of Frequently Asked Questions (FAQ), maintained by Peter
       Stephenson  <pws@zsh.org>.   It	is  regularly  posted to the newsgroup
       comp.unix.shell and the zsh-announce mailing list.  The latest  version
       can    be    found   at	 any   of   the	  Zsh	FTP   sites,   or   at
       http://www.zsh.org/FAQ/.	 The contact address for  FAQ-related  matters
       is <faqmaster@zsh.org>.

THE ZSH WEB PAGE
       Zsh  has	 a  web page which is located at http://www.zsh.org/.  This is
       maintained by Karsten Thygesen <karthy@zsh.org>,	 of  SunSITE  Denmark.
       The contact address for web-related matters is <webmaster@zsh.org>.

THE ZSH USERGUIDE
       A  userguide is currently in preparation.  It is intended to complement
       the manual, with explanations and hints on issues where the manual  can
       be cabbalistic, hierographic, or downright mystifying (for example, the
       word `hierographic' does not exist).  It can be viewed in  its  current
       state  at  http://zsh.sunsite.dk/Guide/.	 At the time of writing, chap‐
       ters dealing with startup files and their contents and the new  comple‐
       tion system were essentially complete.

THE ZSH WIKI
       A  `wiki'  website for zsh has been created at http://www.zshwiki.org/.
       This is a site which can be added to and	 modified  directly  by	 users
       without any special permission.	You can add your own zsh tips and con‐
       figurations.

INVOCATION OPTIONS
       The following flags are interpreted by the shell when invoked to deter‐
       mine where the shell will read commands from:

       -c     Take  the	 first	argument  as a command to execute, rather than
	      reading commands from a script or standard input.	 If  any  fur‐
	      ther  arguments  are  given,  the	 first	one is assigned to $0,
	      rather than being used as a positional parameter.

       -i     Force shell to be interactive.

       -s     Force shell to read commands from the standard input.  If the -s
	      flag is not present and an argument is given, the first argument
	      is taken to be the pathname of a script to execute.

       After the  first	 one  or  two  arguments  have	been  appropriated  as
       described above, the remaining arguments are assigned to the positional
       parameters.

       For further options,  which  are	 common	 to  invocation	 and  the  set
       builtin, see zshoptions(1).

       Options	may  be specified by name using the -o option.	-o acts like a
       single-letter option, but takes a following string as the option	 name.
       For example,

	      zsh -x -o shwordsplit scr

       runs  the  script  scr,	setting the XTRACE option by the corresponding
       letter `-x' and the SH_WORD_SPLIT  option  by  name.   Options  may  be
       turned  off  by	name  by using +o instead of -o.  -o can be stacked up
       with preceding single-letter options, so for example `-xo  shwordsplit'
       or `-xoshwordsplit' is equivalent to `-x -o shwordsplit'.

       Options	may  also  be  specified  by  name  in	GNU long option style,
       `--option-name'.	 When this is done, `-' characters in the option  name
       are permitted: they are translated into `_', and thus ignored.  So, for
       example, `zsh  --sh-word-split'	invokes	 zsh  with  the	 SH_WORD_SPLIT
       option  turned  on.   Like other option syntaxes, options can be turned
       off by replacing the initial `-' with a `+'; thus `+-sh-word-split'  is
       equivalent  to  `--no-sh-word-split'.   Unlike  other  option syntaxes,
       GNU-style long options cannot be stacked with any other options, so for
       example	`-x-shwordsplit'  is  an error, rather than being treated like
       `-x --shwordsplit'.

       The special GNU-style option `--version' is handled; it sends to	 stan‐
       dard  output  the shell's version information, then exits successfully.
       `--help' is also handled; it sends to standard output a list of options
       that can be used when invoking the shell, then exits successfully.

       Option  processing  may	be finished, allowing following arguments that
       start with `-' or `+' to be treated as normal arguments, in  two	 ways.
       Firstly,	 a lone `-' (or `+') as an argument by itself ends option pro‐
       cessing.	 Secondly, a special option `--' (or `+-'), which may be spec‐
       ified  on its own (which is the standard POSIX usage) or may be stacked
       with preceding options (so `-x-' is equivalent to  `-x  --').   Options
       are not permitted to be stacked after `--' (so `-x-f' is an error), but
       note the GNU-style option form discussed above,	where  `--shwordsplit'
       is permitted and does not end option processing.

       Except  when  the sh/ksh emulation single-letter options are in effect,
       the option `-b' (or `+b') ends option processing.  `-b' is  like	 `--',
       except that further single-letter options can be stacked after the `-b'
       and will take effect as normal.

COMPATIBILITY
       Zsh tries to emulate sh or ksh when it is invoked as sh or ksh  respec‐
       tively;	more  precisely,  it  looks at the first letter of the name by
       which it was invoked, excluding any initial `r' (assumed to  stand  for
       `restricted'),  and  if	that  is `s' or `k' it will emulate sh or ksh.
       Furthermore, if invoked as su (which happens on	certain	 systems  when
       the shell is executed by the su command), the shell will try to find an
       alternative name from the SHELL environment variable and perform emula‐
       tion based on that.

       In sh and ksh compatibility modes the following parameters are not spe‐
       cial and not initialized by the shell:  ARGC,  argv,  cdpath,  fignore,
       fpath,  HISTCHARS,  mailpath,  MANPATH,	manpath, path, prompt, PROMPT,
       PROMPT2, PROMPT3, PROMPT4, psvar, status, watch.

       The usual zsh startup/shutdown scripts are not executed.	 Login	shells
       source /etc/profile followed by $HOME/.profile.	If the ENV environment
       variable is set on  invocation,	$ENV  is  sourced  after  the  profile
       scripts.	 The value of ENV is subjected to parameter expansion, command
       substitution, and arithmetic expansion before being  interpreted	 as  a
       pathname.   Note	 that the PRIVILEGED option also affects the execution
       of startup files.

       The following options are set if the shell is invoked  as  sh  or  ksh:
       NO_BAD_PATTERN,	  NO_BANG_HIST,	   NO_BG_NICE,	 NO_EQUALS,   NO_FUNC‐
       TION_ARGZERO, GLOB_SUBST,  NO_GLOBAL_EXPORT,  NO_HUP,  INTERACTIVE_COM‐
       MENTS,  KSH_ARRAYS,  NO_MULTIOS, NO_NOMATCH, NO_NOTIFY, POSIX_BUILTINS,
       NO_PROMPT_PERCENT,    RM_STAR_SILENT,	SH_FILE_EXPANSION,    SH_GLOB,
       SH_OPTION_LETTERS,   SH_WORD_SPLIT.    Additionally  the	 BSD_ECHO  and
       IGNORE_BRACES options are set if zsh  is	 invoked  as  sh.   Also,  the
       KSH_OPTION_PRINT,  LOCAL_OPTIONS,  PROMPT_BANG,	PROMPT_SUBST  and SIN‐
       GLE_LINE_ZLE options are set if zsh is invoked as ksh.

RESTRICTED SHELL
       When the basename of the command used to invoke	zsh  starts  with  the
       letter  `r'  or the `-r' command line option is supplied at invocation,
       the shell becomes  restricted.	Emulation  mode	 is  determined	 after
       stripping  the  letter `r' from the invocation name.  The following are
       disabled in restricted mode:

       ·      changing directories with the cd builtin

       ·      changing or unsetting the PATH, path, MODULE_PATH,  module_path,
	      SHELL,  HISTFILE,	 HISTSIZE,  GID,  EGID,	 UID,  EUID, USERNAME,
	      LD_LIBRARY_PATH,	  LD_AOUT_LIBRARY_PATH,	    LD_PRELOAD	   and
	      LD_AOUT_PRELOAD parameters

       ·      specifying command names containing /

       ·      specifying command pathnames using hash

       ·      redirecting output to files

       ·      using the exec builtin command to replace the shell with another
	      command

       ·      using jobs -Z to overwrite the shell process' argument and envi‐
	      ronment space

       ·      using  the ARGV0 parameter to override argv[0] for external com‐
	      mands

       ·      turning off restricted mode with set +r or unsetopt RESTRICTED

       These restrictions are enforced after  processing  the  startup	files.
       The  startup  files  should set up PATH to point to a directory of com‐
       mands which can be safely invoked in the restricted environment.	  They
       may also add further restrictions by disabling selected builtins.

       Restricted  mode	 can  also  be	activated  any	time  by  setting  the
       RESTRICTED option.   This  immediately  enables	all  the  restrictions
       described  above	 even if the shell still has not processed all startup
       files.

STARTUP/SHUTDOWN FILES
       Commands are first read from /etc/zshenv; this  cannot  be  overridden.
       Subsequent behaviour is modified by the RCS and GLOBAL_RCS options; the
       former affects all startup files, while the second only	affects	 those
       in  the	/etc  directory.  If one of the options is unset at any point,
       any subsequent startup file(s) of the corresponding type	 will  not  be
       read.   It  is  also  possible  for  a  file  in	 $ZDOTDIR to re-enable
       GLOBAL_RCS. Both RCS and GLOBAL_RCS are set by default.

       Commands are then read from $ZDOTDIR/.zshenv.  If the shell is a	 login
       shell,  commands	 are  read from /etc/zprofile and then $ZDOTDIR/.zpro‐
       file.  Then, if the  shell  is  interactive,  commands  are  read  from
       /etc/zshrc  and then $ZDOTDIR/.zshrc.  Finally, if the shell is a login
       shell, /etc/zlogin and $ZDOTDIR/.zlogin are read.

       When  a	login  shell  exits,  the  files  $ZDOTDIR/.zlogout  and  then
       /etc/zlogout  are  read.	 This happens with either an explicit exit via
       the exit or logout commands, or an implicit exit by reading end-of-file
       from  the  terminal.   However, if the shell terminates due to exec'ing
       another process, the  logout  files  are	 not  read.   These  are  also
       affected	 by  the  RCS  and GLOBAL_RCS options.	Note also that the RCS
       option affects the saving of history files, i.e. if RCS is  unset  when
       the shell exits, no history file will be saved.

       If ZDOTDIR is unset, HOME is used instead.  Those files listed above as
       being in /etc may be in another directory, depending on	the  installa‐
       tion.

       As /etc/zshenv is run for all instances of zsh, it is important that it
       be kept as small as possible.  In particular, it is a good idea to  put
       code  that does not need to be run for every single shell behind a test
       of the form `if [[ -o rcs ]]; then ...' so that it will not be executed
       when zsh is invoked with the `-f' option.

       Any  of	these files may be pre-compiled with the zcompile builtin com‐
       mand (see zshbuiltins(1)).  If a compiled file exists  (named  for  the
       original	 file plus the .zwc extension) and it is newer than the origi‐
       nal file, the compiled file will be used instead.

ZSHROADMAP(1)							 ZSHROADMAP(1)

NAME
       zshroadmap - informal introduction to the zsh manual

       The Zsh Manual, like the shell itself, is large and often  complicated.
       This section of the manual provides some pointers to areas of the shell
       that are likely to be of particular interest to new  users,  and	 indi‐
       cates where in the rest of the manual the documentation is to be found.

WHEN THE SHELL STARTS
       When it starts, the shell reads commands from various files.  These can
       be  created  or	edited	to  customize  the  shell.   See  the  section
       Startup/Shutdown Files in zsh(1).

       If no personal initialization files exist for the current user, a func‐
       tion is run to help you change some of the most	common	settings.   It
       won't appear if your administrator has disabled the zsh/newuser module.
       The function is designed to be self-explanatory.	 You  can  run	it  by
       hand  with  `autoload -Uz zsh-newuser-install; zsh-newuser-install -f'.
       See also the section User Configuration Functions in zshcontrib(1).

INTERACTIVE USE
       Interaction with the shell uses the builtin Zsh Line Editor, ZLE.  This
       is described in detail in zshzle(1).

       The  first  decision a user must make is whether to use the Emacs or Vi
       editing mode as the  keys  for  editing	are  substantially  different.
       Emacs  editing  mode  is probably more natural for beginners and can be
       selected explicitly with the command bindkey -e.

       A history mechanism for retrieving previously typed lines (most	simply
       with  the  Up or Down arrow keys) is available; note that, unlike other
       shells, zsh will not save these lines when the shell exits  unless  you
       set  appropriate variables, and the number of history lines retained by
       default is quite small (30 lines).  See the description	of  the	 shell
       variables  (referred  to	 in the documentation as parameters) HISTFILE,
       HISTSIZE and SAVEHIST in zshparam(1).

   Completion
       Completion is a feature present in many shells. It allows the  user  to
       type only a part (usually the prefix) of a word and have the shell fill
       in the rest.  The completion system in zsh is programmable.  For	 exam‐
       ple,  the  shell can be set to complete email addresses in arguments to
       the mail command from your ~/.abook/addressbook; usernames,  hostnames,
       and  even  remote  paths in arguments to scp, and so on.	 Anything that
       can be written in or glued together with zsh can be the source of  what
       the line editor offers as possible completions.

       Zsh  has	 two  completion systems, an old, so called compctl completion
       (named after the builtin command that serves as its complete  and  only
       user  interface),  and  a new one, referred to as compsys, organized as
       library of builtin and user-defined functions.  The two systems	differ
       in  their  interface  for  specifying the completion behavior.  The new
       system is more customizable and is supplied with completions  for  many
       commonly used commands; it is therefore to be preferred.

       The completion system must be enabled explicitly when the shell starts.
       For more information see zshcompsys(1).

   Extending the line editor
       Apart from completion, the line editor is highly extensible by means of
       shell  functions.   Some	 useful functions are provided with the shell;
       they provide facilities such as:

       insert-composed-char
	      composing characters not found on the keyboard

       match-words-by-style
	      configuring what the line editor considers a word when moving or
	      deleting by word

       history-beginning-search-backward-end, etc.
	      alternative ways of searching the shell history

       replace-string, replace-pattern
	      functions for replacing strings or patterns globally in the com‐
	      mand line

       edit-command-line
	      edit the command line with an external editor.

       See the section `ZLE Functions' in zshcontrib(1)	 for  descriptions  of
       these.

OPTIONS
       The  shell  has	a  large number of options for changing its behaviour.
       These cover all aspects of the shell; browsing the  full	 documentation
       is  the only good way to become acquainted with the many possibilities.
       See zshoptions(1).

PATTERN MATCHING
       The shell has a rich set of  patterns  which  are  available  for  file
       matching	 (described  in the documentation as `filename generation' and
       also known for historical reasons as `globbing') and for use when  pro‐
       gramming.   These are described in the section `Filename Generation' in
       zshexpn(1).

       Of particular interest are the following patterns that are not commonly
       supported by other systems of pattern matching:

       **     for matching over multiple directories

       ~, ^   the   ability   to  exclude  patterns  from  matching  when  the
	      EXTENDED_GLOB option is set

       (...)  glob qualifiers, included in parentheses at the end of the  pat‐
	      tern,  which  select  files  by  type  (such  as directories) or
	      attribute (such as size).

GENERAL COMMENTS ON SYNTAX
       Although the syntax of zsh is in ways similar to the  Korn  shell,  and
       therefore  more	remotely to the original UNIX shell, the Bourne shell,
       its default behaviour does not entirely	correspond  to	those  shells.
       General	shell  syntax  is introduced in the section `Shell Grammar' in
       zshmisc(1).

       One commonly encountered difference is that variables substituted  onto
       the  command line are not split into words.  See the description of the
       shell option SH_WORD_SPLIT in the section `Parameter Expansion' in zsh‐
       expn(1).	 In zsh, you can either explicitly request the splitting (e.g.
       ${=foo}) or use an array when you want a variable  to  expand  to  more
       than one word.  See the section `Array Parameters' in zshparam(1).

PROGRAMMING
       The  most  convenient  way of adding enhancements to the shell is typi‐
       cally  by  writing  a  shell  function  and  arranging  for  it	to  be
       autoloaded.  Functions are described in the section `Functions' in zsh‐
       misc(1).	 Users changing from the C  shell  and	its  relatives	should
       notice that aliases are less used in zsh as they don't perform argument
       substitution, only simple text replacement.

       A few general functions, other than those for the line editor described
       above,  are provided with the shell and are described in zshcontrib(1).
       Features include:

       promptinit
	      a prompt theme system for changing prompts easily, see the  sec‐
	      tion `Prompt Themes'

       zsh-mime-setup
	      a	 MIME-handling	system	which dispatches commands according to
	      the suffix of a file as done by graphical file managers

       zcalc  a calculator

       zargs  a version of xargs that makes the find command redundant

       zmv    a command for renaming files by means of shell patterns.

ZSHMISC(1)							    ZSHMISC(1)

NAME
       zshmisc - everything and then some

SIMPLE COMMANDS & PIPELINES
       A simple command is a sequence of optional parameter  assignments  fol‐
       lowed  by  blank-separated  words,  with	 optional  redirections inter‐
       spersed.	 The first word is the command to be executed, and the remain‐
       ing  words, if any, are arguments to the command.  If a command name is
       given, the parameter assignments modify the environment of the  command
       when it is executed.  The value of a simple command is its exit status,
       or 128 plus the signal number if terminated by a signal.	 For example,

	      echo foo

       is a simple command with arguments.

       A pipeline is either a simple command, or a sequence  of	 two  or  more
       simple commands where each command is separated from the next by `|' or
       `|&'.  Where commands are separated by `|', the standard output of  the
       first  command is connected to the standard input of the next.  `|&' is
       shorthand for `2>&1 |', which connects both the standard output and the
       standard	 error	of the command to the standard input of the next.  The
       value of a pipeline is the value of the last command, unless the	 pipe‐
       line  is preceded by `!' in which case the value is the logical inverse
       of the value of the last command.  For example,

	      echo foo | sed 's/foo/bar/'

       is a pipeline, where the output (`foo' plus a  newline)	of  the	 first
       command will be passed to the input of the second.

       If a pipeline is preceded by `coproc', it is executed as a coprocess; a
       two-way pipe is established between it and the parent shell.  The shell
       can read from or write to the coprocess by means of the `>&p' and `<&p'
       redirection operators or with `print -p' and  `read  -p'.   A  pipeline
       cannot be preceded by both `coproc' and `!'.  If job control is active,
       the coprocess can be treated in other than input and output as an ordi‐
       nary background job.

       A  sublist  is  either  a single pipeline, or a sequence of two or more
       pipelines separated by `&&' or `||'.  If two pipelines are separated by
       `&&',  the  second  pipeline  is	 executed  only	 if the first succeeds
       (returns a zero status).	 If two pipelines are separated by  `||',  the
       second  is executed only if the first fails (returns a nonzero status).
       Both operators have equal precedence and	 are  left  associative.   The
       value  of  the sublist is the value of the last pipeline executed.  For
       example,

	      dmesg | grep panic && print yes

       is a sublist consisting of two pipelines, the second just a simple com‐
       mand  which  will be executed if and only if the grep command returns a
       zero status.  If it does not, the value of the sublist is  that	return
       status,	else  it is the status returned by the print (almost certainly
       zero).

       A list is a sequence of zero or more sublists, in which each sublist is
       terminated  by `;', `&', `&|', `&!', or a newline.  This terminator may
       optionally be omitted from the last sublist in the list when  the  list
       appears as a complex command inside `(...)' or `{...}'.	When a sublist
       is terminated by `;' or newline, the  shell  waits  for	it  to	finish
       before  executing  the  next  sublist.  If a sublist is terminated by a
       `&', `&|', or `&!', the shell executes the last pipeline in it  in  the
       background,  and	 does  not  wait for it to finish (note the difference
       from other shells which execute the whole sublist in  the  background).
       A backgrounded pipeline returns a status of zero.

       More generally, a list can be seen as a set of any shell commands what‐
       soever, including the complex commands below; this is implied  wherever
       the  word  `list' appears in later descriptions.	 For example, the com‐
       mands in a shell function form a special sort of list.

PRECOMMAND MODIFIERS
       A simple command may be preceded by a precommand modifier,  which  will
       alter  how  the	command	 is  interpreted.   These  modifiers are shell
       builtin commands with the exception of nocorrect which  is  a  reserved
       word.

       -      The  command  is	executed  with	a `-' prepended to its argv[0]
	      string.

       builtin
	      The command word is taken to be the name of a  builtin  command,
	      rather than a shell function or external command.

       command [ -pvV ]
	      The command word is taken to be the name of an external command,
	      rather than a shell function or builtin.	 If the POSIX_BUILTINS
	      option  is  set, builtins will also be executed but certain spe‐
	      cial properties of them are suppressed. The  -p  flag  causes  a
	      default  path  to be searched instead of that in $path. With the
	      -v flag, command is similar to whence and with -V, it is equiva‐
	      lent to whence -v.

       exec [ -cl ] [ -a argv0 ]
	      The  following  command  together	 with  any arguments is run in
	      place of the current process, rather than as a sub-process.  The
	      shell  does not fork and is replaced.  The shell does not invoke
	      TRAPEXIT, nor does it source zlogout  files.   The  options  are
	      provided for compatibility with other shells.

	      The -c option clears the environment.

	      The  -l  option  is  equivalent to the - precommand modifier, to
	      treat the replacement command as a login shell; the  command  is
	      executed	with  a	 - prepended to its argv[0] string.  This flag
	      has no effect if used together with the -a option.

	      The -a option is used to specify explicitly the  argv[0]	string
	      (the  name  of  the command as seen by the process itself) to be
	      used by the replacement command and is  directly	equivalent  to
	      setting a value for the ARGV0 environment variable.

       nocorrect
	      Spelling	correction is not done on any of the words.  This must
	      appear before any other precommand modifier,  as	it  is	inter‐
	      preted  immediately,  before  any	 parsing  is  done.  It has no
	      effect in non-interactive shells.

       noglob Filename generation (globbing) is not performed on  any  of  the
	      words.

COMPLEX COMMANDS
       A complex command in zsh is one of the following:

       if list then list [ elif list then list ] ... [ else list ] fi
	      The  if  list is executed, and if it returns a zero exit status,
	      the then list is executed.  Otherwise, the elif list is executed
	      and  if  its status is zero, the then list is executed.  If each
	      elif list returns nonzero status, the else list is executed.

       for name ... [ in word ... ] term do list done
	      where term is at least one newline or ;.	 Expand	 the  list  of
	      words,  and set the parameter name to each of them in turn, exe‐
	      cuting list each time.  If the in word is omitted, use the posi‐
	      tional parameters instead of the words.

	      More  than  one  parameter  name	can  appear before the list of
	      words.  If N names are given, then on each execution of the loop
	      the  next	 N words are assigned to the corresponding parameters.
	      If there are more names  than  remaining	words,	the  remaining
	      parameters  are  each set to the empty string.  Execution of the
	      loop ends when there is no remaining word to assign to the first
	      name.  It is only possible for in to appear as the first name in
	      the list, else it will be treated as  marking  the  end  of  the
	      list.

       for (( [expr1] ; [expr2] ; [expr3] )) do list done
	      The arithmetic expression expr1 is evaluated first (see the sec‐
	      tion `Arithmetic Evaluation').  The arithmetic expression	 expr2
	      is  repeatedly  evaluated	 until	it  evaluates to zero and when
	      non-zero, list is executed and the arithmetic  expression	 expr3
	      evaluated.   If any expression is omitted, then it behaves as if
	      it evaluated to 1.

       while list do list done
	      Execute the do list as long as the while	list  returns  a  zero
	      exit status.

       until list do list done
	      Execute the do list as long as until list returns a nonzero exit
	      status.

       repeat word do list done
	      word is expanded and treated as an arithmetic expression,	 which
	      must evaluate to a number n.  list is then executed n times.

       case  word  in  [ [(] pattern [ | pattern ] ... ) list (;;|;&|;|) ] ...
       esac
	      Execute the list associated with the first pattern that  matches
	      word, if any.  The form of the patterns is the same as that used
	      for filename generation.	See the section `Filename Generation'.

	      If the list that is executed is terminated with ;&  rather  than
	      ;;,  the following list is also executed.	 The rule for the ter‐
	      minator of the following list ;;, ;& or ;| is applied unless the
	      esac is reached.

	      If  the  list  that  is executed is terminated with ;| the shell
	      continues to scan the patterns looking for the next match,  exe‐
	      cuting  the  corresponding  list,	 and applying the rule for the
	      corresponding terminator ;;, ;& or ;|.  Note that	 word  is  not
	      re-expanded;  all	 applicable  patterns are tested with the same
	      word.

       select name [ in word ... term ] do list done
	      where term is one or more newline or ; to terminate  the	words.
	      Print  the  set  of words, each preceded by a number.  If the in
	      word is omitted, use the	positional  parameters.	  The  PROMPT3
	      prompt is printed and a line is read from the line editor if the
	      shell is interactive and that is active, or else standard input.
	      If  this line consists of the number of one of the listed words,
	      then the parameter name is set to the word corresponding to this
	      number.	If  this  line is empty, the selection list is printed
	      again.  Otherwise, the value of the parameter  name  is  set  to
	      null.   The  contents  of	 the  line read from standard input is
	      saved in the parameter REPLY.  list is executed for each	selec‐
	      tion until a break or end-of-file is encountered.

       ( list )
	      Execute  list  in a subshell.  Traps set by the trap builtin are
	      reset to their default values while executing list.

       { list }
	      Execute list.

       { try-list } always { always-list }
	      First execute try-list.  Regardless of errors,  or  break,  con‐
	      tinue,  or  return commands encountered within try-list, execute
	      always-list.  Execution then continues from the  result  of  the
	      execution of try-list; in other words, any error, or break, con‐
	      tinue, or return command is treated in the  normal  way,	as  if
	      always-list  were	 not  present.	 The  two  chunks  of code are
	      referred to as the `try block' and the `always block'.

	      Optional newlines or semicolons may  appear  after  the  always;
	      note,  however,  that  they may not appear between the preceding
	      closing brace and the always.

	      An `error' in this context is a condition such as a syntax error
	      which  causes  the shell to abort execution of the current func‐
	      tion, script, or list.   Syntax  errors  encountered  while  the
	      shell  is	 parsing  the  code do not cause the always-list to be
	      executed.	 For example, an erroneously constructed if  block  in
	      try-list	would cause the shell to abort during parsing, so that
	      always-list would not be executed, while an erroneous  substitu‐
	      tion  such as ${*foo*} would cause a run-time error, after which
	      always-list would be executed.

	      An error condition can be tested	and  reset  with  the  special
	      integer  variable	 TRY_BLOCK_ERROR.   Outside an always-list the
	      value is irrelevant,  but	 it  is	 initialised  to  -1.	Inside
	      always-list,  the	 value	is  1  if  an  error  occurred	in the
	      try-list, else 0.	 If TRY_BLOCK_ERROR is set  to	0  during  the
	      always-list,  the	 error	condition  caused  by  the try-list is
	      reset, and shell execution continues normally after the  end  of
	      always-list.  Altering the value during the try-list is not use‐
	      ful (unless this forms part of an enclosing always block).

	      Regardless of TRY_BLOCK_ERROR, after the end of always-list  the
	      normal  shell  status $? is the value returned from always-list.
	      This  will  be  non-zero	if  there  was	an  error,   even   if
	      TRY_BLOCK_ERROR was set to zero.

	      The  following  executes	the given code, ignoring any errors it
	      causes.  This is an alternative to the usual convention of  pro‐
	      tecting code by executing it in a subshell.

		     {
			 # code which may cause an error
		       } always {
			 # This code is executed regardless of the error.
			 (( TRY_BLOCK_ERROR = 0 ))
		     }
		     # The error condition has been reset.

	      An  exit	command (or a return command executed at the outermost
	      function level of a script) encountered  in  try-list  does  not
	      cause  the  execution  of always-list.  Instead, the shell exits
	      immediately after any EXIT trap has been executed.

       function word ... [ () ] [ term ] { list }
       word ... () [ term ] { list }
       word ... () [ term ] command
	      where term is one or more newline or ;.  Define a function which
	      is  referenced  by  any one of word.  Normally, only one word is
	      provided; multiple words are usually  only  useful  for  setting
	      traps.   The  body of the function is the list between the { and
	      }.  See the section `Functions'.

	      If the option  SH_GLOB  is  set  for  compatibility  with	 other
	      shells,  then whitespace may appear between between the left and
	      right parentheses when there is a single word;   otherwise,  the
	      parentheses  will	 be  treated  as forming a globbing pattern in
	      that case.

       time [ pipeline ]
	      The pipeline is executed, and timing statistics are reported  on
	      the  standard error in the form specified by the TIMEFMT parame‐
	      ter.  If pipeline is omitted, print statistics about  the	 shell
	      process and its children.

       [[ exp ]]
	      Evaluates	 the conditional expression exp and return a zero exit
	      status if it is true.  See the section `Conditional Expressions'
	      for a description of exp.

ALTERNATE FORMS FOR COMPLEX COMMANDS
       Many  of zsh's complex commands have alternate forms.  These particular
       versions of complex commands should be considered deprecated and may be
       removed	in the future.	The versions in the previous section should be
       preferred instead.

       The short versions below only work if sublist is of the form `{ list }'
       or  if the SHORT_LOOPS option is set.  For the if, while and until com‐
       mands, in both these cases the test part of the loop must also be suit‐
       ably  delimited, such as by `[[ ... ]]' or `(( ... ))', else the end of
       the test will not be recognized.	 For the for, repeat, case and	select
       commands	 no  such special form for the arguments is necessary, but the
       other condition (the special form of sublist or use of the  SHORT_LOOPS
       option) still applies.

       if list { list } [ elif list { list } ] ... [ else { list } ]
	      An alternate form of if.	The rules mean that

		     if [[ -o ignorebraces ]] {
		       print yes
		     }

	      works, but

		     if true {	# Does not work!
		       print yes
		     }

	      does not, since the test is not suitably delimited.

       if list sublist
	      A short form of the alternate `if'.  The same limitations on the
	      form of list apply as for the previous form.

       for name ... ( word ... ) sublist
	      A short form of for.

       for name ... [ in word ... ] term sublist
	      where term is at least one newline or ;.	Another short form  of
	      for.

       for (( [expr1] ; [expr2] ; [expr3] )) sublist
	      A short form of the arithmetic for command.

       foreach name ... ( word ... ) list end
	      Another form of for.

       while list { list }
	      An  alternative form of while.  Note the limitations on the form
	      of list mentioned above.

       until list { list }
	      An alternative form of until.  Note the limitations on the  form
	      of list mentioned above.

       repeat word sublist
	      This is a short form of repeat.

       case word { [ [(] pattern [ | pattern ] ... ) list (;;|;&|;|) ] ... }
	      An alternative form of case.

       select name [ in word term ] sublist
	      where  term  is  at  least  one  newline	or ;.  A short form of
	      select.

RESERVED WORDS
       The following words are recognized as reserved words when used  as  the
       first word of a command unless quoted or disabled using disable -r:

       do  done	 esac then elif else fi for case if while function repeat time
       until select coproc nocorrect foreach end ! [[ { }

       Additionally, `}' is recognized in any position	if  the	 IGNORE_BRACES
       option is not set.

COMMENTS
       In  noninteractive  shells,  or in interactive shells with the INTERAC‐
       TIVE_COMMENTS option set, a word beginning with the third character  of
       the  histchars  parameter (`#' by default) causes that word and all the
       following characters up to a newline to be ignored.

ALIASING
       Every token in the shell input is checked to see if there is  an	 alias
       defined	for  it.  If so, it is replaced by the text of the alias if it
       is in command position (if it could be the first word of a simple  com‐
       mand),  or  if the alias is global.  If the text ends with a space, the
       next word in the shell input is treated as though it  were  in  command
       position	 for  purposes	of alias expansion.  An alias is defined using
       the alias builtin; global aliases may be defined using the -g option to
       that builtin.

       Alias  expansion	 is done on the shell input before any other expansion
       except history expansion.  Therefore, if an alias is  defined  for  the
       word  foo,  alias expansion may be avoided by quoting part of the word,
       e.g. \foo.  But there is nothing to prevent an alias being defined  for
       \foo as well.

QUOTING
       A  character  may be quoted (that is, made to stand for itself) by pre‐
       ceding it with a `\'.  `\' followed by a newline is ignored.

       A string enclosed between `$'' and `'' is processed the same way as the
       string arguments of the print builtin, and the resulting string is con‐
       sidered to be entirely quoted.  A literal `'' character can be included
       in the string by using the `\'' escape.

       All  characters	enclosed  between a pair of single quotes ('') that is
       not preceded by a `$' are quoted.  A single quote cannot appear	within
       single  quotes unless the option RC_QUOTES is set, in which case a pair
       of single quotes are turned into a single quote.	 For example,

	      print ''''

       outputs nothing apart from a newline if RC_QUOTES is not set,  but  one
       single quote if it is set.

       Inside  double  quotes  (""), parameter and command substitution occur,
       and `\' quotes the characters `\', ``', `"', and `$'.

REDIRECTION
       If a command is followed by & and job control is not active,  then  the
       default	standard  input	 for  the command is the empty file /dev/null.
       Otherwise, the environment for the execution of a command contains  the
       file  descriptors  of  the  invoking  shell as modified by input/output
       specifications.

       The following may appear anywhere in a simple command or may precede or
       follow  a  complex  command.   Expansion occurs before word or digit is
       used except as noted below.  If the result of substitution on word pro‐
       duces  more  than  one  filename,  redirection occurs for each separate
       filename in turn.

       < word Open file word for reading as standard input.

       <> word
	      Open file word for reading and writing as	 standard  input.   If
	      the file does not exist then it is created.

       > word Open file word for writing as standard output.  If the file does
	      not exist then it is created.  If the file exists, and the CLOB‐
	      BER  option  is  unset,  this  causes an error; otherwise, it is
	      truncated to zero length.

       >| word
       >! word
	      Same as >, except that the file is truncated to zero  length  if
	      it exists, even if CLOBBER is unset.

       >> word
	      Open  file  word	for writing in append mode as standard output.
	      If the file does not exist, and the  CLOBBER  option  is	unset,
	      this causes an error; otherwise, the file is created.

       >>| word
       >>! word
	      Same  as	>>,  except  that  the	file is created if it does not
	      exist, even if CLOBBER is unset.

       <<[-] word
	      The shell input is read up to a line that is the same  as	 word,
	      or to an end-of-file.  No parameter expansion, command substitu‐
	      tion or filename generation is performed on word.	 The resulting
	      document, called a here-document, becomes the standard input.

	      If  any character of word is quoted with single or double quotes
	      or a `\', no interpretation is placed upon the characters of the
	      document.	 Otherwise, parameter and command substitution occurs,
	      `\' followed by a newline is removed, and `\' must  be  used  to
	      quote  the  characters  `\', `$', ``' and the first character of
	      word.

	      Note that word itself does not undergo shell  expansion.	 Back‐
	      quotes  in  word	do  not	 have their usual effect; instead they
	      behave similarly to double quotes, except	 that  the  backquotes
	      themselves  are  passed through unchanged.  (This information is
	      given for completeness and it is not recommended that backquotes
	      be  used.)  Quotes in the form $'...' have their standard effect
	      of expanding backslashed references to special characters.

	      If <<- is used, then all leading tabs are stripped from word and
	      from the document.

       <<< word
	      Perform  shell expansion on word and pass the result to standard
	      input.  This is known as a here-string.  Compare the use of word
	      in  here-documents  above,  where	 word  does  not undergo shell
	      expansion.

       <& number
       >& number
	      The standard input/output is  duplicated	from  file  descriptor
	      number (see dup2(2)).

       <& -
       >& -   Close the standard input/output.

       <& p
       >& p   The  input/output from/to the coprocess is moved to the standard
	      input/output.

       >& word
       &> word
	      (Except where `>& word' matches one of the above syntaxes;  `&>'
	      can  always  be  used  to avoid this ambiguity.)	Redirects both
	      standard output and standard error (file descriptor  2)  in  the
	      manner  of  `>  word'.   Note  that  this does not have the same
	      effect as `> word 2>&1' in the presence of multios (see the sec‐
	      tion below).

       >&| word
       >&! word
       &>| word
       &>! word
	      Redirects both standard output and standard error (file descrip‐
	      tor 2) in the manner of `>| word'.

       >>& word
       &>> word
	      Redirects both standard output and standard error (file descrip‐
	      tor 2) in the manner of `>> word'.

       >>&| word
       >>&! word
       &>>| word
       &>>! word
	      Redirects both standard output and standard error (file descrip‐
	      tor 2) in the manner of `>>| word'.

       If one of the above is preceded by a digit, then	 the  file  descriptor
       referred	 to is that specified by the digit instead of the default 0 or
       1.  The order in which redirections are specified is significant.   The
       shell  evaluates	 each  redirection  in	terms of the (file descriptor,
       file) association at the time of evaluation.  For example:

	      ... 1>fname 2>&1

       first associates file descriptor 1 with file fname.  It then associates
       file descriptor 2 with the file associated with file descriptor 1 (that
       is, fname).  If the order of redirections were reversed, file  descrip‐
       tor 2 would be associated with the terminal (assuming file descriptor 1
       had been) and then file descriptor 1  would  be	associated  with  file
       fname.

       If instead of a digit one of the operators above is preceded by a valid
       identifier enclosed in braces, the shell will open a new file  descrip‐
       tor that is guaranteed to be at least 10 and set the parameter named by
       the identifier to the file descriptor opened.  No whitespace is allowed
       between	the  closing  brace and the redirection character.  The option
       IGNORE_BRACES must not be set.  For example:

	      ... {myfd}>&1

       This opens a new file descriptor that is a duplicate of file descriptor
       1  and  sets  the  parameter myfd to the number of the file descriptor,
       which will be at least 10.  The new file descriptor can be  written  to
       using the syntax >&$myfd.

       The  syntax  {varid}>&-,	 for example {myfd}>&-, may be used to close a
       file descriptor opened in this fashion.	Note that the parameter	 given
       by varid must previously be set to a file descriptor in this case.

       It  is an error to open or close a file descriptor in this fashion when
       the parameter is readonly.  However, it is not  an  error  to  read  or
       write  a	 file  descriptor using <&$param or >&$param if param is read‐
       only.

       If the option CLOBBER is unset, it is an error to open a file  descrip‐
       tor  using  a  parameter that is already set to an open file descriptor
       previously allocated by this mechanism.	Unsetting the parameter before
       using it for allocating a file descriptor avoids the error.

       Note  that this mechanism merely allocates or closes a file descriptor;
       it does not perform any redirections from or to it.  It is usually con‐
       venient	to  allocate  a file descriptor prior to use as an argument to
       exec.  The following shows a typical sequence of allocation,  use,  and
       closing of a file descriptor:

	      integer myfd
	      exec {myfd}>~/logs/mylogfile.txt
	      print This is a log message. >&$myfd
	      exec {myfd}>&-

       Note  that  the	expansion  of  the  variable in the expression >&$myfd
       occurs at the point the redirection  is	opened.	  This	is  after  the
       expansion  of  command arguments and after any redirections to the left
       on the command line have been processed.

       The `|&' command separator described in Simple Commands & Pipelines  in
       zshmisc(1) is a shorthand for `2>&1 |'.

       The  various  forms of process substitution, `<(list)', and `=(list())'
       for input and `>(list)' for output, are often used together with	 redi‐
       rection.	  For example, if word in an output redirection is of the form
       `>(list)' then the output is piped to the command represented by	 list.
       See Process Substitution in zshexpn(1).

MULTIOS
       If the user tries to open a file descriptor for writing more than once,
       the shell opens the file descriptor as a pipe to a process that	copies
       its  input  to  all the specified outputs, similar to tee, provided the
       MULTIOS option is set, as it is by default.  Thus:

	      date >foo >bar

       writes the date to two files, named `foo' and `bar'.  Note that a  pipe
       is an implicit redirection; thus

	      date >foo | cat

       writes the date to the file `foo', and also pipes it to cat.

       If  the MULTIOS option is set, the word after a redirection operator is
       also subjected to filename generation (globbing).  Thus

	      : > *

       will truncate all files in the current directory, assuming  there's  at
       least  one.  (Without the MULTIOS option, it would create an empty file
       called `*'.)  Similarly, you can do

	      echo exit 0 >> *.sh

       If the user tries to open a file descriptor for reading more than once,
       the  shell opens the file descriptor as a pipe to a process that copies
       all the specified inputs to its output in the order specified,  similar
       to cat, provided the MULTIOS option is set.  Thus

	      sort <foo <fubar

       or even

	      sort <f{oo,ubar}

       is equivalent to `cat foo fubar | sort'.

       Expansion of the redirection argument occurs at the point the redirect‐
       ion is opened, at the point described above for the  expansion  of  the
       variable in >&$myfd.

       Note that a pipe is an implicit redirection; thus

	      cat bar | sort <foo

       is equivalent to `cat bar foo | sort' (note the order of the inputs).

       If  the MULTIOS option is unset, each redirection replaces the previous
       redirection for that file descriptor.  However, all files redirected to
       are actually opened, so

	      echo foo > bar > baz

       when MULTIOS is unset will truncate bar, and write `foo' into baz.

       There  is  a  problem  when an output multio is attached to an external
       program.	 A simple example shows this:

	      cat file >file1 >file2
	      cat file1 file2

       Here, it is possible that the second `cat' will not  display  the  full
       contents	 of  file1  and	 file2	(i.e.  the  original  contents of file
       repeated twice).

       The reason for this is that the	multios	 are  spawned  after  the  cat
       process	is  forked from the parent shell, so the parent shell does not
       wait for the multios to finish writing data.  This means the command as
       shown  can  exit	 before	 file1 and file2 are completely written.  As a
       workaround, it is possible to run the cat process as part of a  job  in
       the current shell:

	      { cat file } >file >file2

       Here, the {...} job will pause to wait for both files to be written.

REDIRECTIONS WITH NO COMMAND
       When a simple command consists of one or more redirection operators and
       zero or more parameter assignments, but no command name, zsh can behave
       in several ways.

       If  the	parameter NULLCMD is not set or the option CSH_NULLCMD is set,
       an error is caused.  This is the csh behavior and CSH_NULLCMD is set by
       default when emulating csh.

       If  the option SH_NULLCMD is set, the builtin `:' is inserted as a com‐
       mand with the given redirections.  This is the default  when  emulating
       sh or ksh.

       Otherwise, if the parameter NULLCMD is set, its value will be used as a
       command with the given redirections.  If both NULLCMD  and  READNULLCMD
       are  set,  then the value of the latter will be used instead of that of
       the former when the redirection is an input.  The default  for  NULLCMD
       is `cat' and for READNULLCMD is `more'. Thus

	      < file

       shows the contents of file on standard output, with paging if that is a
       terminal.  NULLCMD and READNULLCMD may refer to shell functions.

COMMAND EXECUTION
       If a command name contains no slashes, the shell attempts to locate it.
       If  there exists a shell function by that name, the function is invoked
       as described in the section  `Functions'.   If  there  exists  a	 shell
       builtin by that name, the builtin is invoked.

       Otherwise,  the	shell  searches	 each element of $path for a directory
       containing an executable file by that name.  If the  search  is	unsuc‐
       cessful,	 the  shell prints an error message and returns a nonzero exit
       status.

       If execution fails because the file is not in  executable  format,  and
       the  file  is  not  a  directory,  it  is assumed to be a shell script.
       /bin/sh is spawned to execute it.  If the program is a  file  beginning
       with `#!', the remainder of the first line specifies an interpreter for
       the program.  The shell will execute the specified interpreter on oper‐
       ating systems that do not handle this executable format in the kernel.

       If  no  external command is found but a function command_not_found_han‐
       dler exists the shell executes this  function  with  all	 command  line
       arguments.   The	 function should return status zero if it successfully
       handled the command, or non-zero status if it failed.   In  the	latter
       case  the  standard handling is applied: `command not found' is printed
       to standard error and the shell exits with status 127.  Note  that  the
       handler	is  executed  in a subshell forked to execute an external com‐
       mand, hence changes to directories,  shell  parameters,	etc.  have  no
       effect on the main shell.

FUNCTIONS
       Shell functions are defined with the function reserved word or the spe‐
       cial syntax `funcname ()'.  Shell functions  are	 read  in  and	stored
       internally.  Alias names are resolved when the function is read.	 Func‐
       tions are executed like commands with the  arguments  passed  as	 posi‐
       tional parameters.  (See the section `Command Execution'.)

       Functions execute in the same process as the caller and share all files
       and present working directory with the caller.	A  trap	 on  EXIT  set
       inside a function is executed after the function completes in the envi‐
       ronment of the caller.

       The return builtin is used to return from function calls.

       Function identifiers can be listed with the functions  builtin.	 Func‐
       tions can be undefined with the unfunction builtin.

AUTOLOADING FUNCTIONS
       A  function  can	 be marked as undefined using the autoload builtin (or
       `functions -u' or `typeset -fu').  Such a function has no  body.	  When
       the  function  is first executed, the shell searches for its definition
       using the elements of the fpath variable.  Thus to define functions for
       autoloading, a typical sequence is:

	      fpath=(~/myfuncs $fpath)
	      autoload myfunc1 myfunc2 ...

       The  usual  alias  expansion  during  reading will be suppressed if the
       autoload builtin or its equivalent is given the option -U. This is rec‐
       ommended	 for  the use of functions supplied with the zsh distribution.
       Note that for functions precompiled with the zcompile  builtin  command
       the flag -U must be provided when the .zwc file is created, as the cor‐
       responding information is compiled into the latter.

       For each element in fpath, the shell looks for  three  possible	files,
       the newest of which is used to load the definition for the function:

       element.zwc
	      A	 file  created	with  the  zcompile  builtin command, which is
	      expected to contain the definitions for  all  functions  in  the
	      directory named element.	The file is treated in the same manner
	      as a directory containing files for functions  and  is  searched
	      for  the	definition of the function.   If the definition is not
	      found, the search for a definition proceeds with the  other  two
	      possibilities described below.

	      If element already includes a .zwc extension (i.e. the extension
	      was explicitly given by the user), element is searched  for  the
	      definition  of the function without comparing its age to that of
	      other files; in fact, there does not need to  be	any  directory
	      named  element  without  the  suffix.  Thus including an element
	      such as `/usr/local/funcs.zwc' in fpath will speed up the search
	      for  functions,  with  the  disadvantage that functions included
	      must be explicitly recompiled by hand before the	shell  notices
	      any changes.

       element/function.zwc
	      A	 file  created with zcompile, which is expected to contain the
	      definition for function.	It may include other function  defini‐
	      tions as well, but those are neither loaded nor executed; a file
	      found in this way is searched only for the definition  of	 func‐
	      tion.

       element/function
	      A file of zsh command text, taken to be the definition for func‐
	      tion.

       In summary, the order of searching is, first, in the parents of	direc‐
       tories  in  fpath  for  the  newer  of either a compiled directory or a
       directory in fpath; second, if more than one of these contains a	 defi‐
       nition  for  the	 function that is sought, the leftmost in the fpath is
       chosen; and third, within a directory, the newer of either  a  compiled
       function or an ordinary function definition is used.

       If  the	KSH_AUTOLOAD option is set, or the file contains only a simple
       definition of the function, the file's contents will be executed.  This
       will  normally  define  the  function in question, but may also perform
       initialization, which is executed in the context of the function execu‐
       tion, and may therefore define local parameters.	 It is an error if the
       function is not defined by loading the file.

       Otherwise, the function body (with no surrounding  `funcname()  {...}')
       is taken to be the complete contents of the file.  This form allows the
       file to be used directly as an executable shell script.	If  processing
       of  the	file  results  in  the function being re-defined, the function
       itself is not re-executed.  To force the shell to  perform  initializa‐
       tion  and  then call the function defined, the file should contain ini‐
       tialization code (which will be executed then discarded) in addition to
       a  complete  function definition (which will be retained for subsequent
       calls to the function), and a call to the shell function, including any
       arguments, at the end.

       For example, suppose the autoload file func contains

	      func() { print This is func; }
	      print func is initialized

       then  `func;  func' with KSH_AUTOLOAD set will produce both messages on
       the first call, but only the message `This is func' on the  second  and
       subsequent  calls.   Without KSH_AUTOLOAD set, it will produce the ini‐
       tialization message on the first call, and the  other  message  on  the
       second and subsequent calls.

       It  is  also  possible  to  create  a  function	that  is not marked as
       autoloaded, but which loads its own definition by searching  fpath,  by
       using  `autoload -X' within a shell function.  For example, the follow‐
       ing are equivalent:

	      myfunc() {
		autoload -X
	      }
	      myfunc args...

       and

	      unfunction myfunc	  # if myfunc was defined
	      autoload myfunc
	      myfunc args...

       In fact, the functions command outputs `builtin	autoload  -X'  as  the
       body of an autoloaded function.	This is done so that

	      eval "$(functions)"

       produces	 a reasonable result.  A true autoloaded function can be iden‐
       tified by the presence of  the  comment	`#  undefined'	in  the	 body,
       because all comments are discarded from defined functions.

       To load the definition of an autoloaded function myfunc without execut‐
       ing myfunc, use:

	      autoload +X myfunc

SPECIAL FUNCTIONS
       Certain functions, if defined, have special meaning to the shell.

       In the case of chpwd, periodic, precmd and preexec it  is  possible  to
       define an array that has the same name with `_functions' appended.  Any
       element in such an array is taken as the name of a function to execute;
       it  is  executed in the same context and with the same arguments as the
       basic function.	For example, if $chpwd_functions is an array  contain‐
       ing   the  values  `mychpwd',  `chpwd_save_dirstack',  then  the	 shell
       attempts	  to   execute	 the   functions   `chpwd',   `mychpwd'	   and
       `chpwd_save_dirstack', in that order.  Any function that does not exist
       is silently ignored.  A function found by this mechanism is referred to
       elsewhere as a `hook function'.	An error in any function causes subse‐
       quent functions not to be run.  Note further that an error in a	precmd
       hook  causes  an	 immediately  following	 periodic  function not to run
       (thought it may run at the next opportunity).

       chpwd  Executed whenever the current working directory is changed.

       periodic
	      If the parameter PERIOD is set, this function is executed	 every
	      $PERIOD  seconds,	 just  before a prompt.	 Note that if multiple
	      functions are defined using the  array  periodic_functions  only
	      one  period is applied to the complete set of functions, and the
	      scheduled time is not reset if the list of functions is altered.
	      Hence the set of functions is always called together.

       precmd Executed before each prompt.  Note that precommand functions are
	      not reexecuted simply because the command line  is  redrawn,  as
	      happens,	for  example, when a notification about an exiting job
	      is displayed.

       preexec
	      Executed just after a command has been read and is about	to  be
	      executed.	  If the history mechanism is active (and the line was
	      not discarded from the history buffer), the string that the user
	      typed  is passed as the first argument, otherwise it is an empty
	      string.  The actual command that	will  be  executed  (including
	      expanded	aliases)  is passed in two different forms: the second
	      argument is a single-line, size-limited version of  the  command
	      (with  things  like  function bodies elided); the third argument
	      contains the full text that is being executed.

       zshexit
	      Executed at the point where the main shell is about to exit nor‐
	      mally.   This  is	 not called by exiting subshells, nor when the
	      exec precommand modifier is used	before	an  external  command.
	      Also, unlike TRAPEXIT, it is not called when functions exit.

       TRAPNAL
	      If defined and non-null, this function will be executed whenever
	      the shell catches a signal SIGNAL, where NAL is a signal name as
	      specified	 for  the  kill	 builtin.   The	 signal number will be
	      passed as the first parameter to the function.

	      If a function of this form is defined and null,  the  shell  and
	      processes spawned by it will ignore SIGNAL.

	      The return status from the function is handled specially.	 If it
	      is zero, the signal is assumed to have been handled, and	execu‐
	      tion  continues  normally.   Otherwise, the shell will behave as
	      interrupted except  that	the  return  status  of	 the  trap  is
	      retained.

	      Programs	terminated  by	uncaught  signals typically return the
	      status 128 plus the signal number.  Hence the  following	causes
	      the  handler for SIGINT to print a message, then mimic the usual
	      effect of the signal.

		     TRAPINT() {
		       print "Caught SIGINT, aborting."
		       return $(( 128 + $1 ))
		     }

	      The functions TRAPZERR, TRAPDEBUG and TRAPEXIT  are  never  exe‐
	      cuted inside other traps.

       TRAPDEBUG
	      Executed after each command.

       TRAPEXIT
	      Executed	when  the  shell  exits,  or when the current function
	      exits if defined inside a function.  The	value  of  $?  at  the
	      start of execution is the exit status of the shell or the return
	      status of the function exiting.

       TRAPZERR
	      Executed whenever a command has a non-zero  exit	status.	  How‐
	      ever,  the function is not executed if the command occurred in a
	      sublist followed by `&&' or `||'; only the final	command	 in  a
	      sublist  of this type causes the trap to be executed.  The func‐
	      tion TRAPERR acts the same as TRAPZERR on systems where there is
	      no SIGERR (this is the usual case).

       The  functions  beginning  `TRAP' may alternatively be defined with the
       trap builtin:  this may be preferable for some uses, as they  are  then
       run in the environment of the calling process, rather than in their own
       function environment.  Apart from the difference in  calling  procedure
       and  the fact that the function form appears in lists of functions, the
       forms

	      TRAPNAL() {
	       # code
	      }

       and

	      trap '
	       # code
	      ' NAL

       are equivalent.

JOBS
       If the MONITOR option is set, an interactive  shell  associates	a  job
       with  each  pipeline.  It keeps a table of current jobs, printed by the
       jobs command, and assigns them small integer numbers.  When  a  job  is
       started	asynchronously	with  `&', the shell prints a line to standard
       error which looks like:

	      [1] 1234

       indicating that the job which was started asynchronously was job number
       1 and had one (top-level) process, whose process ID was 1234.

       If  a  job  is  started with `&|' or `&!', then that job is immediately
       disowned.  After startup, it does not have a place in  the  job	table,
       and is not subject to the job control features described here.

       If  you are running a job and wish to do something else you may hit the
       key ^Z (control-Z) which sends a TSTP signal to the current job:	  this
       key  may	 be redefined by the susp option of the external stty command.
       The shell will then normally indicate  that  the	 job  has  been	 `sus‐
       pended',	 and  print another prompt.  You can then manipulate the state
       of this job, putting it in the background with the bg command,  or  run
       some  other  commands  and  then eventually bring the job back into the
       foreground with the foreground command fg.  A ^Z takes  effect  immedi‐
       ately  and is like an interrupt in that pending output and unread input
       are discarded when it is typed.

       A job being run in the background will suspend if it tries to read from
       the  terminal.  Background jobs are normally allowed to produce output,
       but this can be disabled by giving the command `stty tostop'.   If  you
       set this tty option, then background jobs will suspend when they try to
       produce output like they do when they try to read input.

       When a command is suspended and continued later with  the  fg  or  wait
       builtins,  zsh  restores tty modes that were in effect when it was sus‐
       pended.	This (intentionally) does not apply if the command is  contin‐
       ued via `kill -CONT', nor when it is continued with bg.

       There  are  several  ways  to refer to jobs in the shell.  A job can be
       referred to by the process ID of any process of the job or  by  one  of
       the following:

       %number
	      The job with the given number.
       %string
	      Any job whose command line begins with string.
       %?string
	      Any job whose command line contains string.
       %%     Current job.
       %+     Equivalent to `%%'.
       %-     Previous job.

       The shell learns immediately whenever a process changes state.  It nor‐
       mally informs you whenever a job becomes blocked	 so  that  no  further
       progress	 is possible.  If the NOTIFY option is not set, it waits until
       just before it prints a prompt before it informs you.  All such notifi‐
       cations	are  sent directly to the terminal, not to the standard output
       or standard error.

       When the monitor mode is on, each background job that  completes	 trig‐
       gers any trap set for CHLD.

       When  you  try  to leave the shell while jobs are running or suspended,
       you will be warned that `You have suspended (running) jobs'.   You  may
       use  the	 jobs command to see what they are.  If you do this or immedi‐
       ately try to exit again, the shell will not warn you a second time; the
       suspended  jobs will be terminated, and the running jobs will be sent a
       SIGHUP signal, if the HUP option is set.

       To avoid having the shell terminate the running jobs,  either  use  the
       nohup command (see nohup(1)) or the disown builtin.

SIGNALS
       The INT and QUIT signals for an invoked command are ignored if the com‐
       mand is followed by `&' and the MONITOR	option	is  not	 active.   The
       shell  itself  always ignores the QUIT signal.  Otherwise, signals have
       the values inherited by the shell from its parent (but see the  TRAPNAL
       special functions in the section `Functions').

ARITHMETIC EVALUATION
       The  shell  can	perform	 integer and floating point arithmetic, either
       using the builtin let, or via a substitution of the form $((...)).  For
       integers,  the  shell is usually compiled to use 8-byte precision where
       this is available, otherwise precision is 4 bytes.  This can be tested,
       for example, by giving the command `print - $(( 12345678901 ))'; if the
       number appears unchanged, the precision is at least 8 bytes.   Floating
       point  arithmetic  always  uses	the `double' type with whatever corre‐
       sponding precision is provided by the compiler and the library.

       The let builtin command takes arithmetic expressions as arguments; each
       is  evaluated  separately.   Since many of the arithmetic operators, as
       well as spaces, require quoting, an alternative form is	provided:  for
       any command which begins with a `((', all the characters until a match‐
       ing `))' are treated as a quoted expression  and	 arithmetic  expansion
       performed  as  for  an  argument	 of let.  More precisely, `((...))' is
       equivalent to `let "..."'.  The return status is 0  if  the  arithmetic
       value of the expression is non-zero, 1 if it is zero, and 2 if an error
       occurred.

       For example, the following statement

	      (( val = 2 + 1 ))

       is equivalent to

	      let "val = 2 + 1"

       both assigning the value 3 to the shell variable val  and  returning  a
       zero status.

       Integers can be in bases other than 10.	A leading `0x' or `0X' denotes
       hexadecimal.  Integers may also be of the form `base#n', where base  is
       a decimal number between two and thirty-six representing the arithmetic
       base and n is a number in that base (for example,  `16#ff'  is  255  in
       hexadecimal).   The base# may also be omitted, in which case base 10 is
       used.  For backwards compatibility the form `[base]n' is also accepted.

       It is also possible to specify a base to be used for output in the form
       `[#base]',  for	example	 `[#16]'.  This is used when outputting arith‐
       metical substitutions or when assigning to scalar  parameters,  but  an
       explicitly  defined  integer  or	 floating  point parameter will not be
       affected.  If an integer variable is implicitly defined	by  an	arith‐
       metic  expression,  any	base  specified in this way will be set as the
       variable's output arithmetic base as if the option  `-i	base'  to  the
       typeset builtin had been used.  The expression has no precedence and if
       it occurs more than once in a mathematical expression, the last encoun‐
       tered  is  used.	  For  clarity it is recommended that it appear at the
       beginning of an expression.  As an example:

	      typeset -i 16 y
	      print $(( [#8] x = 32, y = 32 ))
	      print $x $y

       outputs first `8#40', the rightmost value in the given output base, and
       then  `8#40 16#20', because y has been explicitly declared to have out‐
       put base 16, while x (assuming it does not already exist) is implicitly
       typed  by  the arithmetic evaluation, where it acquires the output base
       8.

       If the C_BASES option is set, hexadecimal numbers  in  the  standard  C
       format,	for  example 0xFF instead of the usual `16#FF'.	 If the option
       OCTAL_ZEROES is also set (it is not by default), octal numbers will  be
       treated	similarly  and	hence appear as `077' instead of `8#77'.  This
       option has no effect on the output of bases other than hexadecimal  and
       octal, and these formats are always understood on input.

       When  an output base is specified using the `[#base]' syntax, an appro‐
       priate base prefix will be output if necessary, so that the value  out‐
       put  is	valid  syntax  for  input.   If	 the # is doubled, for example
       `[##16]', then no base prefix is output.

       Floating point constants are recognized by the presence	of  a  decimal
       point  or an exponent.  The decimal point may be the first character of
       the constant, but the exponent character e or E may not, as it will  be
       taken for a parameter name.

       An  arithmetic  expression uses nearly the same syntax, precedence, and
       associativity of expressions in C.  The following  operators  are  sup‐
       ported (listed in decreasing order of precedence):

       + - ! ~ ++ --
	      unary plus/minus, logical NOT, complement, {pre,post}{in,de}cre‐
	      ment
       << >>  bitwise shift left, right
       &      bitwise AND
       ^      bitwise XOR
       |      bitwise OR
       **     exponentiation
       * / %  multiplication, division, modulus (remainder)
       + -    addition, subtraction
       < > <= >=
	      comparison
       == !=  equality and inequality
       &&     logical AND
       || ^^  logical OR, XOR
       ? :    ternary operator
       = += -= *= /= %= &= ^= |= <<= >>= &&= ||= ^^= **=
	      assignment
       ,      comma operator

       The operators `&&', `||', `&&=', and `||='  are	short-circuiting,  and
       only  one of the latter two expressions in a ternary operator is evalu‐
       ated.  Note the precedence of the bitwise AND, OR, and XOR operators.

       Mathematical functions can be  called  with  the	 syntax	 `func(args)',
       where  the  function  decides  if  the  args  is	 used as a string or a
       comma-separated list of arithmetic  expressions.	 The  shell  currently
       defines	no mathematical functions by default, but the module zsh/math‐
       func may be loaded with the zmodload builtin to provide standard float‐
       ing point mathematical functions.

       An  expression of the form `##x' where x is any character sequence such
       as `a', `^A', or `\M-\C-x' gives the value of  this  character  and  an
       expression of the form `#foo' gives the value of the first character of
       the contents of the parameter foo.  Character values are	 according  to
       the  character  set used in the current locale; for multibyte character
       handling the option MULTIBYTE must be set.  Note that this form is dif‐
       ferent  from `$#foo', a standard parameter substitution which gives the
       length of the parameter foo.  `#\' is accepted instead of `##', but its
       use is deprecated.

       Named  parameters  and  subscripted  arrays  can	 be referenced by name
       within an arithmetic expression without using the  parameter  expansion
       syntax.	For example,

	      ((val2 = val1 * 2))

       assigns twice the value of $val1 to the parameter named val2.

       An  internal  integer representation of a named parameter can be speci‐
       fied with the integer builtin.  Arithmetic evaluation is	 performed  on
       the  value  of each assignment to a named parameter declared integer in
       this manner.  Assigning a floating point number to an  integer  results
       in rounding down to the next integer.

       Likewise,  floating  point  numbers  can	 be  declared  with  the float
       builtin; there are two types, differing only in their output format, as
       described  for  the typeset builtin.  The output format can be bypassed
       by using arithmetic substitution instead of the parameter substitution,
       i.e.  `${float}'	 uses  the  defined  format,  but  `$((float))' uses a
       generic floating point format.

       Promotion of integer to floating point values is performed where neces‐
       sary.   In  addition,  if  any operator which requires an integer (`~',
       `&', `|', `^', `%', `<<', `>>' and their equivalents  with  assignment)
       is given a floating point argument, it will be silently rounded down to
       the next integer.

       Scalar variables can hold integer or floating point values at different
       times; there is no memory of the numeric type in this case.

       If a variable is first assigned in a numeric context without previously
       being declared, it will be implicitly typed as  integer	or  float  and
       retain  that  type either until the type is explicitly changed or until
       the end of the scope.  This  can	 have  unforeseen  consequences.   For
       example, in the loop

	      for (( f = 0; f < 1; f += 0.1 )); do
	      # use $f
	      done

       if  f has not already been declared, the first assignment will cause it
       to be created as an integer, and consequently the operation `f +=  0.1'
       will  always cause the result to be truncated to zero, so that the loop
       will fail.  A simple fix would be to turn the initialization into `f  =
       0.0'.   It is therefore best to declare numeric variables with explicit
       types.

CONDITIONAL EXPRESSIONS
       A conditional expression is used with the [[ compound command  to  test
       attributes  of  files  and  to compare strings.	Each expression can be
       constructed from one or more of the following unary or  binary  expres‐
       sions:

       -a file
	      true if file exists.

       -b file
	      true if file exists and is a block special file.

       -c file
	      true if file exists and is a character special file.

       -d file
	      true if file exists and is a directory.

       -e file
	      true if file exists.

       -f file
	      true if file exists and is a regular file.

       -g file
	      true if file exists and has its setgid bit set.

       -h file
	      true if file exists and is a symbolic link.

       -k file
	      true if file exists and has its sticky bit set.

       -n string
	      true if length of string is non-zero.

       -o option
	      true if option named option is on.  option may be a single char‐
	      acter, in which case it is a single letter  option  name.	  (See
	      the section `Specifying Options'.)

       -p file
	      true if file exists and is a FIFO special file (named pipe).

       -r file
	      true if file exists and is readable by current process.

       -s file
	      true if file exists and has size greater than zero.

       -t fd  true  if file descriptor number fd is open and associated with a
	      terminal device.	(note: fd is not optional)

       -u file
	      true if file exists and has its setuid bit set.

       -w file
	      true if file exists and is writable by current process.

       -x file
	      true if file exists and is executable by	current	 process.   If
	      file  exists  and	 is  a directory, then the current process has
	      permission to search in the directory.

       -z string
	      true if length of string is zero.

       -L file
	      true if file exists and is a symbolic link.

       -O file
	      true if file exists and is owned by the  effective  user	ID  of
	      this process.

       -G file
	      true if file exists and its group matches the effective group ID
	      of this process.

       -S file
	      true if file exists and is a socket.

       -N file
	      true if file exists and its access time is not  newer  than  its
	      modification time.

       file1 -nt file2
	      true if file1 exists and is newer than file2.

       file1 -ot file2
	      true if file1 exists and is older than file2.

       file1 -ef file2
	      true if file1 and file2 exist and refer to the same file.

       string = pattern
       string == pattern
	      true  if string matches pattern.	The `==' form is the preferred
	      one.  The `=' form is for backward compatibility and  should  be
	      considered obsolete.

       string != pattern
	      true if string does not match pattern.

       string =~ regexp
	      true  if	string	matches the regular expression regexp.	If the
	      option RE_MATCH_PCRE is set regexp is tested as a	 PCRE  regular
	      expression  using	 the  zsh/pcre	module, else it is tested as a
	      POSIX extended regular expression using  the  zsh/regex  module.
	      If  the option BASH_REMATCH is set the array BASH_REMATCH is set
	      to the substring that matched the pattern followed by  the  sub‐
	      strings  that  matched  parenthesised  subexpressions within the
	      pattern; otherwise, the scalar parameter MATCH  is  set  to  the
	      substring	 that  matched	the pattern and and the array match to
	      the substrings that matched parenthesised subexpressions.

       string1 < string2
	      true if string1 comes before string2 based  on  ASCII  value  of
	      their characters.

       string1 > string2
	      true  if	string1	 comes	after  string2 based on ASCII value of
	      their characters.

       exp1 -eq exp2
	      true if exp1 is numerically equal to exp2.

       exp1 -ne exp2
	      true if exp1 is numerically not equal to exp2.

       exp1 -lt exp2
	      true if exp1 is numerically less than exp2.

       exp1 -gt exp2
	      true if exp1 is numerically greater than exp2.

       exp1 -le exp2
	      true if exp1 is numerically less than or equal to exp2.

       exp1 -ge exp2
	      true if exp1 is numerically greater than or equal to exp2.

       ( exp )
	      true if exp is true.

       ! exp  true if exp is false.

       exp1 && exp2
	      true if exp1 and exp2 are both true.

       exp1 || exp2
	      true if either exp1 or exp2 is true.

       Normal shell expansion is performed on the  file,  string  and  pattern
       arguments, but the result of each expansion is constrained to be a sin‐
       gle word, similar to the effect of  double  quotes.   However,  pattern
       metacharacters  are  active for the pattern arguments; the patterns are
       the same as those used for filename  generation,	 see  zshexpn(1),  but
       there  is  no  special  behaviour  of `/' nor initial dots, and no glob
       qualifiers are allowed.

       In each of the above expressions, if file is of the  form  `/dev/fd/n',
       where  n	 is  an	 integer, then the test applied to the open file whose
       descriptor number is n, even if the underlying system does not  support
       the /dev/fd directory.

       In  the	forms which do numeric comparison, the expressions exp undergo
       arithmetic expansion as if they were enclosed in $((...)).

       For example, the following:

	      [[ ( -f foo || -f bar ) && $report = y* ]] && print File exists.

       tests if either file foo or file bar exists, and if so, if the value of
       the  parameter  report  begins  with  `y'; if the complete condition is
       true, the message `File exists.' is printed.

EXPANSION OF PROMPT SEQUENCES
       Prompt sequences undergo a special form of  expansion.	This  type  of
       expansion is also available using the -P option to the print builtin.

       If the PROMPT_SUBST option is set, the prompt string is first subjected
       to parameter expansion, command substitution and arithmetic  expansion.
       See zshexpn(1).

       Certain escape sequences may be recognised in the prompt string.

       If  the	PROMPT_BANG  option is set, a `!' in the prompt is replaced by
       the current history event number.  A literal `!'	 may  then  be	repre‐
       sented as `!!'.

       If  the	PROMPT_PERCENT	option	is  set, certain escape sequences that
       start with `%' are expanded.  Many escapes are  followed	 by  a	single
       character,  although  some  of  these take an optional integer argument
       that should appear between the  `%'  and	 the  next  character  of  the
       sequence.   More	 complicated escape sequences are available to provide
       conditional expansion.

SIMPLE PROMPT ESCAPES
   Special characters
       %%     A `%'.

       %)     A `)'.

   Login information
       %l     The line (tty) the user is logged in on, without `/dev/' prefix.
	      If the name starts with `/dev/tty', that prefix is stripped.

       %M     The full machine hostname.

       %m     The hostname up to the first `.'.	 An integer may follow the `%'
	      to specify how many components  of  the  hostname	 are  desired.
	      With a negative integer, trailing components of the hostname are
	      shown.

       %n     $USERNAME.

       %y     The line (tty) the user is logged in on, without `/dev/' prefix.
	      This does not treat `/dev/tty' names specially.

   Shell state
       %#     A	 `#'  if  the  shell is running with privileges, a `%' if not.
	      Equivalent to `%(!.#.%%)'.  The definition of `privileged',  for
	      these  purposes,	is  that either the effective user ID is zero,
	      or, if POSIX.1e capabilities are supported, that	at  least  one
	      capability  is  raised  in  either  the Effective or Inheritable
	      capability vectors.

       %?     The return status of the last command executed just  before  the
	      prompt.

       %_     The  status  of the parser, i.e. the shell constructs (like `if'
	      and `for') that have been started on the command line. If	 given
	      an  integer  number  that	 many strings will be printed; zero or
	      negative or no integer means print as many as there  are.	  This
	      is most useful in prompts PS2 for continuation lines and PS4 for
	      debugging with the XTRACE option; in the	latter	case  it  will
	      also work non-interactively.

       %d
       %/     Present  working	directory  ($PWD).   If an integer follows the
	      `%', it specifies a number of trailing  components  of  $PWD  to
	      show;  zero  means the whole path.  A negative integer specifies
	      leading components, i.e. %-1d specifies the first component.

       %~     As %d and %/, but if $PWD has a named directory as  its  prefix,
	      that  part  is  replaced	by  a  `~' followed by the name of the
	      directory.  If it starts with $HOME, that part is replaced by  a
	      `~'.

       %h
       %!     Current history event number.

       %i     The  line number currently being executed in the script, sourced
	      file, or shell function given by %N.  This is  most  useful  for
	      debugging as part of $PS4.

       %j     The number of jobs.

       %L     The current value of $SHLVL.

       %N     The name of the script, sourced file, or shell function that zsh
	      is currently executing, whichever was started most recently.  If
	      there is none, this is equivalent to the parameter $0.  An inte‐
	      ger may follow the `%' to specify a number of trailing path com‐
	      ponents  to  show; zero means the full path.  A negative integer
	      specifies leading components.

       %c
       %.
       %C     Trailing component of $PWD.  An integer may follow  the  `%'  to
	      get  more	 than  one component.  Unless `%C' is used, tilde con‐
	      traction is performed first.  These are deprecated as %c and  %C
	      are equivalent to %1~ and %1/, respectively, while explicit pos‐
	      itive integers have the  same  effect  as	 for  the  latter  two
	      sequences.

   Date and time
       %D     The date in yy-mm-dd format.

       %T     Current time of day, in 24-hour format.

       %t
       %@     Current time of day, in 12-hour, am/pm format.

       %*     Current time of day in 24-hour format, with seconds.

       %w     The date in day-dd format.

       %W     The date in mm/dd/yy format.

       %D{string}
	      string  is  formatted  using  the	 strftime function.  See strf‐
	      time(3) for more details.	 Three additional codes are available:
	      %f  prints the day of the month, like %e but without any preced‐
	      ing space if the day is a single digit, and %K/%L correspond  to
	      %k/%l  for  the  hour  of the day (24/12 hour clock) in the same
	      way.

   Visual effects
       %B (%b)
	      Start (stop) boldface mode.

       %E     Clear to end of line.

       %U (%u)
	      Start (stop) underline mode.

       %S (%s)
	      Start (stop) standout mode.

       %{...%}
	      Include a string as  a  literal  escape  sequence.   The	string
	      within  the braces should not change the cursor position.	 Brace
	      pairs can nest.

	      A positive numeric argument between  the	%  and	the  %%({)  is
	      treated as described for %G below.

       %G     Within  a	 %{...%} sequence, include a `glitch': that is, assume
	      that a single character width will be output.   This  is	useful
	      when  outputting	characters  that otherwise cannot be correctly
	      handled by the shell, such as the	 alternate  character  set  on
	      some  terminals.	 The  characters  in  question can be included
	      within a %{...%} sequence together with the  appropriate	number
	      of  %G  sequences	 to  indicate  the  correct width.  An integer
	      between the `%' and `G' indicates a character width  other  than
	      one.   Hence  %{seq%2G%} outputs seq and assumes it takes up the
	      width of two standard characters.

	      Multiple uses of %G accumulate in the obvious fashion; the posi‐
	      tion  of	the %G is unimportant.	Negative integers are not han‐
	      dled.

	      Note that when prompt truncation is in use it  is	 advisable  to
	      divide  up  output  into	single	characters within each %{...%}
	      group so that the correct truncation point can be found.

CONDITIONAL SUBSTRINGS IN PROMPTS
       %v     The value of the first element of	 the  psvar  array  parameter.
	      Following	 the  `%'  with	 an  integer gives that element of the
	      array.  Negative integers count from the end of the array.

       %(x.true-text.false-text)
	      Specifies a ternary expression.  The character following	the  x
	      is  arbitrary;  the  same character is used to separate the text
	      for the `true' result from that for the  `false'	result.	  This
	      separator	 may  not appear in the true-text, except as part of a
	      %-escape sequence.  A `)' may appear in the false-text as	 `%)'.
	      true-text	 and  false-text  may  both contain arbitrarily-nested
	      escape sequences, including further ternary expressions.

	      The left parenthesis may be preceded or followed by  a  positive
	      integer  n,  which defaults to zero.  A negative integer will be
	      multiplied by -1.	 The test character x may be any of  the  fol‐
	      lowing:

	      !	     True if the shell is running with privileges.
	      #	     True if the effective uid of the current process is n.
	      ?	     True if the exit status of the last command was n.
	      _	     True if at least n shell constructs were started.
	      C
	      /	     True if the current absolute path has at least n elements
		     relative to the root directory, hence / is counted	 as  0
		     elements.
	      c
	      .
	      ~	     True if the current path, with prefix replacement, has at
		     least n elements relative to the root directory, hence  /
		     is counted as 0 elements.
	      D	     True if the month is equal to n (January = 0).
	      d	     True if the day of the month is equal to n.
	      g	     True if the effective gid of the current process is n.
	      j	     True if the number of jobs is at least n.
	      L	     True if the SHLVL parameter is at least n.
	      l	     True  if  at least n characters have already been printed
		     on the current line.
	      S	     True if the SECONDS parameter is at least n.
	      T	     True if the time in hours is equal to n.
	      t	     True if the time in minutes is equal to n.
	      v	     True if the array psvar has at least n elements.
	      w	     True if the day of the week is equal to n (Sunday = 0).

       %<string<
       %>string>
       %[xstring]
	      Specifies truncation behaviour for the remainder of  the	prompt
	      string.	 The   third,	deprecated,   form  is	equivalent  to
	      `%xstringx', i.e. x may be `<' or `>'.   The  numeric  argument,
	      which  in	 the  third form may appear immediately after the `[',
	      specifies the maximum permitted length of	 the  various  strings
	      that  can	 be  displayed in the prompt.  The string will be dis‐
	      played in place of the truncated portion	of  any	 string;  note
	      this does not undergo prompt expansion.

	      The  forms  with `<' truncate at the left of the string, and the
	      forms with `>' truncate at the right of the string.   For	 exam‐
	      ple,  if	the  current  directory	 is  `/home/pike',  the prompt
	      `%8<..<%/' will expand to `..e/pike'.  In this string, the  ter‐
	      minating	character (`<', `>' or `]'), or in fact any character,
	      may be quoted by a preceding `\'; note when using print -P, how‐
	      ever, that this must be doubled as the string is also subject to
	      standard	print  processing,  in	addition  to  any  backslashes
	      removed  by a double quoted string:  the worst case is therefore
	      `print -P "%<\\\\<<..."'.

	      If the string is longer than the specified truncation length, it
	      will appear in full, completely replacing the truncated string.

	      The part of the prompt string to be truncated runs to the end of
	      the string, or to the end of the next  enclosing	group  of  the
	      `%('  construct,	or  to	the next truncation encountered at the
	      same grouping level (i.e. truncations inside a  `%('  are	 sepa‐
	      rate), which ever comes first.  In particular, a truncation with
	      argument zero (e.g. `%<<') marks the end of  the	range  of  the
	      string  to  be truncated while turning off truncation from there
	      on. For example, the prompt  '%10<...<%~%<<%#  '	will  print  a
	      truncated representation of the current directory, followed by a
	      `%' or `#', followed by a space.	Without the `%<<',  those  two
	      characters would be included in the string to be truncated.

ZSHEXPN(1)							    ZSHEXPN(1)

NAME
       zshexpn - zsh expansion and substitution

DESCRIPTION
       The  following types of expansions are performed in the indicated order
       in five steps:

       History Expansion
	      This is performed only in interactive shells.

       Alias Expansion
	      Aliases are expanded immediately	before	the  command  line  is
	      parsed as explained under Aliasing in zshmisc(1).

       Process Substitution
       Parameter Expansion
       Command Substitution
       Arithmetic Expansion
       Brace Expansion
	      These  five  are performed in one step in left-to-right fashion.
	      After these expansions, all unquoted occurrences of the  charac‐
	      ters `\', `'' and `"' are removed.

       Filename Expansion
	      If  the  SH_FILE_EXPANSION option is set, the order of expansion
	      is modified for compatibility with sh and	 ksh.	In  that  case
	      filename	expansion  is performed immediately after alias expan‐
	      sion, preceding the set of five expansions mentioned above.

       Filename Generation
	      This expansion, commonly referred to as globbing, is always done
	      last.

       The following sections explain the types of expansion in detail.

HISTORY EXPANSION
       History	expansion  allows you to use words from previous command lines
       in the command line you are typing.  This simplifies  spelling  correc‐
       tions and the repetition of complicated commands or arguments.  Immedi‐
       ately before execution, each command is saved in the history list,  the
       size  of	 which	is controlled by the HISTSIZE parameter.  The one most
       recent command is always retained in any case.  Each saved  command  in
       the  history  list  is called a history event and is assigned a number,
       beginning with 1 (one) when the shell starts up.	  The  history	number
       that you may see in your prompt (see Prompt Expansion in zshmisc(1)) is
       the number that is to be assigned to the next command.

   Overview
       A history expansion begins with the first character  of	the  histchars
       parameter,  which is `!' by default, and may occur anywhere on the com‐
       mand line; history expansions do not nest.  The `!' can be escaped with
       `\' or can be enclosed between a pair of single quotes ('') to suppress
       its special meaning.  Double quotes will not work for this.   Following
       this history character is an optional event designator (see the section
       `Event Designators') and then an optional word designator (the  section
       `Word  Designators');  if  neither  of these designators is present, no
       history expansion occurs.

       Input lines  containing	history	 expansions  are  echoed  after	 being
       expanded,  but  before  any  other expansions take place and before the
       command is executed.  It is this expanded form that is recorded as  the
       history event for later references.

       By  default, a history reference with no event designator refers to the
       same event as any preceding history reference on that command line;  if
       it  is the only history reference in a command, it refers to the previ‐
       ous command.  However, if the option CSH_JUNKIE_HISTORY	is  set,  then
       every  history  reference  with no event specification always refers to
       the previous command.

       For example, `!' is the event designator for the previous  command,  so
       `!!:1'  always  refers  to  the first word of the previous command, and
       `!!$' always refers to the last word of	the  previous  command.	  With
       CSH_JUNKIE_HISTORY set, then `!:1' and `!$' function in the same manner
       as `!!:1' and `!!$', respectively.  Conversely,	if  CSH_JUNKIE_HISTORY
       is  unset,  then	 `!:1'	and  `!$'  refer  to the first and last words,
       respectively, of the same event referenced by the nearest other history
       reference  preceding them on the current command line, or to the previ‐
       ous command if there is no preceding reference.

       The character sequence `^foo^bar' (where `^'  is	 actually  the	second
       character of the histchars parameter) repeats the last command, replac‐
       ing the string foo with bar.  More precisely, the sequence  `^foo^bar^'
       is synonymous with `!!:s^foo^bar^', hence other modifiers (see the sec‐
       tion  `Modifiers')  may	follow	the   final   `^'.    In   particular,
       `^foo^bar:G' performs a global substitution.

       If  the	shell encounters the character sequence `!"' in the input, the
       history mechanism is temporarily disabled until the current  list  (see
       zshmisc(1))  is	fully parsed.  The `!"' is removed from the input, and
       any subsequent `!' characters have no special significance.

       A less convenient but more comprehensible form of command history  sup‐
       port is provided by the fc builtin.

   Event Designators
       An  event designator is a reference to a command-line entry in the his‐
       tory list.  In the list below, remember that the initial	 `!'  in  each
       item  may  be  changed  to  another  character by setting the histchars
       parameter.

       !      Start a history expansion, except when followed by a blank, new‐
	      line,  `=' or `('.  If followed immediately by a word designator
	      (see the section `Word Designators'), this forms a history  ref‐
	      erence with no event designator (see the section `Overview').

       !!     Refer  to	 the  previous	command.   By  itself,	this expansion
	      repeats the previous command.

       !n     Refer to command-line n.

       !-n    Refer to the current command-line minus n.

       !str   Refer to the most recent command starting with str.

       !?str[?]
	      Refer to the most recent command containing str.	 The  trailing
	      `?'  is necessary if this reference is to be followed by a modi‐
	      fier or followed by any text that is not to be  considered  part
	      of str.

       !#     Refer  to the current command line typed in so far.  The line is
	      treated as if it were complete up	 to  and  including  the  word
	      before the one with the `!#' reference.

       !{...} Insulate a history reference from adjacent characters (if neces‐
	      sary).

   Word Designators
       A word designator indicates which word or words of a given command line
       are to be included in a history reference.  A `:' usually separates the
       event specification from the word designator.  It may be	 omitted  only
       if  the	word designator begins with a `^', `$', `*', `-' or `%'.  Word
       designators include:

       0      The first input word (command).
       n      The nth argument.
       ^      The first argument.  That is, 1.
       $      The last argument.
       %      The word matched by (the most recent) ?str search.
       x-y    A range of words; x defaults to 0.
       *      All the arguments, or a null value if there are none.
       x*     Abbreviates `x-$'.
       x-     Like `x*' but omitting word $.

       Note that a `%' word designator works only when used in	one  of	 `!%',
       `!:%'  or `!?str?:%', and only when used after a !? expansion (possibly
       in an earlier command).	Anything else results in  an  error,  although
       the error may not be the most obvious one.

   Modifiers
       After  the  optional  word designator, you can add a sequence of one or
       more of the following modifiers, each preceded by a `:'.	  These	 modi‐
       fiers  also  work  on  the  result of filename generation and parameter
       expansion, except where noted.

       h      Remove a trailing pathname component, leaving  the  head.	  This
	      works like `dirname'.

       r      Remove a filename extension of the form `.xxx', leaving the root
	      name.

       e      Remove all but the extension.

       t      Remove all leading pathname components, leaving the tail.	  This
	      works like `basename'.

       p      Print  the  new  command but do not execute it.  Only works with
	      history expansion.

       q      Quote the substituted  words,  escaping  further	substitutions.
	      Works with history expansion and parameter expansion, though for
	      parameters it is only useful if the  resulting  text  is	to  be
	      re-evaluated such as by eval.

       Q      Remove one level of quotes from the substituted words.

       x      Like  q, but break into words at whitespace.  Does not work with
	      parameter expansion.

       l      Convert the words to all lowercase.

       u      Convert the words to all uppercase.

       s/l/r[/]
	      Substitute r for l as described below.  The substitution is done
	      only  for	 the  first string that matches l.  For arrays and for
	      filename generation, this applies to each word of	 the  expanded
	      text.  See below for further notes on substitutions.

	      The  forms  `gs/l/r' and `s/l/r/:G' perform global substitution,
	      i.e. substitute every occurrence of r for l.  Note that the g or
	      :G must appear in exactly the position shown.

       &      Repeat  the  previous  s	substitution.  Like s, may be preceded
	      immediately by a g.  In parameter expansion the  &  must	appear
	      inside braces, and in filename generation it must be quoted with
	      a backslash.

       The s/l/r/ substitution works as follows.   By  default	the  left-hand
       side  of	 substitutions	are  not patterns, but character strings.  Any
       character can be used as the delimiter in place of  `/'.	  A  backslash
       quotes	the   delimiter	  character.	The   character	 `&',  in  the
       right-hand-side r, is replaced by the text from the  left-hand-side  l.
       The  `&'	 can  be  quoted with a backslash.  A null l uses the previous
       string either from the previous l or from the contextual scan string  s
       from  `!?s'.  You can omit the rightmost delimiter if a newline immedi‐
       ately follows r; the rightmost `?' in a context scan can	 similarly  be
       omitted.	 Note the same record of the last l and r is maintained across
       all forms of expansion.

       If the option HIST_SUBST_PATTERN is set, l is treated as a  pattern  of
       the  usual  form	 described  in	the section FILENAME GENERATION below.
       This can be used in all the places where modifiers are available; note,
       however, that in globbing qualifiers parameter substitution has already
       taken place, so parameters in the replacement string should  be	quoted
       to  ensure  they are replaced at the correct time.  Note also that com‐
       plicated patterns used in globbing qualifiers  may  need	 the  extended
       glob  qualifier notation (#q:s/.../.../) in order for the shell to rec‐
       ognize the expression as a glob qualifier.  Further, note that bad pat‐
       terns  in the substitution are not subject to the NO_BAD_PATTERN option
       so will cause an error.

       When HIST_SUBST_PATTERN is set, l may start with a # to	indicate  that
       the  pattern  must  match at the start of the string to be substituted,
       and a % may appear at the start or after an # to indicate that the pat‐
       tern must match at the end of the string to be substituted.  The % or #
       may be quoted with two backslashes.

       For example, the following piece of filename generation code  with  the
       EXTENDED_GLOB option:

	      print *.c(#q:s/#%(#b)s(*).c/'S${match[1]}.C'/)

       takes  the  expansion  of  *.c  and  applies the glob qualifiers in the
       (#q...) expression, which consists of a substitution modifier  anchored
       to  the	start and end of each word (#%).  This turns on backreferences
       ((#b)), so that the parenthesised subexpression	is  available  in  the
       replacement string as ${match[1]}.  The replacement string is quoted so
       that the parameter is not substituted before the start of filename gen‐
       eration.

       The  following  f, F, w and W modifiers work only with parameter expan‐
       sion and filename generation.  They are listed here to provide a single
       point of reference for all modifiers.

       f      Repeats  the  immediately	 (without  a colon) following modifier
	      until the resulting word doesn't change any more.

       F:expr:
	      Like f, but repeats only n times if the expression  expr	evalu‐
	      ates  to	n.   Any  character can be used instead of the `:'; if
	      `(', `[', or `{' is used as the opening delimiter,  the  closing
	      delimiter should be ')', `]', or `}', respectively.

       w      Makes  the  immediately  following modifier work on each word in
	      the string.

       W:sep: Like w but words are considered to be the parts  of  the	string
	      that  are separated by sep. Any character can be used instead of
	      the `:'; opening parentheses are handled specially, see above.

PROCESS SUBSTITUTION
       Each command argument of the form `<(list)', `>(list)' or `=(list)'  is
       subject	to process substitution.  In the case of the < or > forms, the
       shell runs process list asynchronously.	If  the	 system	 supports  the
       /dev/fd	mechanism, the command argument is the name of the device file
       corresponding to a file descriptor; otherwise, if the  system  supports
       named pipes (FIFOs), the command argument will be a named pipe.	If the
       form with > is selected then writing on this special file will  provide
       input for list.	If < is used, then the file passed as an argument will
       be connected to the output of the list process.	For example,

	      paste <(cut -f1 file1) <(cut -f3 file2) |
	      tee >(process1) >(process2) >/dev/null

       cuts fields 1 and 3 from the files file1 and file2 respectively, pastes
       the  results  together,	and  sends  it	to  the processes process1 and
       process2.

       If =(...) is used instead of <(...), then the file passed as  an	 argu‐
       ment  will be the name of a temporary file containing the output of the
       list process.  This may be used instead of the <	 form  for  a  program
       that expects to lseek (see lseek(2)) on the input file.

       There is an optimisation for substitutions of the form =(<<<arg), where
       arg is a single-word argument to the here-string redirection <<<.  This
       form produces a file name containing the value of arg after any substi‐
       tutions have been performed.  This is handled entirely within the  cur‐
       rent  shell.   This  is	effectively  the  reverse  of the special form
       $(<arg) which treats arg as a file name and replaces it with the file's
       contents.

       The = form is useful as both the /dev/fd and the named pipe implementa‐
       tion of <(...) have drawbacks.  In the former case, some programmes may
       automatically  close  the  file descriptor in question before examining
       the file on the command line, particularly if  this  is	necessary  for
       security	 reasons such as when the programme is running setuid.	In the
       second case, if the programme does not actually open the file, the sub‐
       shell  attempting  to read from or write to the pipe will (in a typical
       implementation, different operating systems may have  different	behav‐
       iour)  block for ever and have to be killed explicitly.	In both cases,
       the shell actually supplies the information using a pipe, so that  pro‐
       grammes that expect to lseek (see lseek(2)) on the file will not work.

       Also  note  that	 the  previous example can be more compactly and effi‐
       ciently written (provided the MULTIOS option is set) as:

	      paste <(cut -f1 file1) <(cut -f3 file2) \
	      > >(process1) > >(process2)

       The shell uses pipes instead of	FIFOs  to  implement  the  latter  two
       process substitutions in the above example.

       There  is  an additional problem with >(process); when this is attached
       to an external command, the parent shell does not wait for  process  to
       finish  and  hence  an immediately following command cannot rely on the
       results being complete.	The problem  and  solution  are	 the  same  as
       described  in the section MULTIOS in zshmisc(1).	 Hence in a simplified
       version of the example above:

	      paste <(cut -f1 file1) <(cut -f3 file2) > >(process)

       (note that  no  MULTIOS	are  involved),	 process  will	be  run	 asyn‐
       chronously.  The workaround is:

	      { paste <(cut -f1 file1) <(cut -f3 file2) } > >(process)

       The  extra  processes here are spawned from the parent shell which will
       wait for their completion.

PARAMETER EXPANSION
       The character `$' is used to introduce parameter expansions.  See  zsh‐
       param(1) for a description of parameters, including arrays, associative
       arrays, and subscript notation to access individual array elements.

       Note in particular the fact that words of unquoted parameters  are  not
       automatically  split  on	 whitespace unless the option SH_WORD_SPLIT is
       set; see references to this option below for more details.  This is  an
       important difference from other shells.

       In  the	expansions discussed below that require a pattern, the form of
       the pattern is the same as that used for filename generation;  see  the
       section	`Filename  Generation'.	  Note that these patterns, along with
       the replacement text of any substitutions, are  themselves  subject  to
       parameter  expansion,  command  substitution, and arithmetic expansion.
       In addition to the following operations, the colon modifiers  described
       in  the	section	 `Modifiers' in the section `History Expansion' can be
       applied:	 for example, ${i:s/foo/bar/} performs string substitution  on
       the expansion of parameter $i.

       ${name}
	      The  value,  if  any, of the parameter name is substituted.  The
	      braces are required if the expansion is to be followed by a let‐
	      ter,  digit, or underscore that is not to be interpreted as part
	      of name.	In addition, more complicated  forms  of  substitution
	      usually require the braces to be present; exceptions, which only
	      apply if the option KSH_ARRAYS is not set,  are  a  single  sub‐
	      script  or  any colon modifiers appearing after the name, or any
	      of the characters `^', `=', `~', `#' or `+' appearing before the
	      name, all of which work with or without braces.

	      If  name is an array parameter, and the KSH_ARRAYS option is not
	      set, then the value of each element of name is substituted,  one
	      element  per word.  Otherwise, the expansion results in one word
	      only; with KSH_ARRAYS, this is the first element	of  an	array.
	      No   field   splitting   is   done  on  the  result  unless  the
	      SH_WORD_SPLIT  option  is	 set.	See  also  the	flags  =   and
	      s:string:.

       ${+name}
	      If  name is the name of a set parameter `1' is substituted, oth‐
	      erwise `0' is substituted.

       ${name-word}
       ${name:-word}
	      If name is set, or in the second form is non-null, then  substi‐
	      tute  its	 value; otherwise substitute word.  In the second form
	      name may be omitted, in which case word is always substituted.

       ${name+word}
       ${name:+word}
	      If name is set, or in the second form is non-null, then  substi‐
	      tute word; otherwise substitute nothing.

       ${name=word}
       ${name:=word}
       ${name::=word}
	      In  the first form, if name is unset then set it to word; in the
	      second form, if name is unset or null then set it to  word;  and
	      in  the  third  form,  unconditionally set name to word.	In all
	      forms, the value of the parameter is then substituted.

       ${name?word}
       ${name:?word}
	      In the first form, if name is set, or in the second form if name
	      is  both set and non-null, then substitute its value; otherwise,
	      print word and exit from the shell.  Interactive shells  instead
	      return  to the prompt.  If word is omitted, then a standard mes‐
	      sage is printed.

       In any of the above expressions that test a variable and substitute  an
       alternate  word,	 note  that  you can use standard shell quoting in the
       word  value  to	selectively  override  the  splitting  done   by   the
       SH_WORD_SPLIT option and the = flag, but not splitting by the s:string:
       flag.

       In the following expressions, when name is an array and	the  substitu‐
       tion is not quoted, or if the `(@)' flag or the name[@] syntax is used,
       matching and replacement is performed on each array element separately.

       ${name#pattern}
       ${name##pattern}
	      If the pattern matches the beginning of the value of name,  then
	      substitute  the  value of name with the matched portion deleted;
	      otherwise, just substitute the value  of	name.	In  the	 first
	      form,  the smallest matching pattern is preferred; in the second
	      form, the largest matching pattern is preferred.

       ${name%pattern}
       ${name%%pattern}
	      If the pattern matches the end of the value of name,  then  sub‐
	      stitute the value of name with the matched portion deleted; oth‐
	      erwise, just substitute the value of name.  In the  first	 form,
	      the  smallest matching pattern is preferred; in the second form,
	      the largest matching pattern is preferred.

       ${name:#pattern}
	      If the pattern matches the value of name,	 then  substitute  the
	      empty  string; otherwise, just substitute the value of name.  If
	      name is an array the matching array elements  are	 removed  (use
	      the `(M)' flag to remove the non-matched elements).

       ${name/pattern/repl}
       ${name//pattern/repl}
	      Replace  the  longest possible match of pattern in the expansion
	      of parameter name by string repl.	 The first form replaces  just
	      the  first  occurrence,  the  second form all occurrences.  Both
	      pattern and repl are subject to double-quoted  substitution,  so
	      that  expressions	 like  ${name/$opat/$npat} will work, but note
	      the usual rule that pattern characters in $opat are not  treated
	      specially	 unless	 either the option GLOB_SUBST is set, or $opat
	      is instead substituted as ${~opat}.

	      The pattern may begin with a `#', in which case the pattern must
	      match  at the start of the string, or `%', in which case it must
	      match at the end of the string, or `#%' in which case  the  pat‐
	      tern  must  match	 the  entire string.  The repl may be an empty
	      string, in which case the final `/' may  also  be	 omitted.   To
	      quote  the  final	 `/' in other cases it should be preceded by a
	      single backslash; this is not necessary if the `/' occurs inside
	      a	 substituted  parameter.   Note also that the `#', `%' and `#%
	      are not active if they occur  inside  a  substituted  parameter,
	      even at the start.

	      The  first `/' may be preceded by a `:', in which case the match
	      will only succeed if it matches the entire word.	Note also  the
	      effect  of the I and S parameter expansion flags below; however,
	      the flags M, R, B, E and N are not useful.

	      For example,

		     foo="twinkle twinkle little star" sub="t*e" rep="spy"
		     print ${foo//${~sub}/$rep}
		     print ${(S)foo//${~sub}/$rep}

	      Here, the `~' ensures that the text of $sub is treated as a pat‐
	      tern rather than a plain string.	In the first case, the longest
	      match for t*e is substituted and the result is `spy star', while
	      in  the  second  case,  the  shortest  matches are taken and the
	      result is `spy spy lispy star'.

       ${#spec}
	      If spec is one of the above substitutions, substitute the length
	      in  characters  of  the result instead of the result itself.  If
	      spec is an array expression, substitute the number  of  elements
	      of  the result.  Note that `^', `=', and `~', below, must appear
	      to the left of `#' when these forms are combined.

       ${^spec}
	      Turn on the RC_EXPAND_PARAM option for the evaluation  of	 spec;
	      if  the  `^'  is doubled, turn it off.  When this option is set,
	      array expansions of the form foo${xx}bar, where the parameter xx
	      is  set  to  (a  b  c),  are  substituted	 with `fooabar foobbar
	      foocbar' instead of the default `fooa b cbar'.

	      Internally, each such expansion is converted into the equivalent
	      list    for    brace    expansion.     E.g.,   ${^var}   becomes
	      {$var[1],$var[2],...}, and is processed as described in the sec‐
	      tion  `Brace  Expansion'	below.	 If  word splitting is also in
	      effect the $var[N] may themselves be split into  different  list
	      elements.

       ${=spec}
	      Perform  word splitting using the rules for SH_WORD_SPLIT during
	      the evaluation of spec, but regardless of whether the  parameter
	      appears  in  double  quotes; if the `=' is doubled, turn it off.
	      This forces parameter expansions to be split into separate words
	      before  substitution, using IFS as a delimiter.  This is done by
	      default in most other shells.

	      Note that splitting is applied to word in the  assignment	 forms
	      of  spec	before	the  assignment	 to  name  is performed.  This
	      affects the result of array assignments with the A flag.

       ${~spec}
	      Turn on the GLOB_SUBST option for the evaluation of spec; if the
	      `~'  is  doubled,	 turn  it  off.	  When this option is set, the
	      string resulting from the expansion will	be  interpreted	 as  a
	      pattern anywhere that is possible, such as in filename expansion
	      and filename generation and pattern-matching contexts  like  the
	      right hand side of the `=' and `!=' operators in conditions.

	      In  nested  substitutions, note that the effect of the ~ applies
	      to the result of the current level of substitution.  A surround‐
	      ing  pattern  operation on the result may cancel it.  Hence, for
	      example, if the parameter foo is set to  *,  ${~foo//\*/*.c}  is
	      substituted  by  the pattern *.c, which may be expanded by file‐
	      name  generation,	 but  ${${~foo}//\*/*.c}  substitutes  to  the
	      string *.c, which will not be further expanded.

       If  a ${...} type parameter expression or a $(...) type command substi‐
       tution is used in place of name above, it is  expanded  first  and  the
       result is used as if it were the value of name.	Thus it is possible to
       perform nested operations:  ${${foo#head}%tail} substitutes  the	 value
       of  $foo	 with both `head' and `tail' deleted.  The form with $(...) is
       often useful in combination with the  flags  described  next;  see  the
       examples	 below.	  Each	name or nested ${...} in a parameter expansion
       may also be followed by a subscript expression as  described  in	 Array
       Parameters in zshparam(1).

       Note  that double quotes may appear around nested expressions, in which
       case  only  the	part  inside  is  treated  as  quoted;	for   example,
       ${(f)"$(foo)"}  quotes  the  result  of $(foo), but the flag `(f)' (see
       below) is applied using the rules for unquoted expansions.   Note  fur‐
       ther that quotes are themselves nested in this context; for example, in
       "${(@f)"$(foo)"}", there are two sets of quotes,	 one  surrounding  the
       whole  expression,  the	other  (redundant)  surrounding	 the $(foo) as
       before.

   Parameter Expansion Flags
       If the opening brace is directly followed by  an	 opening  parenthesis,
       the  string  up	to the matching closing parenthesis will be taken as a
       list of flags.  In cases where repeating a flag is meaningful, the rep‐
       etitions need not be consecutive; for example, `(q%q%q)' means the same
       thing as the more readable `(%%qqq)'.  The  following  flags  are  sup‐
       ported:

       #      Evaluate	the  resulting words as numeric expressions and output
	      the characters corresponding to  the  resulting  integer.	  Note
	      that  this  form	is entirely distinct from use of the # without
	      parentheses.

	      If the MULTIBYTE option is set and the number  is	 greater  than
	      127  (i.e.  not  an  ASCII character) it is treated as a Unicode
	      character.

       %      Expand all % escapes in the resulting words in the same  way  as
	      in prompts (see the section `Prompt Expansion'). If this flag is
	      given twice, full prompt expansion  is  done  on	the  resulting
	      words,   depending   on	the  setting  of  the  PROMPT_PERCENT,
	      PROMPT_SUBST and PROMPT_BANG options.

       @      In double quotes, array elements are put	into  separate	words.
	      E.g.,   `"${(@)foo}"'   is   equivalent	to  `"${foo[@]}"'  and
	      `"${(@)foo[1,2]}"' is the same as `"$foo[1]"  "$foo[2]"'.	  This
	      is  distinct  from  field	 splitting by the the f, s or z flags,
	      which still applies within each array element.

       A      Create an array parameter with  `${...=...}',  `${...:=...}'  or
	      `${...::=...}'.	If  this flag is repeated (as in `AA'), create
	      an associative array parameter.  Assignment is made before sort‐
	      ing  or  padding.	  The name part may be a subscripted range for
	      ordinary arrays; the word part must be converted	to  an	array,
	      for example by using `${(AA)=name=...}' to activate field split‐
	      ting, when creating an associative array.

       a      Sort in array index  order;  when	 combined  with	 `O'  sort  in
	      reverse  array  index order.  Note that `a' is therefore equiva‐
	      lent to the default but `Oa' is useful for obtaining an  array's
	      elements in reverse order.

       c      With ${#name}, count the total number of characters in an array,
	      as if the elements were concatenated with spaces between them.

       C      Capitalize the resulting words.  `Words' in this case refers  to
	      sequences	 of  alphanumeric characters separated by non-alphanu‐
	      merics, not to words that result from field splitting.

       e      Perform parameter expansion, command substitution and arithmetic
	      expansion	 on  the result. Such expansions can be nested but too
	      deep recursion may have unpredictable effects.

       f      Split the result of the expansion to lines. This is a  shorthand
	      for `ps:\n:'.

       F      Join  the words of arrays together using newline as a separator.
	      This is a shorthand for `pj:\n:'.

       i      Sort case-insensitively.	May be combined with `n' or `O'.

       k      If name refers to an  associative	 array,	 substitute  the  keys
	      (element	names)	rather	than the values of the elements.  Used
	      with subscripts (including ordinary arrays),  force  indices  or
	      keys to be substituted even if the subscript form refers to val‐
	      ues.  However, this flag may  not	 be  combined  with  subscript
	      ranges.

       L      Convert all letters in the result to lower case.

       n      Sort  decimal integers numerically; if the first differing char‐
	      acters of two test strings are not digits, sorting  is  lexical.
	      Integers	with  more initial zeroes are sorted before those with
	      fewer or none.  Hence the array  `foo1  foo02  foo2  foo3	 foo20
	      foo23' is sorted into the order shown.  May be combined with `i'
	      or `O'.

       o      Sort the resulting words in ascending order; if this appears  on
	      its  own	the  sorting is lexical and case-sensitive (unless the
	      locale renders it case-insensitive).  Sorting in ascending order
	      is the default for other forms of sorting, so this is ignored if
	      combined with `a', `i' or `n'.

       O      Sort the resulting words in descending order; `O'	 without  `a',
	      `i' or `n' sorts in reverse lexical order.  May be combined with
	      `a', `i' or `n' to reverse the order of sorting.

       P      This forces the value of the parameter name to be interpreted as
	      a	 further parameter name, whose value will be used where appro‐
	      priate.  Note that flags set with one of the typeset  family  of
	      commands (in particular case transformations) are not applied to
	      the value of name used in this fashion.

	      If used with a nested parameter  or  command  substitution,  the
	      result  of  that	will  be taken as a parameter name in the same
	      way.  For example, if you	 have  `foo=bar'  and  `bar=baz',  the
	      strings  ${(P)foo},  ${(P)${foo}}, and ${(P)$(echo bar)} will be
	      expanded to `baz'.

       q      Quote the	 resulting  words  with	 backslashes;  unprintable  or
	      invalid characters are quoted using the $'\NNN' form, with sepa‐
	      rate quotes for each octet.  If this flag is  given  twice,  the
	      resulting	 words	are quoted in single quotes and if it is given
	      three times, the words are quoted in  double  quotes;  in	 these
	      forms  no	 special handling of unprintable or invalid characters
	      is attempted.  If the flag is given four times,  the  words  are
	      quoted in single quotes preceded by a $.

       Q      Remove one level of quotes from the resulting words.

       t      Use  a  string  describing  the  type of the parameter where the
	      value of the parameter would usually appear.  This  string  con‐
	      sists  of keywords separated by hyphens (`-'). The first keyword
	      in the string  describes	the  main  type,  it  can  be  one  of
	      `scalar',	 `array',  `integer',  `float'	or  `association'. The
	      other keywords describe the type in more detail:

	      local  for local parameters

	      left   for left justified parameters

	      right_blanks
		     for right justified parameters with leading blanks

	      right_zeros
		     for right justified parameters with leading zeros

	      lower  for parameters whose value is converted to all lower case
		     when it is expanded

	      upper  for parameters whose value is converted to all upper case
		     when it is expanded

	      readonly
		     for readonly parameters

	      tag    for tagged parameters

	      export for exported parameters

	      unique for arrays which keep only the first occurrence of dupli‐
		     cated values

	      hide   for parameters with the `hide' flag

	      special
		     for special parameters defined by the shell

       u      Expand only the first occurrence of each unique word.

       U      Convert all letters in the result to upper case.

       v      Used  with k, substitute (as two consecutive words) both the key
	      and the value of each associative array element.	Used with sub‐
	      scripts,	force  values  to be substituted even if the subscript
	      form refers to indices or keys.

       V      Make any special characters in the resulting words visible.

       w      With ${#name}, count words in arrays or strings; the s flag  may
	      be used to set a word delimiter.

       W      Similar  to  w  with  the	 difference  that  empty words between
	      repeated delimiters are also counted.

       X      With this flag, parsing errors occurring with the	 Q,  e	and  #
	      flags  or	 the  pattern matching forms such as `${name#pattern}'
	      are reported.  Without the flag, errors are silently ignored.

       z      Split the result of the expansion into words using shell parsing
	      to  find	the words, i.e. taking into account any quoting in the
	      value.

	      Note that this is done very late, as for the `(s)' flag.	So  to
	      access  single words in the result, one has to use nested expan‐
	      sions as in `${${(z)foo}[2]}'. Likewise, to remove the quotes in
	      the resulting words one would do: `${(Q)${(z)foo}}'.

       0      Split  the  result  of  the  expansion on null bytes.  This is a
	      shorthand for `ps:\0:'.

       The following flags (except p) are followed by one or more arguments as
       shown.  Any character, or the matching pairs `(...)', `{...}', `[...]',
       or `<...>', may be used in place of a colon  as	delimiters,  but  note
       that when a flag takes more than one argument, a matched pair of delim‐
       iters must surround each argument.

       p      Recognize the same escape sequences  as  the  print  builtin  in
	      string arguments to any of the flags described below.

       j:string:
	      Join  the	 words of arrays together using string as a separator.
	      Note that this occurs before field splitting  by	the  s:string:
	      flag or the SH_WORD_SPLIT option.

       l:expr::string1::string2:
	      Pad  the	resulting  words on the left.  Each word will be trun‐
	      cated if required and placed in a field expr characters wide.

	      The arguments :string1: and :string2: are optional; neither, the
	      first, or both may be given.  Note that the same pairs of delim‐
	      iters must be used for each of the three arguments.   The	 space
	      to  the  left will be filled with string1 (concatenated as often
	      as needed) or spaces if string1 is not given.  If	 both  string1
	      and  string2 are given, string2 is inserted once directly to the
	      left of each word, truncated if  necessary,  before  string1  is
	      used to produce any remaining padding.

	      If  the  MULTIBYTE  option  is in effect, the flag m may also be
	      given, in which case widths will be used for the calculation  of
	      padding;	otherwise  individual multibyte characters are treated
	      as occupying one unit of width.

	      IF the MULTIBYTE option is not  in  effect,  each	 byte  in  the
	      string is treated as occupying one unit of width.

	      Control  characters are always assumed to be one unit wide; this
	      allows the mechanism to be used for  generating  repetitions  of
	      control characters.

       m      Only  useful  together with l and r when the MULTIBYTE option is
	      in effect.  Use the character width reported by  the  system  in
	      calculating the how much of the string it occupies.  Most print‐
	      able characters have a width of one unit, however certain	 Asian
	      character sets and certain special effects use wider characters.

       r:expr::string1::string2:
	      As  l, but pad the words on the right and insert string2 immedi‐
	      ately to the right of the string to be padded.

	      Left and right padding may be used together.  In this  case  the
	      strategy	is  to	apply  left padding to the first half width of
	      each of the resulting words, and right  padding  to  the	second
	      half.   If  the string to be padded has odd width the extra pad‐
	      ding is applied on the left.

       s:string:
	      Force field splitting at the  separator  string.	 Note  that  a
	      string  of  two  or  more characters means that all of them must
	      match in sequence; this differs from the	treatment  of  two  or
	      more  characters	in the IFS parameter.  See also the = flag and
	      the SH_WORD_SPLIT option.

	      For historical reasons, the usual	 behaviour  that  empty	 array
	      elements	are  retained  inside  double  quotes  is disabled for
	      arrays generated by splitting; hence the following:

		     line="one::three"
		     print -l "${(s.:.)line}"

	      produces two lines of output for one and three  and  elides  the
	      empty  field.  To override this behaviour, supply the "(@)" flag
	      as well, i.e.  "${(@s.:.)line}".

       The following flags are meaningful with the  ${...#...}	or  ${...%...}
       forms.  The S and I flags may also be used with the ${.../...} forms.

       S      Search  substrings  as  well as beginnings or ends; with # start
	      from the beginning and with % start from the end of the  string.
	      With  substitution  via  ${.../...}  or  ${...//...},  specifies
	      non-greedy matching, i.e. that the shortest instead of the long‐
	      est match should be replaced.

       I:expr:
	      Search  the  exprth  match  (where  expr evaluates to a number).
	      This only applies when searching for substrings, either with the
	      S	 flag,	or  with  ${.../...} (only the exprth match is substi‐
	      tuted) or ${...//...} (all matches from the exprth on  are  sub‐
	      stituted).  The default is to take the first match.

	      The  exprth  match  is  counted such that there is either one or
	      zero matches from each starting position in the string, although
	      for  global  substitution	 matches overlapping previous replace‐
	      ments are ignored.  With the ${...%...} and  ${...%%...}	forms,
	      the starting position for the match moves backwards from the end
	      as the index increases, while with the other forms it moves for‐
	      ward from the start.

	      Hence with the string
		     which switch is the right switch for Ipswich?
	      substitutions  of	 the form ${(SI:N:)string#w*ch} as N increases
	      from 1 will match	 and  remove  `which',	`witch',  `witch'  and
	      `wich';  the form using `##' will match and remove `which switch
	      is the right switch for Ipswich', `witch is the right switch for
	      Ipswich',	 `witch	 for  Ipswich'	and `wich'. The form using `%'
	      will remove the same matches as for `#', but in  reverse	order,
	      and the form using `%%' will remove the same matches as for `##'
	      in reverse order.

       B      Include the index of the beginning of the match in the result.

       E      Include the index of the end of the match in the result.

       M      Include the matched portion in the result.

       N      Include the length of the match in the result.

       R      Include the unmatched portion in the result (the Rest).

   Rules
       Here is a summary of the rules  for  substitution;  this	 assumes  that
       braces are present around the substitution, i.e. ${...}.	 Some particu‐
       lar examples are given below.  Note  that  the  Zsh  Development	 Group
       accepts	no  responsibility for any brain damage which may occur during
       the reading of the following rules.

       1. Nested Substitution
	      If multiple nested ${...} forms  are  present,  substitution  is
	      performed	 from the inside outwards.  At each level, the substi‐
	      tution takes account of whether the current value is a scalar or
	      an  array,  whether  the whole substitution is in double quotes,
	      and what flags are supplied to the current  level	 of  substitu‐
	      tion,  just  as  if  the nested substitution were the outermost.
	      The flags are not propagated up to enclosing substitutions;  the
	      nested  substitution  will return either a scalar or an array as
	      determined by the flags, possibly adjusted for quoting.  All the
	      following	 steps	take  place  where applicable at all levels of
	      substitution.  Note that, unless the `(P)' flag is present,  the
	      flags  and  any  subscripts  apply  directly to the value of the
	      nested  substitution;  for  example,  the	 expansion   ${${foo}}
	      behaves exactly the same as ${foo}.

	      At  each	nested	level  of  substitution, the substituted words
	      undergo all forms of single-word substitution (i.e. not filename
	      generation),  including  command substitution, arithmetic expan‐
	      sion and filename expansion (i.e. leading ~ and =).   Thus,  for
	      example,	${${:-=cat}:h}	expands to the directory where the cat
	      program resides.	(Explanation: the internal substitution has no
	      parameter	 but  a default value =cat, which is expanded by file‐
	      name expansion to a  full	 path;	the  outer  substitution  then
	      applies  the  modifier  :h  and  takes the directory part of the
	      path.)

       2. Internal Parameter Flags
	      Any parameter flags set by one of the  typeset  family  of  com‐
	      mands,  in particular the L, R, Z, u and l flags for padding and
	      capitalization, are applied directly to the parameter value.

       3. Parameter Subscripting
	      If the value is a raw parameter reference with a subscript, such
	      as  ${var[3]}, the effect of subscripting is applied directly to
	      the parameter.  Subscripts are evaluated left to	right;	subse‐
	      quent  subscripts	 apply to the scalar or array value yielded by
	      the previous subscript.  Thus if var is an  array,  ${var[1][2]}
	      is the second character of the first word, but ${var[2,4][2]} is
	      the entire third word (the second word of the range of words two
	      through  four  of the original array).  Any number of subscripts
	      may appear.

       4. Parameter Name Replacement
	      The effect of any (P) flag, which treats the value so far	 as  a
	      parameter	 name and replaces it with the corresponding value, is
	      applied.

       5. Double-Quoted Joining
	      If the value after this process is an array, and	the  substitu‐
	      tion appears in double quotes, and no (@) flag is present at the
	      current level, the words of the value are joined with the	 first
	      character	 of  the  parameter  $IFS, by default a space, between
	      each word (single word arrays are not  modified).	  If  the  (j)
	      flag is present, that is used for joining instead of $IFS.

       6. Nested Subscripting
	      Any  remaining  subscripts  (i.e.	 of a nested substitution) are
	      evaluated at this point, based on whether the value is an	 array
	      or  a scalar.  As with 2., multiple subscripts can appear.  Note
	      that ${foo[2,4][2]} is thus equivalent to ${${foo[2,4]}[2]}  and
	      also  to "${${(@)foo[2,4]}[2]}" (the nested substitution returns
	      an array in both cases), but  not	 to  "${${foo[2,4]}[2]}"  (the
	      nested substitution returns a scalar because of the quotes).

       7. Modifiers
	      Any  modifiers, as specified by a trailing `#', `%', `/' (possi‐
	      bly doubled) or by a set of modifiers of the form :... (see  the
	      section  `Modifiers'  in	the  section `History Expansion'), are
	      applied to the words of the value at this level.

       8. Forced Joining
	      If the `(j)' flag is present, or no `(j)' flag  is  present  but
	      the  string is to be split as given by rules 8. or 9., and join‐
	      ing did not take place at step 4., any words in  the  value  are
	      joined together using the given string or the first character of
	      $IFS if none.  Note that the `(F)' flag  implicitly  supplies  a
	      string for joining in this manner.

       9. Forced Splitting
	      If  one  of  the `(s)', `(f)' or `(z)' flags are present, or the
	      `=' specifier was present (e.g. ${=var}), the word is  split  on
	      occurrences  of  the specified string, or (for = with neither of
	      the two flags present) any of the characters in $IFS.

       10. Shell Word Splitting
	      If no `(s)', `(f)' or `=' was given, but the word is not	quoted
	      and the option SH_WORD_SPLIT is set, the word is split on occur‐
	      rences of any of the characters in $IFS.	Note this  step,  too,
	      takes place at all levels of a nested substitution.

       11. Uniqueness
	      If the result is an array and the `(u)' flag was present, dupli‐
	      cate elements are removed from the array.

       12. Ordering
	      If the result is still an array and one of the  `(o)'  or	 `(O)'
	      flags was present, the array is reordered.

       13. Re-Evaluation
	      Any  `(e)'  flag	is  applied  to	 the  value,  forcing it to be
	      re-examined for new parameter substitutions, but also  for  com‐
	      mand and arithmetic substitutions.

       14. Padding
	      Any padding of the value by the `(l.fill.)' or `(r.fill.)' flags
	      is applied.

       15. Semantic Joining
	      In contexts where expansion semantics requires a single word  to
	      result,  all  words are rejoined with the first character of IFS
	      between.	So in `${(P)${(f)lines}}' the  value  of  ${lines}  is
	      split  at	 newlines,  but then must be joined again before the P
	      flag can be applied.

	      If a single word is not required, this rule is skipped.

   Examples
       The flag f is useful to split  a	 double-quoted	substitution  line  by
       line.   For  example, ${(f)"$(<file)"} substitutes the contents of file
       divided so that each line is an element of the resulting	 array.	  Com‐
       pare  this with the effect of $(<file) alone, which divides the file up
       by words, or the same inside double quotes, which makes the entire con‐
       tent of the file a single string.

       The  following  illustrates  the rules for nested parameter expansions.
       Suppose that $foo contains the array (bar baz):

       "${(@)${foo}[1]}"
	      This produces the	 result	 b.   First,  the  inner  substitution
	      "${foo}",	 which	has  no array (@) flag, produces a single word
	      result "bar baz".	 The outer substitution "${(@)...[1]}" detects
	      that this is a scalar, so that (despite the `(@)' flag) the sub‐
	      script picks the first character.

       "${${(@)foo}[1]}"
	      This produces the result `bar'.  In this case, the inner substi‐
	      tution  "${(@)foo}"  produces  the array `(bar baz)'.  The outer
	      substitution "${...[1]}" detects that this is an array and picks
	      the first word.  This is similar to the simple case "${foo[1]}".

       As an example of the rules for word splitting and joining, suppose $foo
       contains the array `(ax1 bx1)'.	Then

       ${(s/x/)foo}
	      produces the words `a', `1 b' and `1'.

       ${(j/x/s/x/)foo}
	      produces `a', `1', `b' and `1'.

       ${(s/x/)foo%%1*}
	      produces `a' and ` b' (note the extra space).   As  substitution
	      occurs  before either joining or splitting, the operation	 first
	      generates the modified array (ax bx), which is  joined  to  give
	      "ax  bx",	 and  then  split to give `a', ` b' and `'.  The final
	      empty string will then be elided, as it is not in double quotes.

COMMAND SUBSTITUTION
       A command enclosed in parentheses  preceded  by	a  dollar  sign,  like
       `$(...)',  or quoted with grave accents, like ``...`', is replaced with
       its standard output, with any trailing newlines deleted.	 If  the  sub‐
       stitution  is  not enclosed in double quotes, the output is broken into
       words using the IFS parameter.  The substitution `$(cat	foo)'  may  be
       replaced	 by  the  equivalent but faster `$(<foo)'.  In either case, if
       the option GLOB_SUBST is set, the output is eligible for filename  gen‐
       eration.

ARITHMETIC EXPANSION
       A  string  of  the  form `$[exp]' or `$((exp))' is substituted with the
       value of the arithmetic expression exp.	exp is subjected to  parameter
       expansion,  command  substitution and arithmetic expansion before it is
       evaluated.  See the section `Arithmetic Evaluation'.

BRACE EXPANSION
       A string of the form `foo{xx,yy,zz}bar' is expanded to  the  individual
       words  `fooxxbar',  `fooyybar'  and `foozzbar'.	Left-to-right order is
       preserved.  This construct may be nested.   Commas  may	be  quoted  in
       order to include them literally in a word.

       An  expression of the form `{n1..n2}', where n1 and n2 are integers, is
       expanded to every number between n1 and n2 inclusive.  If either number
       begins with a zero, all the resulting numbers will be padded with lead‐
       ing zeroes to that minimum width.  If the  numbers  are	in  decreasing
       order the resulting sequence will also be in decreasing order.

       If  a  brace  expression	 matches  none	of the above forms, it is left
       unchanged, unless the option  BRACE_CCL	(an  abbreviation  for	`brace
       character  class')  is  set.  In that case, it is expanded to a list of
       the individual characters between the braces sorted into the  order  of
       the characters in the ASCII character set (multibyte characters are not
       currently handled).  The syntax is similar to  a	 [...]	expression  in
       filename	 generation:  `-'  is  treated	specially to denote a range of
       characters, but `^' or `!' as the first character is treated  normally.
       For  example, `{abcdef0-9}' expands to 16 words 0 1 2 3 4 5 6 7 8 9 a b
       c d e f.

       Note that brace expansion is not part  of  filename  generation	(glob‐
       bing);  an  expression  such  as */{foo,bar} is split into two separate
       words */foo and */bar before filename generation takes place.  In  par‐
       ticular,	 note  that  this  is  liable to produce a `no match' error if
       either of the two expressions does not match; this is to be  contrasted
       with  */(foo|bar),  which  is treated as a single pattern but otherwise
       has similar effects.

       To combine brace expansion with array expansion, see the ${^spec}  form
       described in the section Parameter Expansion above.

FILENAME EXPANSION
       Each  word  is checked to see if it begins with an unquoted `~'.	 If it
       does, then the word up to a `/', or the end of the word if there is  no
       `/',  is	 checked  to  see  if it can be substituted in one of the ways
       described here.	If so, then  the  `~'  and  the	 checked  portion  are
       replaced with the appropriate substitute value.

       A `~' by itself is replaced by the value of $HOME.  A `~' followed by a
       `+' or a `-' is replaced by the value of $PWD or $OLDPWD, respectively.

       A `~' followed by a number is replaced by the directory at  that	 posi‐
       tion  in	 the directory stack.  `~0' is equivalent to `~+', and `~1' is
       the top of the stack.  `~+' followed by a number	 is  replaced  by  the
       directory at that position in the directory stack.  `~+0' is equivalent
       to `~+', and `~+1' is the top of the stack.  `~-' followed by a	number
       is replaced by the directory that many positions from the bottom of the
       stack.  `~-0' is the bottom  of	the  stack.   The  PUSHD_MINUS	option
       exchanges  the  effects	of  `~+' and `~-' where they are followed by a
       number.

       A `~' followed by anything not already covered is looked up as a	 named
       directory,  and replaced by the value of that named directory if found.
       Named directories are typically home directories for users on the  sys‐
       tem.  They may also be defined if the text after the `~' is the name of
       a string shell parameter whose value begins  with  a  `/'.   Note  that
       trailing slashes will be removed from the path to the directory (though
       the original parameter is not modified).	 It is also possible to define
       directory names using the -d option to the hash builtin.

       In  certain  circumstances  (in	prompts, for instance), when the shell
       prints a path, the path is checked to see if it has a  named  directory
       as  its	prefix.	 If so, then the prefix portion is replaced with a `~'
       followed by the name of the directory.  The shortest way	 of  referring
       to  the	directory is used, with ties broken in favour of using a named
       directory, except when the directory is / itself.  The parameters  $PWD
       and $OLDPWD are never abbreviated in this fashion.

       If a word begins with an unquoted `=' and the EQUALS option is set, the
       remainder of the word is taken as the name of a command.	 If a  command
       exists  by  that name, the word is replaced by the full pathname of the
       command.

       Filename expansion is performed on the right hand side of  a  parameter
       assignment,  including  those  appearing	 after commands of the typeset
       family.	In this case, the  right  hand	side  will  be	treated	 as  a
       colon-separated list in the manner of the PATH parameter, so that a `~'
       or an `=' following a `:' is eligible for expansion.  All  such	behav‐
       iour  can be disabled by quoting the `~', the `=', or the whole expres‐
       sion (but not simply the colon); the EQUALS option is also respected.

       If the option MAGIC_EQUAL_SUBST is set, any unquoted shell argument  in
       the form `identifier=expression' becomes eligible for file expansion as
       described in the	 previous  paragraph.	Quoting	 the  first  `='  also
       inhibits this.

FILENAME GENERATION
       If  a  word contains an unquoted instance of one of the characters `*',
       `(', `|', `<', `[', or `?', it is regarded as a	pattern	 for  filename
       generation,  unless  the	 GLOB  option  is unset.  If the EXTENDED_GLOB
       option is set, the `^' and `#' characters also denote a pattern; other‐
       wise they are not treated specially by the shell.

       The  word  is  replaced	with a list of sorted filenames that match the
       pattern.	 If no matching pattern is found, the  shell  gives  an	 error
       message,	 unless the NULL_GLOB option is set, in which case the word is
       deleted; or unless the NOMATCH option is unset, in which case the  word
       is left unchanged.

       In  filename  generation, the character `/' must be matched explicitly;
       also, a `.' must be matched explicitly at the beginning of a pattern or
       after  a	 `/', unless the GLOB_DOTS option is set.  No filename genera‐
       tion pattern matches the files `.' or `..'.  In other instances of pat‐
       tern matching, the `/' and `.' are not treated specially.

   Glob Operators
       *      Matches any string, including the null string.

       ?      Matches any character.

       [...]  Matches  any  of	the enclosed characters.  Ranges of characters
	      can be specified by separating two characters by a `-'.	A  `-'
	      or  `]' may be matched by including it as the first character in
	      the list.	 There are also several named classes  of  characters,
	      in  the  form `[:name:]' with the following meanings.  The first
	      set use the macros provided by the operating system to test  for
	      the  given  character  combinations, including any modifications
	      due to local language settings, see ctype(3):

	      [:alnum:]
		     The character is alphanumeric

	      [:alpha:]
		     The character is alphabetic

	      [:ascii:]
		     The character is 7-bit, i.e. is a	single-byte  character
		     without the top bit set.

	      [:blank:]
		     The character is either space or tab

	      [:cntrl:]
		     The character is a control character

	      [:digit:]
		     The character is a decimal digit

	      [:graph:]
		     The  character is a printable character other than white‐
		     space

	      [:lower:]l
		     The character is a lowercase letter

	      [:print:]
		     The character is printable

	      [:punct:]
		     The character is printable but neither  alphanumeric  nor
		     whitespace

	      [:space:]
		     The character is whitespace

	      [:upper:]
		     The character is an uppercase letter

	      [:xdigit:]
		     The character is a hexadecimal digit

	      Another  set of named classes is handled internally by the shell
	      and is not sensitive to the locale:

	      [:IDENT:]
		     The character is allowed to form part of a shell  identi‐
		     fier, such as a parameter name

	      [:IFS:]
		     The  character  is used as an input field separator, i.e.
		     is contained in the IFS parameter

	      [:IFSSPACE:]
		     The character is an IFS white space  character;  see  the
		     documentation for IFS in the zshparam(1) manual page.

	      [:WORD:]
		     The  character is treated as part of a word; this test is
		     sensitive to the value of the WORDCHARS parameter

	      Note that the square brackets are additional to those  enclosing
	      the  whole  set  of characters, so to test for a single alphanu‐
	      meric character you need `[[:alnum:]]'.	Named  character  sets
	      can be used alongside other types, e.g. `[[:alpha:]0-9]'.

       [^...]
       [!...] Like [...], except that it matches any character which is not in
	      the given set.

       <[x]-[y]>
	      Matches any number in the range x to y,  inclusive.   Either  of
	      the  numbers  may be omitted to make the range open-ended; hence
	      `<->' matches any number.	 To match individual digits, the [...]
	      form is more efficient.

	      Be  careful  when	 using other wildcards adjacent to patterns of
	      this form; for example, <0-9>* will actually  match  any	number
	      whatsoever  at  the  start of the string, since the `<0-9>' will
	      match the first digit, and the `*' will match any others.	  This
	      is  a  trap  for the unwary, but is in fact an inevitable conse‐
	      quence of the rule that the longest possible match  always  suc‐
	      ceeds.   Expressions  such  as  `<0-9>[^[:digit:]]*' can be used
	      instead.

       (...)  Matches the enclosed pattern.  This is used  for	grouping.   If
	      the  KSH_GLOB  option  is	 set, then a `@', `*', `+', `?' or `!'
	      immediately preceding the `(' is treated specially, as  detailed
	      below.  The  option SH_GLOB prevents bare parentheses from being
	      used in this way, though the KSH_GLOB option is still available.

	      Note that grouping cannot extend over multiple  directories:  it
	      is  an error to have a `/' within a group (this only applies for
	      patterns used in filename generation).  There is one  exception:
	      a group of the form (pat/)# appearing as a complete path segment
	      can match a sequence of directories.  For example, foo/(a*/)#bar
	      matches foo/bar, foo/any/bar, foo/any/anyother/bar, and so on.

       x|y    Matches  either x or y.  This operator has lower precedence than
	      any other.  The `|' character must  be  within  parentheses,  to
	      avoid interpretation as a pipeline.

       ^x     (Requires EXTENDED_GLOB to be set.)  Matches anything except the
	      pattern x.  This has a higher precedence than `/', so `^foo/bar'
	      will  search  directories in `.' except `./foo' for a file named
	      `bar'.

       x~y    (Requires EXTENDED_GLOB to be set.)  Match anything that matches
	      the  pattern  x but does not match y.  This has lower precedence
	      than any operator except `|', so `*/*~foo/bar' will  search  for
	      all  files in all directories in `.'  and then exclude `foo/bar'
	      if there was such a match.  Multiple patterns can be excluded by
	      `foo~bar~baz'.   In  the	exclusion pattern (y), `/' and `.' are
	      not treated specially the way they usually are in globbing.

       x#     (Requires EXTENDED_GLOB to be set.)  Matches zero or more occur‐
	      rences  of  the  pattern	x.  This operator has high precedence;
	      `12#' is equivalent to `1(2#)', rather than `(12)#'.  It	is  an
	      error  for  an  unquoted `#' to follow something which cannot be
	      repeated; this includes an empty string, a pattern already  fol‐
	      lowed  by	 `##',	or parentheses when part of a KSH_GLOB pattern
	      (for example, `!(foo)#' is  invalid  and	must  be  replaced  by
	      `*(!(foo))').

       x##    (Requires	 EXTENDED_GLOB to be set.)  Matches one or more occur‐
	      rences of the pattern x.	This  operator	has  high  precedence;
	      `12##' is equivalent to `1(2##)', rather than `(12)##'.  No more
	      than two active `#' characters may appear together.   (Note  the
	      potential	 clash with glob qualifiers in the form `1(2##)' which
	      should therefore be avoided.)

   ksh-like Glob Operators
       If the KSH_GLOB option is set, the effects of parentheses can be	 modi‐
       fied by a preceding `@', `*', `+', `?' or `!'.  This character need not
       be unquoted to have special effects, but the `(' must be.

       @(...) Match the pattern in the parentheses.  (Like `(...)'.)

       *(...) Match any number of occurrences.	(Like `(...)#'.)

       +(...) Match at least one occurrence.  (Like `(...)##'.)

       ?(...) Match zero or one occurrence.  (Like `(|...)'.)

       !(...) Match  anything  but  the	 expression  in	 parentheses.	 (Like
	      `(^(...))'.)

   Precedence
       The precedence of the operators given above is (highest) `^', `/', `~',
       `|' (lowest); the remaining operators are simply treated from  left  to
       right  as  part of a string, with `#' and `##' applying to the shortest
       possible preceding unit (i.e. a character, `?', `[...]', `<...>', or  a
       parenthesised  expression).  As mentioned above, a `/' used as a direc‐
       tory separator may not appear inside parentheses, while a `|'  must  do
       so;  in	patterns  used in other contexts than filename generation (for
       example, in case statements and tests within `[[...]]'), a `/'  is  not
       special;	 and  `/'  is  also  not special after a `~' appearing outside
       parentheses in a filename pattern.

   Globbing Flags
       There are various flags which affect any text to their right up to  the
       end  of	the enclosing group or to the end of the pattern; they require
       the EXTENDED_GLOB option. All take the form (#X) where X may  have  one
       of the following forms:

       i      Case insensitive:	 upper or lower case characters in the pattern
	      match upper or lower case characters.

       l      Lower case characters in the pattern match upper or  lower  case
	      characters;  upper  case	characters  in	the pattern still only
	      match upper case characters.

       I      Case sensitive:  locally negates the effect of i or l from  that
	      point on.

       b      Activate backreferences for parenthesised groups in the pattern;
	      this does not work in filename generation.  When a pattern  with
	      a	 set  of active parentheses is matched, the strings matched by
	      the groups are stored in the array $match, the  indices  of  the
	      beginning	 of  the matched parentheses in the array $mbegin, and
	      the indices of the end in the array $mend, with the  first  ele‐
	      ment  of	each  array  corresponding  to the first parenthesised
	      group, and so on.	 These arrays are not otherwise special to the
	      shell.   The  indices  use the same convention as does parameter
	      substitution, so that elements of $mend and $mbegin may be  used
	      in  subscripts;  the  KSH_ARRAYS	option	is respected.  Sets of
	      globbing flags are not considered parenthesised groups; only the
	      first nine active parentheses can be referenced.

	      For example,

		     foo="a string with a message"
		     if [[ $foo = (a|an)' '(#b)(*)' '* ]]; then
		       print ${foo[$mbegin[1],$mend[1]]}
		     fi

	      prints  `string  with  a'.   Note	 that the first parenthesis is
	      before the (#b) and does not create a backreference.

	      Backreferences work with all forms  of  pattern  matching	 other
	      than  filename generation, but note that when performing matches
	      on an entire array, such as ${array#pattern}, or a  global  sub‐
	      stitution,  such	as  ${param//pat/repl},	 only the data for the
	      last match remains available.  In the case  of  global  replace‐
	      ments  this may still be useful.	See the example for the m flag
	      below.

	      The numbering of backreferences strictly follows	the  order  of
	      the  opening  parentheses	 from  left  to	 right	in the pattern
	      string, although sets of parentheses may be nested.   There  are
	      special rules for parentheses followed by `#' or `##'.  Only the
	      last match of the parenthesis is remembered: for example, in `[[
	      abab  =  (#b)([ab])#  ]]',  only	the  final  `b'	 is  stored in
	      match[1].	 Thus extra parentheses may be necessary to match  the
	      complete	segment:  for  example,	 use `X((ab|cd)#)Y' to match a
	      whole string of either `ab' or `cd' between `X' and  `Y',	 using
	      the value of $match[1] rather than $match[2].

	      If the match fails none of the parameters is altered, so in some
	      cases it may be necessary to  initialise	them  beforehand.   If
	      some  of	the  backreferences  fail to match -- which happens if
	      they are in an alternate branch which fails to match, or if they
	      are  followed  by	 #  and matched zero times -- then the matched
	      string is set to the empty string, and the start and end indices
	      are set to -1.

	      Pattern  matching	 with  backreferences  is slightly slower than
	      without.

       B      Deactivate backreferences, negating the effect  of  the  b  flag
	      from that point on.

       cN,M   The flag (#cN,M) can be used anywhere that the # or ## operators
	      can be used; it cannot be combined with other globbing flags and
	      a bad pattern error occurs if it is misplaced.  It is equivalent
	      to the form {N,M} in regular expressions.	 The previous  charac‐
	      ter  or group is required to match between N and M times, inclu‐
	      sive.  The form (#cN) requires  exactly  N  matches;  (#c,M)  is
	      equivalent  to specifying N as 0; (#cN,) specifies that there is
	      no maximum limit on the number of matches.

       m      Set references to the match data for the entire string  matched;
	      this is similar to backreferencing and does not work in filename
	      generation.  The flag must be in effect at the end of  the  pat‐
	      tern, i.e. not local to a group. The parameters $MATCH,  $MBEGIN
	      and $MEND will be set to the string matched and to  the  indices
	      of  the  beginning and end of the string, respectively.  This is
	      most useful in parameter substitutions, as otherwise the	string
	      matched is obvious.

	      For example,

		     arr=(veldt jynx grimps waqf zho buck)
		     print ${arr//(#m)[aeiou]/${(U)MATCH}}

	      forces  all the matches (i.e. all vowels) into uppercase, print‐
	      ing `vEldt jynx grImps wAqf zhO bUck'.

	      Unlike backreferences, there is no speed penalty for using match
	      references,  other than the extra substitutions required for the
	      replacement strings in cases such as the example shown.

       M      Deactivate the m flag, hence no references to match data will be
	      created.

       anum   Approximate  matching:  num  errors  are	allowed	 in the string
	      matched by the pattern.  The rules for this are described in the
	      next subsection.

       s, e   Unlike the other flags, these have only a local effect, and each
	      must appear on its own:  `(#s)' and `(#e)' are  the  only	 valid
	      forms.   The  `(#s)' flag succeeds only at the start of the test
	      string, and the `(#e)' flag succeeds only at the end of the test
	      string;  they  correspond	 to  `^'  and  `$' in standard regular
	      expressions.  They are useful for matching path segments in pat‐
	      terns  other  than those in filename generation (where path seg‐
	      ments  are  in  any  case	 treated  separately).	 For  example,
	      `*((#s)|/)test((#e)|/)*' matches a path segment `test' in any of
	      the  following  strings:	 test,	 test/at/start,	  at/end/test,
	      in/test/middle.

	      Another	use   is   in	parameter  substitution;  for  example
	      `${array/(#s)A*Z(#e)}' will remove only  elements	 of  an	 array
	      which match the complete pattern `A*Z'.  There are other ways of
	      performing many operations of this type, however the combination
	      of  the substitution operations `/' and `//' with the `(#s)' and
	      `(#e)' flags provides a single simple and memorable method.

	      Note that assertions of the form `(^(#s))' also work, i.e. match
	      anywhere	except at the start of the string, although this actu‐
	      ally means `anything except a zero-length portion at  the	 start
	      of  the  string';	 you  need  to	use  `(""~(#s))'  to  match  a
	      zero-length portion of the string not at the start.

       q      A `q' and everything up to the closing parenthesis of the	 glob‐
	      bing  flags  are	ignored by the pattern matching code.  This is
	      intended to support the use of glob qualifiers, see below.   The
	      result is that the pattern `(#b)(*).c(#q.)' can be used both for
	      globbing and for matching against a string.  In the former case,
	      the  `(#q.)'  will be treated as a glob qualifier and the `(#b)'
	      will not be useful, while in the latter case the `(#b)' is  use‐
	      ful  for	backreferences	and the `(#q.)' will be ignored.  Note
	      that colon modifiers in the glob qualifiers are also not applied
	      in ordinary pattern matching.

       u      Respect the current locale in determining the presence of multi‐
	      byte characters in a pattern, provided the  shell	 was  compiled
	      with  MULTIBYTE_SUPPORT.	 This  overrides the MULTIBYTE option;
	      the default behaviour is taken  from  the	 option.   Compare  U.
	      (Mnemonic:  typically  multibyte	characters are from Unicode in
	      the UTF-8 encoding, although any extension of ASCII supported by
	      the system library may be used.)

       U      All  characters  are  considered	to be a single byte long.  The
	      opposite of u.  This overrides the MULTIBYTE option.

       For example, the test string  fooxx  can	 be  matched  by  the  pattern
       (#i)FOOXX,  but	not  by	 (#l)FOOXX, (#i)FOO(#I)XX or ((#i)FOOX)X.  The
       string (#ia2)readme specifies case-insensitive matching of readme  with
       up to two errors.

       When  using the ksh syntax for grouping both KSH_GLOB and EXTENDED_GLOB
       must be set and the left parenthesis should be  preceded	 by  @.	  Note
       also that the flags do not affect letters inside [...] groups, in other
       words (#i)[a-z] still matches only lowercase  letters.	Finally,  note
       that when examining whole paths case-insensitively every directory must
       be searched for all files which match, so that a pattern	 of  the  form
       (#i)/foo/bar/... is potentially slow.

   Approximate Matching
       When  matching  approximately,  the  shell  keeps a count of the errors
       found, which cannot exceed the number specified in the  (#anum)	flags.
       Four types of error are recognised:

       1.     Different characters, as in fooxbar and fooybar.

       2.     Transposition of characters, as in banana and abnana.

       3.     A	 character  missing  in the target string, as with the pattern
	      road and target string rod.

       4.     An extra character appearing in the target string, as with stove
	      and strove.

       Thus,  the pattern (#a3)abcd matches dcba, with the errors occurring by
       using the first rule twice and the second once, grouping the string  as
       [d][cb][a] and [a][bc][d].

       Non-literal  parts of the pattern must match exactly, including charac‐
       ters in character ranges: hence (#a1)???	  matches  strings  of	length
       four,  by  applying  rule  4  to	 an empty part of the pattern, but not
       strings of length two, since all the ? must  match.   Other  characters
       which  must  match  exactly  are	 initial dots in filenames (unless the
       GLOB_DOTS option is set), and all slashes in filenames, so that a/bc is
       two errors from ab/c (the slash cannot be transposed with another char‐
       acter).	Similarly, errors are counted  separately  for	non-contiguous
       strings in the pattern, so that (ab|cd)ef is two errors from aebf.

       When  using  exclusion  via  the	 ~  operator,  approximate matching is
       treated entirely separately for the excluded part and must be activated
       separately.  Thus, (#a1)README~READ_ME matches READ.ME but not READ_ME,
       as the trailing READ_ME is  matched  without  approximation.   However,
       (#a1)README~(#a1)READ_ME does not match any pattern of the form READ?ME
       as all such forms are now excluded.

       Apart from exclusions, there is only one overall error count;  however,
       the  maximum  errors  allowed  may  be altered locally, and this can be
       delimited by grouping.  For example, (#a1)cat((#a0)dog)fox  allows  one
       error in total, which may not occur in the dog section, and the pattern
       (#a1)cat(#a0)dog(#a1)fox is equivalent.	Note that the point  at	 which
       an  error is first found is the crucial one for establishing whether to
       use  approximation;  for	 example,  (#a1)abc(#a0)xyz  will  not	 match
       abcdxyz,	 because  the  error occurs at the `x', where approximation is
       turned off.

       Entire  path  segments  may   be	  matched   approximately,   so	  that
       `(#a1)/foo/d/is/available/at/the/bar' allows one error in any path seg‐
       ment.  This is much less efficient than	without	 the  (#a1),  however,
       since  every  directory	in  the	 path  must  be scanned for a possible
       approximate match.  It is best to place the (#a1) after any  path  seg‐
       ments which are known to be correct.

   Recursive Globbing
       A pathname component of the form `(foo/)#' matches a path consisting of
       zero or more directories matching the pattern foo.

       As a shorthand, `**/' is equivalent to `(*/)#'; note that  this	there‐
       fore  matches files in the current directory as well as subdirectories.
       Thus:

	      ls (*/)#bar

       or

	      ls **/bar

       does a recursive directory search for files  named  `bar'  (potentially
       including the file `bar' in the current directory).  This form does not
       follow symbolic links; the alternative form `***/' does, but is	other‐
       wise  identical.	  Neither of these can be combined with other forms of
       globbing within the same path segment; in that case, the `*'  operators
       revert to their usual effect.

   Glob Qualifiers
       Patterns	 used  for filename generation may end in a list of qualifiers
       enclosed in parentheses.	 The qualifiers specify which  filenames  that
       otherwise  match	 the  given  pattern  will be inserted in the argument
       list.

       If the option BARE_GLOB_QUAL is set, then a trailing set of parentheses
       containing  no `|' or `(' characters (or `~' if it is special) is taken
       as a set of glob qualifiers.  A glob subexpression that would  normally
       be  taken  as  glob qualifiers, for example `(^x)', can be forced to be
       treated as part of the glob pattern by  doubling	 the  parentheses,  in
       this case producing `((^x))'.

       If  the option EXTENDED_GLOB is set, a different syntax for glob quali‐
       fiers is available, namely `(#qx)' where x is  any  of  the  same  glob
       qualifiers  used in the other format.  The qualifiers must still appear
       at the end of the pattern.  However, with  this	syntax	multiple  glob
       qualifiers  may be chained together.  They are treated as a logical AND
       of the individual sets of flags.	 Also, as the syntax  is  unambiguous,
       the  expression	will  be  treated  as glob qualifiers just as long any
       parentheses contained within it are balanced; appearance of `|', `(' or
       `~'  does  not  negate the effect.  Note that qualifiers will be recog‐
       nised in this form even if a bare glob qualifier exists at the  end  of
       the  pattern, for example `*(#q*)(.)' will recognise executable regular
       files if both options are set; however, mixed syntax should probably be
       avoided for the sake of clarity.

       A qualifier may be any one of the following:

       /      directories

       F      `full'  (i.e.  non-empty)	 directories.	Note that the opposite
	      sense (^F) expands to empty directories and all non-directories.
	      Use (/^F) for empty directories

       .      plain files

       @      symbolic links

       =      sockets

       p      named pipes (FIFOs)

       *      executable plain files (0100)

       %      device files (character or block special)

       %b     block special files

       %c     character special files

       r      owner-readable files (0400)

       w      owner-writable files (0200)

       x      owner-executable files (0100)

       A      group-readable files (0040)

       I      group-writable files (0020)

       E      group-executable files (0010)

       R      world-readable files (0004)

       W      world-writable files (0002)

       X      world-executable files (0001)

       s      setuid files (04000)

       S      setgid files (02000)

       t      files with the sticky bit (01000)

       fspec  files with access rights matching spec. This spec may be a octal
	      number optionally preceded by a `=', a `+', or a `-'. If none of
	      these  characters is given, the behavior is the same as for `='.
	      The octal number describes the mode bits to be expected, if com‐
	      bined  with  a  `=',  the	 value given must match the file-modes
	      exactly, with a `+', at least the bits in the given number  must
	      be set in the file-modes, and with a `-', the bits in the number
	      must not be set. Giving a `?' instead of a octal digit  anywhere
	      in  the  number  ensures	that  the  corresponding  bits	in the
	      file-modes are not checked, this is only useful  in  combination
	      with `='.

	      If the qualifier `f' is followed by any other character anything
	      up to the next matching character (`[', `{', and `<' match  `]',
	      `}',  and	 `>' respectively, any other character matches itself)
	      is taken as a list of comma-separated sub-specs.	Each  sub-spec
	      may  be  either  an octal number as described above or a list of
	      any of the characters `u', `g', `o', and `a', followed by a `=',
	      a	 `+',  or  a  `-', followed by a list of any of the characters
	      `r', `w', `x', `s', and `t', or an octal digit. The  first  list
	      of  characters specify which access rights are to be checked. If
	      a `u' is given, those for the owner of the file are used,	 if  a
	      `g'  is  given,  those  of the group are checked, a `o' means to
	      test those of other users, and the `a' says to  test  all	 three
	      groups. The `=', `+', and `-' again says how the modes are to be
	      checked and have the same meaning as  described  for  the	 first
	      form  above.  The	 second	 list of characters finally says which
	      access rights are to be expected: `r' for read access,  `w'  for
	      write  access,  `x'  for	the  right  to execute the file (or to
	      search a directory), `s' for the setuid and setgid bits, and `t'
	      for the sticky bit.

	      Thus,  `*(f70?)'	gives  the files for which the owner has read,
	      write, and execute permission, and for which other group members
	      have  no rights, independent of the permissions for other users.
	      The pattern `*(f-100)' gives all files for which the owner  does
	      not  have	 execute  permission,  and `*(f:gu+w,o-rx:)' gives the
	      files for which the owner and the other  members	of  the	 group
	      have  at least write permission, and for which other users don't
	      have read or execute permission.

       estring
       +cmd   The string will be executed as shell code.  The filename will be
	      included in the list if and only if the code returns a zero sta‐
	      tus (usually the status of the last command).  The first charac‐
	      ter after the `e' will be used as a separator and anything up to
	      the next matching separator will be taken	 as the	 string;  `[',
	      `{',  and	 `<'  match `]', `}', and `>', respectively, while any
	      other character matches itself. Note  that  expansions  must  be
	      quoted  in the string to prevent them from being expanded before
	      globbing is done.

	      During the execution of  string  the  filename  currently	 being
	      tested is available in the parameter REPLY; the parameter may be
	      altered to a string to be inserted into the list instead of  the
	      original	filename.  In addition, the parameter reply may be set
	      to an array or a string, which overrides the value of REPLY.  If
	      set  to  an  array, the latter is inserted into the command line
	      word by word.

	      For  example,  suppose  a	 directory  contains  a	 single	  file
	      `lonely'.	  Then	the expression `*(e:'reply=(${REPLY}{1,2})':)'
	      will cause the words `lonely1 lonely2' to be inserted  into  the
	      command line.  Note the quotation marks.

	      The  form	 +cmd  has  the	 same effect, but no delimiters appear
	      around cmd.  Instead, cmd is taken as the	 longest  sequence  of
	      characters  following the + that are alphanumeric or underscore.
	      Typically cmd will be the name of a shell function that contains
	      the appropriate test.  For example,

		     nt() { [[ $REPLY -nt $NTREF ]] }
		     NTREF=reffile
		     ls -l *(+nt)

	      lists  all  files	 in the directory that have been modified more
	      recently than reffile.

       ddev   files on the device dev

       l[-|+]ct
	      files having a link count less than ct (-), greater than ct (+),
	      or equal to ct

       U      files owned by the effective user ID

       G      files owned by the effective group ID

       uid    files  owned  by	user ID id if that is a number.	 Otherwise, id
	      specifies a user name: the character after the `u' will be taken
	      as  a  separator and the string between it and the next matching
	      separator will be taken as a user name.  The starting separators
	      `[',  `{', and `<' match the final separators `]', `}', and `>',
	      respectively; any other character matches itself.	 The  selected
	      files  are  those	 owned by this user.  For example, `u:foo:' or
	      `u[foo]' selects files owned by user `foo'.

       gid    like uid but with group IDs or names

       a[Mwhms][-|+]n
	      files accessed exactly n days ago.  Files	 accessed  within  the
	      last  n  days  are  selected  using a negative value for n (-n).
	      Files accessed more than n days ago are selected by a positive n
	      value  (+n).  Optional unit specifiers `M', `w', `h', `m' or `s'
	      (e.g. `ah5') cause the check to be performed with months (of  30
	      days), weeks, hours, minutes or seconds instead of days, respec‐
	      tively.

	      Any fractional part of the difference between  the  access  time
	      and  the current part in the appropriate units is ignored in the
	      comparison.  For	instance,  `echo  *(ah-5)'  would  echo	 files
	      accessed	within the last five hours, while `echo *(ah+5)' would
	      echo files accessed at least six hours ago,  as  times  strictly
	      between five and six hours are treated as five hours.

       m[Mwhms][-|+]n
	      like  the	 file  access  qualifier, except that it uses the file
	      modification time.

       c[Mwhms][-|+]n
	      like the file access qualifier, except that  it  uses  the  file
	      inode change time.

       L[+|-]n
	      files less than n bytes (-), more than n bytes (+), or exactly n
	      bytes in length. If this flag is	directly  followed  by	a  `k'
	      (`K'),  `m' (`M'), or `p' (`P') (e.g. `Lk-50') the check is per‐
	      formed with kilobytes,  megabytes,  or  blocks  (of  512	bytes)
	      instead.

       ^      negates all qualifiers following it

       -      toggles  between	making	the  qualifiers work on symbolic links
	      (the default) and the files they point to

       M      sets the MARK_DIRS option for the current pattern

       T      appends a trailing qualifier mark to the filenames, analogous to
	      the LIST_TYPES option, for the current pattern (overrides M)

       N      sets the NULL_GLOB option for the current pattern

       D      sets the GLOB_DOTS option for the current pattern

       n      sets the NUMERIC_GLOB_SORT option for the current pattern

       oc     specifies how the names of the files should be sorted. If c is n
	      they are sorted by name (the default);  if  it  is  L  they  are
	      sorted  depending	 on  the size (length) of the files; if l they
	      are sorted by the number of links; if a, m, or c they are sorted
	      by  the  time  of the last access, modification, or inode change
	      respectively; if d, files in subdirectories appear before	 those
	      in  the current directory at each level of the search -- this is
	      best combined with other criteria, for example `odon' to sort on
	      names  for  files within the same directory; if N, no sorting is
	      performed.  Note that a, m, and c compare the  age  against  the
	      current  time,  hence the first name in the list is the youngest
	      file. Also note  that  the  modifiers  ^	and  -	are  used,  so
	      `*(^-oL)'	 gives	a  list	 of  all  files sorted by file size in
	      descending order, following any symbolic links.	Unless	oN  is
	      used, multiple order specifiers may occur to resolve ties.

       Oc     like  `o',  but  sorts in descending order; i.e. `*(^oc)' is the
	      same as `*(Oc)' and `*(^Oc)' is the same as `*(oc)';  `Od'  puts
	      files in the current directory before those in subdirectories at
	      each level of the search.

       [beg[,end]]
	      specifies which of the matched filenames should be  included  in
	      the  returned  list.  The	 syntax	 is the same as for array sub‐
	      scripts. beg and the optional end may  be	 mathematical  expres‐
	      sions. As in parameter subscripting they may be negative to make
	      them count from the last	match  backward.  E.g.:	 `*(-OL[1,3])'
	      gives a list of the names of the three largest files.

       More  than one of these lists can be combined, separated by commas. The
       whole list matches if at least one of the sublists  matches  (they  are
       `or'ed,	the qualifiers in the sublists are `and'ed).  Some qualifiers,
       however, affect all matches generated, independent of  the  sublist  in
       which  they  are	 given.	  These are the qualifiers `M', `T', `N', `D',
       `n', `o', `O' and the subscripts given in brackets (`[...]').

       If a `:' appears in a qualifier list, the remainder of  the  expression
       in  parenthesis	is  interpreted	 as a modifier (see the section `Modi‐
       fiers' in the section `History Expansion').  Note  that	each  modifier
       must  be introduced by a separate `:'.  Note also that the result after
       modification does not have to be an existing file.   The	 name  of  any
       existing file can be followed by a modifier of the form `(:..)' even if
       no actual filename generation is performed.  Thus:

	      ls *(-/)

       lists all directories and symbolic links that point to directories, and

	      ls *(%W)

       lists all world-writable device files in the current directory, and

	      ls *(W,X)

       lists all files in the current directory	 that  are  world-writable  or
       world-executable, and

	      echo /tmp/foo*(u0^@:t)

       outputs	the basename of all root-owned files beginning with the string
       `foo' in /tmp, ignoring symlinks, and

	      ls *.*~(lex|parse).[ch](^D^l1)

       lists all files having a link count of one whose names  contain	a  dot
       (but  not  those	 starting  with	 a  dot, since GLOB_DOTS is explicitly
       switched off) except for lex.c, lex.h, parse.c and parse.h.

	      print b*.pro(#q:s/pro/shmo/)(#q.:s/builtin/shmiltin/)

       demonstrates how colon modifiers and other qualifiers  may  be  chained
       together.   The ordinary qualifier `.' is applied first, then the colon
       modifiers in order from left to right.  So if EXTENDED_GLOB is set  and
       the  base  pattern matches the regular file builtin.pro, the shell will
       print `shmiltin.shmo'.

ZSHPARAM(1)							   ZSHPARAM(1)

NAME
       zshparam - zsh parameters

DESCRIPTION
       A parameter has a name, a value, and a number of	 attributes.   A  name
       may  be any sequence of alphanumeric characters and underscores, or the
       single characters `*', `@', `#', `?', `-', `$', or `!'.	The value  may
       be  a scalar (a string), an integer, an array (indexed numerically), or
       an associative array (an unordered set of name-value pairs, indexed  by
       name).	To  declare  the type of a parameter, or to assign a scalar or
       integer value to a parameter, use the typeset builtin.

       The value of a scalar or integer parameter  may	also  be  assigned  by
       writing:

	      name=value

       If  the integer attribute, -i, is set for name, the value is subject to
       arithmetic evaluation.  Furthermore, by	replacing  `='	with  `+=',  a
       parameter  can be added or appended to.	See the section `Array Parame‐
       ters' for additional forms of assignment.

       To refer to the value of a parameter, write `$name' or `${name}'.   See
       Parameter Expansion in zshexpn(1) for complete details.

       In  the	parameter lists that follow, the mark `<S>' indicates that the
       parameter is  special.	Special	 parameters  cannot  have  their  type
       changed or their readonly attribute turned off, and if a special param‐
       eter is unset, then later recreated, the	 special  properties  will  be
       retained.   `<Z>'  indicates that the parameter does not exist when the
       shell initializes in sh or ksh emulation mode.

ARRAY PARAMETERS
       To assign an array value, write one of:

	      set -A name value ...
	      name=(value ...)

       If no parameter name exists, an ordinary array  parameter  is  created.
       If  the	parameter name exists and is a scalar, it is replaced by a new
       array.  Ordinary array parameters may also be explicitly declared with:

	      typeset -a name

       Associative arrays must be declared before assignment, by using:

	      typeset -A name

       When name refers to an associative array, the list in an assignment  is
       interpreted as alternating keys and values:

	      set -A name key value ...
	      name=(key value ...)

       Every  key  must	 have a value in this case.  Note that this assigns to
       the entire array, deleting any elements that do not appear in the list.

       To create an empty array (including associative arrays), use one of:

	      set -A name
	      name=()

   Array Subscripts
       Individual elements of an array may be selected using a	subscript.   A
       subscript of the form `[exp]' selects the single element exp, where exp
       is an arithmetic expression which will be subject to arithmetic	expan‐
       sion as if it were surrounded by `$((...))'.  The elements are numbered
       beginning with 1, unless the KSH_ARRAYS option is  set  in  which  case
       they are numbered from zero.

       Subscripts  may be used inside braces used to delimit a parameter name,
       thus `${foo[2]}' is equivalent to `$foo[2]'.  If the KSH_ARRAYS	option
       is  set,	 the  braced  form  is	the  only one that works, as bracketed
       expressions otherwise are not treated as subscripts.

       If the KSH_ARRAYS option is not set, then by  default  accesses	to  an
       array  element  with a subscript that evaluates to zero return an empty
       string, while an attempt to write such an  element  is  treated	as  an
       error.  For backward compatibility the KSH_ZERO_SUBSCRIPT option can be
       set to cause subscript values  0	 and  1	 to  be	 equivalent;  see  the
       description of the option in zshoptions(1).

       The  same  subscripting	syntax	is used for associative arrays, except
       that no arithmetic expansion is applied to exp.	However,  the  parsing
       rules  for  arithmetic  expressions  still apply, which affects the way
       that certain special characters must be protected from  interpretation.
       See Subscript Parsing below for details.

       A  subscript of the form `[*]' or `[@]' evaluates to all elements of an
       array; there is no difference between the two except when  they	appear
       within  double  quotes.	 `"$foo[*]"'  evaluates	 to  `"$foo[1] $foo[2]
       ..."', whereas `"$foo[@]"' evaluates to `"$foo[1]" "$foo[2]" ...'.  For
       associative  arrays,  `[*]'  or `[@]' evaluate to all the values, in no
       particular order.  Note that this does not substitute the keys; see the
       documentation  for the `k' flag under Parameter Expansion Flags in zsh‐
       expn(1) for complete details.  When an array parameter is referenced as
       `$name'	(with  no  subscript)  it  evaluates to `$name[*]', unless the
       KSH_ARRAYS option is set in which case  it  evaluates  to  `${name[0]}'
       (for  an	 associative array, this means the value of the key `0', which
       may not exist even if there are values for other keys).

       A subscript of the form `[exp1,exp2]' selects all elements in the range
       exp1  to	 exp2, inclusive. (Associative arrays are unordered, and so do
       not support ranges.) If one of the subscripts evaluates to  a  negative
       number, say -n, then the nth element from the end of the array is used.
       Thus `$foo[-3]' is the third element from the end of the array foo, and
       `$foo[1,-1]' is the same as `$foo[*]'.

       Subscripting  may  also be performed on non-array values, in which case
       the subscripts specify a substring to be extracted.   For  example,  if
       FOO is set to `foobar', then `echo $FOO[2,5]' prints `ooba'.

   Array Element Assignment
       A subscript may be used on the left side of an assignment like so:

	      name[exp]=value

       In  this	 form  of  assignment the element or range specified by exp is
       replaced by the expression on the right side.  An  array	 (but  not  an
       associative  array) may be created by assignment to a range or element.
       Arrays do not nest, so assigning a parenthesized list of values	to  an
       element	or range changes the number of elements in the array, shifting
       the other elements to accommodate the new values.  (This	 is  not  sup‐
       ported for associative arrays.)

       This syntax also works as an argument to the typeset command:

	      typeset "name[exp]"=value

       The  value  may	not  be	 a  parenthesized list in this case; only sin‐
       gle-element assignments may be made with typeset.  Note that quotes are
       necessary  in  this case to prevent the brackets from being interpreted
       as filename generation operators.  The noglob precommand modifier could
       be used instead.

       To delete an element of an ordinary array, assign `()' to that element.
       To delete an element of an associative array, use the unset command:

	      unset "name[exp]"

   Subscript Flags
       If the opening bracket, or the comma  in	 a  range,  in	any  subscript
       expression  is  directly followed by an opening parenthesis, the string
       up to the matching closing one is considered to be a list of flags,  as
       in `name[(flags)exp]'.

       The  flags s, n and b take an argument; the delimiter is shown below as
       `:', but	 any  character,  or  the  matching  pairs  `(...)',  `{...}',
       `[...]', or `<...>', may be used.

       The flags currently understood are:

       w      If  the  parameter  subscripted is a scalar then this flag makes
	      subscripting work on words instead of characters.	  The  default
	      word separator is whitespace.

       s:string:
	      This  gives  the string that separates words (for use with the w
	      flag).  The delimiter character : is arbitrary; see above.

       p      Recognize the same escape sequences as the print builtin in  the
	      string argument of a subsequent `s' flag.

       f      If  the  parameter  subscripted is a scalar then this flag makes
	      subscripting work on lines instead of characters, i.e. with ele‐
	      ments separated by newlines.  This is a shorthand for `pws:\n:'.

       r      Reverse subscripting: if this flag is given, the exp is taken as
	      a pattern and the result is the first  matching  array  element,
	      substring	 or  word  (if	the  parameter is an array, if it is a
	      scalar, or if it is a scalar and the `w' flag is given,  respec‐
	      tively).	 The subscript used is the number of the matching ele‐
	      ment, so that pairs of subscripts such  as  `$foo[(r)??,3]'  and
	      `$foo[(r)??,(r)f*]'  are	possible  if  the  parameter is not an
	      associative array.  If the parameter is  an  associative	array,
	      only the value part of each pair is compared to the pattern, and
	      the result is that value.

	      If a search through an ordinary array failed,  the  search  sets
	      the  subscript  to  one  past  the  end  of the array, and hence
	      ${array[(r)pattern]} will substitute the empty string.  Thus the
	      success  of  a  search  can be tested by using the (i) flag, for
	      example (assuming the option KSH_ARRAYS is not in effect):

		     [[ ${array[(i)pattern]} -le ${#array} ]]

	      If KSH_ARRAYS is in effect, the -le should be replaced by -lt.

	      R	     Like `r', but gives  the  last  match.   For  associative
		     arrays,  gives  all  possible  matches.  May  be used for
		     assigning to ordinary array elements, but not for assign‐
		     ing to associative arrays.	 On failure, for normal arrays
		     this has the effect of returning the element  correspond‐
		     ing  to  subscript	 0;  this  is  empty unless one of the
		     options KSH_ARRAYS or KSH_ZERO_SUBSCRIPT is in effect.

		     Note that in subscripts with both	`r'  and  `R'  pattern
		     characters are active even if they were substituted for a
		     parameter (regardless of the setting of GLOB_SUBST	 which
		     controls  this  feature in normal pattern matching).  The
		     flag `e' can be added to inhibit  pattern	matching.   As
		     this  flag	 does not inhibit other forms of substitution,
		     care is still required; using a parameter to hold the key
		     has the desired effect:

			    key2='original key'
			    print ${array[(Re)$key2]}

       i      Like `r', but gives the index of the match instead; this may not
	      be combined with a second argument.  On  the  left  side	of  an
	      assignment,  behaves  like `r'.  For associative arrays, the key
	      part of each pair is compared to	the  pattern,  and  the	 first
	      matching	key  found  is the result.  On failure substitutes the
	      length of the array plus one, as discussed under the description
	      of `r', or the empty string for an associative array.

       I      Like `i', but gives the index of the last match, or all possible
	      matching keys in an associative array.  On  failure  substitutes
	      0,  or  the empty string for an associative array.  This flag is
	      best when testing for values or keys that do not exist.

       k      If used in a subscript on an associative array, this flag causes
	      the  keys	 to  be interpreted as patterns, and returns the value
	      for the first key found where exp is matched by the  key.	  This
	      flag does not work on the left side of an assignment to an asso‐
	      ciative array element.  If used on another  type	of  parameter,
	      this behaves like `r'.

       K      On  an associative array this is like `k' but returns all values
	      where exp is matched by the keys.	 On other types of  parameters
	      this has the same effect as `R'.

       n:expr:
	      If  combined  with `r', `R', `i' or `I', makes them give the nth
	      or nth last match (if  expr  evaluates  to  n).	This  flag  is
	      ignored  when the array is associative.  The delimiter character
	      : is arbitrary; see above.

       b:expr:
	      If combined with `r', `R', `i' or `I', makes them begin  at  the
	      nth  or  nth last element, word, or character (if expr evaluates
	      to n).  This flag is ignored when the array is associative.  The
	      delimiter character : is arbitrary; see above.

       e      This flag causes any pattern matching that would be performed on
	      the subscript to	use  plain  string  matching  instead.	 Hence
	      `${array[(re)*]}'	 matches only the array element whose value is
	      *.  Note that other forms of substitution such as parameter sub‐
	      stitution are not inhibited.

	      This  flag can also be used to force * or @ to be interpreted as
	      a single key rather than as a reference to all values.   It  may
	      be used for either purpose on the left side of an assignment.

       See  Parameter  Expansion  Flags	 (zshexpn(1))  for  additional ways to
       manipulate the results of array subscripting.

   Subscript Parsing
       This discussion applies mainly to associative array key strings and  to
       patterns used for reverse subscripting (the `r', `R', `i', etc. flags),
       but it may also affect parameter substitutions that appear as  part  of
       an arithmetic expression in an ordinary subscript.

       It  is  possible to avoid the use of subscripts in assignments to asso‐
       ciative array elements by using the syntax:

		 aa+=('key with "*strange*" characters' 'value string')

       This adds a new key/value pair if the key is not already	 present,  and
       replaces the value for the existing key if it is.

       The  basic rule to remember when writing a subscript expression is that
       all text between the opening `[' and the closing `]' is interpreted  as
       if  it  were in double quotes (see zshmisc(1)).	However, unlike double
       quotes which normally cannot nest,  subscript  expressions  may	appear
       inside  double-quoted strings or inside other subscript expressions (or
       both!), so the rules have two important differences.

       The first difference is that brackets (`[' and `]') must appear as bal‐
       anced  pairs  in	 a  subscript expression unless they are preceded by a
       backslash (`\').	 Therefore, within a subscript expression (and	unlike
       true  double-quoting) the sequence `\[' becomes `[', and similarly `\]'
       becomes `]'.  This applies even in cases where a backslash is not  nor‐
       mally required; for example, the pattern `[^[]' (to match any character
       other than an open bracket) should be written `[^\[]' in a reverse-sub‐
       script pattern.	However, note that `\[^\[\]' and even `\[^[]' mean the
       same thing, because backslashes are always stripped  when  they	appear
       before brackets!

       The  same rule applies to parentheses (`(' and `)') and braces (`{' and
       `}'): they must appear either in balanced pairs or preceded by a	 back‐
       slash,  and  backslashes that protect parentheses or braces are removed
       during parsing.	This is because parameter expansions may be surrounded
       balanced	 braces, and subscript flags are introduced by balanced paren‐
       thesis.

       The second difference is that a double-quote (`"') may appear  as  part
       of  a  subscript	 expression without being preceded by a backslash, and
       therefore that the two characters `\"' remain as two characters in  the
       subscript (in true double-quoting, `\"' becomes `"').  However, because
       of the standard shell quoting rules, any double-quotes that appear must
       occur  in balanced pairs unless preceded by a backslash.	 This makes it
       more difficult to write a subscript expression  that  contains  an  odd
       number  of  double-quote characters, but the reason for this difference
       is so that  when	 a  subscript  expression  appears  inside  true  dou‐
       ble-quotes, one can still write `\"' (rather than `\\\"') for `"'.

       To  use	an  odd number of double quotes as a key in an assignment, use
       the typeset builtin and an enclosing pair of double quotes; to refer to
       the value of that key, again use double quotes:

	      typeset -A aa
	      typeset "aa[one\"two\"three\"quotes]"=QQQ
	      print "$aa[one\"two\"three\"quotes]"

       It  is  important  to  note that the quoting rules do not change when a
       parameter expansion with a subscript is nested inside another subscript
       expression.  That is, it is not necessary to use additional backslashes
       within the inner subscript expression; they are removed only once, from
       the  innermost  subscript  outwards.  Parameters are also expanded from
       the innermost subscript first, as each expansion is encountered left to
       right in the outer expression.

       A  further complication arises from a way in which subscript parsing is
       not different from double quote parsing.	 As  in	 true  double-quoting,
       the  sequences `\*', and `\@' remain as two characters when they appear
       in a subscript expression.  To use a literal `*' or `@' as an  associa‐
       tive array key, the `e' flag must be used:

	      typeset -A aa
	      aa[(e)*]=star
	      print $aa[(e)*]

       A  last	detail	must  be  considered when reverse subscripting is per‐
       formed.	Parameters appearing in the  subscript	expression  are	 first
       expanded	 and then the complete expression is interpreted as a pattern.
       This has two effects: first, parameters behave as if GLOB_SUBST were on
       (and  it	 cannot	 be  turned  off); second, backslashes are interpreted
       twice, once when parsing the array subscript and again when parsing the
       pattern.	  In  a	 reverse  subscript,  it's necessary to use four back‐
       slashes to cause a single backslash to match literally in the  pattern.
       For complex patterns, it is often easiest to assign the desired pattern
       to a parameter and then refer  to  that	parameter  in  the  subscript,
       because	then  the  backslashes,	 brackets, parentheses, etc., are seen
       only when the complete expression is converted to a pattern.  To	 match
       the  value of a parameter literally in a reverse subscript, rather than
       as a pattern, use `${(q)name}' (see zshexpn(1)) to quote	 the  expanded
       value.

       Note  that  the `k' and `K' flags are reverse subscripting for an ordi‐
       nary array, but are not reverse subscripting for an associative	array!
       (For an associative array, the keys in the array itself are interpreted
       as patterns by those flags; the subscript is a  plain  string  in  that
       case.)

       One final note, not directly related to subscripting: the numeric names
       of positional parameters (described below) are parsed specially, so for
       example	`$2foo'	 is  equivalent	 to `${2}foo'.	Therefore, to use sub‐
       script syntax to extract a substring from a positional  parameter,  the
       expansion must be surrounded by braces; for example, `${2[3,5]}' evalu‐
       ates to the third through fifth characters  of  the  second  positional
       parameter,  but	`$2[3,5]'  is the entire second parameter concatenated
       with the filename generation pattern `[3,5]'.

POSITIONAL PARAMETERS
       The positional parameters provide access to the command-line  arguments
       of a shell function, shell script, or the shell itself; see the section
       `Invocation', and also the section `Functions'.	The parameter n, where
       n  is  a	 number, is the nth positional parameter.  The parameters *, @
       and argv are arrays containing  all  the	 positional  parameters;  thus
       `$argv[n]', etc., is equivalent to simply `$n'.

       Positional parameters may be changed after the shell or function starts
       by using the set builtin, by assigning to the argv array, or by	direct
       assignment  of  the  form  `n=value' where n is the number of the posi‐
       tional parameter to be changed.	This also creates (with empty  values)
       any of the positions from 1 to n that do not already have values.  Note
       that, because the positional parameters form an array, an array assign‐
       ment  of	 the  form  `n=(value  ...)' is allowed, and has the effect of
       shifting all the values at positions greater than n by  as  many	 posi‐
       tions as necessary to accommodate the new values.

LOCAL PARAMETERS
       Shell function executions delimit scopes for shell parameters.  (Param‐
       eters are dynamically scoped.)  The typeset builtin, and	 its  alterna‐
       tive  forms  declare, integer, local and readonly (but not export), can
       be used to declare a parameter as being local to the innermost scope.

       When a parameter is read or assigned to, the innermost existing parame‐
       ter  of	that  name  is	used.  (That is, the local parameter hides any
       less-local parameter.)  However, assigning to a non-existent parameter,
       or  declaring  a	 new parameter with export, causes it to be created in
       the outermost scope.

       Local parameters disappear when their scope ends.  unset can be used to
       delete  a  parameter while it is still in scope; any outer parameter of
       the same name remains hidden.

       Special parameters may also be made local; they	retain	their  special
       attributes  unless  either  the existing or the newly-created parameter
       has the -h (hide) attribute.  This may have unexpected  effects:	 there
       is  no  default	value,	so  if there is no assignment at the point the
       variable is made local, it will be set to an empty value	 (or  zero  in
       the case of integers).  The following:

	      typeset PATH=/new/directory:$PATH

       is  valid  for temporarily allowing the shell or programmes called from
       it to find the programs in /new/directory inside a function.

       Note that the restriction in older versions of zsh that	local  parame‐
       ters were never exported has been removed.

PARAMETERS SET BY THE SHELL
       The following parameters are automatically set by the shell:

       ! <S>  The  process  ID	of  the last command started in the background
	      with &, or put into the background with the bg builtin.

       # <S>  The number of positional parameters in decimal.  Note that  some
	      confusion	 may  occur  with the syntax $#param which substitutes
	      the length of param.  Use ${#} to resolve ambiguities.  In  par‐
	      ticular,	the  sequence  `$#-...' in an arithmetic expression is
	      interpreted as the length of the parameter -, q.v.

       ARGC <S> <Z>
	      Same as #.

       $ <S>  The process ID of this shell.   Note  that  this	indicates  the
	      original	shell  started	by  invoking zsh; all processes forked
	      from the shells without executing a new program,	such  as  sub‐
	      shells started by (...), substitute the same value.

       - <S>  Flags  supplied  to  the	shell  on  invocation or by the set or
	      setopt commands.

       * <S>  An array containing the positional parameters.

       argv <S> <Z>
	      Same as *.  Assigning  to	 argv  changes	the  local  positional
	      parameters,  but argv is not itself a local parameter.  Deleting
	      argv with unset in any function deletes it everywhere,  although
	      only  the	 innermost positional parameter array is deleted (so *
	      and @ in other scopes are not affected).

       @ <S>  Same as argv[@], even when argv is not set.

       ? <S>  The exit status returned by the last command.

       0 <S>  The name used  to	 invoke	 the  current  shell.	If  the	 FUNC‐
	      TION_ARGZERO  option  is	set,  this is set temporarily within a
	      shell function to the name of the function, and within a sourced
	      script to the name of the script.

       status <S> <Z>
	      Same as ?.

       pipestatus <S> <Z>
	      An  array	 containing the exit statuses returned by all commands
	      in the last pipeline.

       _ <S>  The last argument of the previous command.  Also, this parameter
	      is  set in the environment of every command executed to the full
	      pathname of the command.

       CPUTYPE
	      The machine type (microprocessor class  or  machine  model),  as
	      determined at run time.

       EGID <S>
	      The effective group ID of the shell process.  If you have suffi‐
	      cient privileges, you may change the effective group ID  of  the
	      shell  process  by  assigning to this parameter.	Also (assuming
	      sufficient privileges), you may start a single  command  with  a
	      different effective group ID by `(EGID=gid; command)'

       EUID <S>
	      The  effective user ID of the shell process.  If you have suffi‐
	      cient privileges, you may change the effective user  ID  of  the
	      shell  process  by  assigning to this parameter.	Also (assuming
	      sufficient privileges), you may start a single  command  with  a
	      different effective user ID by `(EUID=uid; command)'

       ERRNO <S>
	      The  value  of  errno (see errno(3)) as set by the most recently
	      failed system call.  This	 value	is  system  dependent  and  is
	      intended	for  debugging	purposes.   It is also useful with the
	      zsh/system module which allows the number to be  turned  into  a
	      name or message.

       GID <S>
	      The  real group ID of the shell process.	If you have sufficient
	      privileges, you may change the group ID of the shell process  by
	      assigning	 to  this parameter.  Also (assuming sufficient privi‐
	      leges), you may start a single command under a  different	 group
	      ID by `(GID=gid; command)'

       HISTCMD
	      The  current  history  line  number  in an interactive shell, in
	      other words the line number for the command that caused $HISTCMD
	      to be read.

       HOST   The current hostname.

       LINENO <S>
	      The  line	 number of the current line within the current script,
	      sourced file, or shell function being  executed,	whichever  was
	      started most recently.  Note that in the case of shell functions
	      the line number refers to the function as	 it  appeared  in  the
	      original	definition,  not necessarily as displayed by the func‐
	      tions builtin.

       LOGNAME
	      If the corresponding variable is not set in the  environment  of
	      the  shell, it is initialized to the login name corresponding to
	      the current login session. This parameter is exported by default
	      but this can be disabled using the typeset builtin.

       MACHTYPE
	      The  machine  type  (microprocessor  class or machine model), as
	      determined at compile time.

       OLDPWD The previous working directory.  This is set when the shell ini‐
	      tializes and whenever the directory changes.

       OPTARG <S>
	      The  value  of the last option argument processed by the getopts
	      command.

       OPTIND <S>
	      The index of the last option argument processed by  the  getopts
	      command.

       OSTYPE The operating system, as determined at compile time.

       PPID <S>
	      The process ID of the parent of the shell.  As for $$, the value
	      indicates the parent of the original shell and does  not	change
	      in subshells.

       PWD    The  present working directory.  This is set when the shell ini‐
	      tializes and whenever the directory changes.

       RANDOM <S>
	      A pseudo-random integer from 0 to 32767,	newly  generated  each
	      time  this parameter is referenced.  The random number generator
	      can be seeded by assigning a numeric value to RANDOM.

	      The  values   of	 RANDOM	  form	 an   intentionally-repeatable
	      pseudo-random  sequence;	subshells  that	 reference RANDOM will
	      result in identical pseudo-random values	unless	the  value  of
	      RANDOM  is  referenced  or seeded in the parent shell in between
	      subshell invocations.

       SECONDS <S>
	      The number of seconds since shell invocation.  If this parameter
	      is assigned a value, then the value returned upon reference will
	      be the value that was assigned plus the number of seconds	 since
	      the assignment.

	      Unlike other special parameters, the type of the SECONDS parame‐
	      ter can be changed using the typeset command.  Only integer  and
	      one  of  the  floating  point  types  are allowed.  For example,
	      `typeset -F SECONDS' causes the value to be reported as a float‐
	      ing  point  number.  The value is available to microsecond accu‐
	      racy, although the shell may show more or fewer digits depending
	      on  the  use  of typeset.	 See the documentation for the builtin
	      typeset in zshbuiltins(1) for more details.

       SHLVL <S>
	      Incremented by one each time a new shell is started.

       signals
	      An array containing the names of the signals.

       TRY_BLOCK_ERROR <S>
	      In an always block, indicates whether the preceding list of code
	      caused  an error.	 The value is 1 to indicate an error, 0 other‐
	      wise.  It may be reset, clearing the error condition.  See  Com‐
	      plex Commands in zshmisc(1)

       TTY    The name of the tty associated with the shell, if any.

       TTYIDLE <S>
	      The idle time of the tty associated with the shell in seconds or
	      -1 if there is no such tty.

       UID <S>
	      The real user ID of the shell process.  If you  have  sufficient
	      privileges, you may change the user ID of the shell by assigning
	      to this parameter.  Also (assuming sufficient  privileges),  you
	      may  start  a  single  command  under  a	different  user	 ID by
	      `(UID=uid; command)'

       USERNAME <S>
	      The username corresponding to the real  user  ID	of  the	 shell
	      process.	 If you have sufficient privileges, you may change the
	      username (and also the user ID and group ID)  of	the  shell  by
	      assigning	 to  this parameter.  Also (assuming sufficient privi‐
	      leges), you may start a single command under a  different	 user‐
	      name  (and  user	ID  and group ID) by `(USERNAME=username; com‐
	      mand)'

       VENDOR The vendor, as determined at compile time.

       ZSH_NAME
	      Expands to the basename of  the  command	used  to  invoke  this
	      instance of zsh.

       zsh_scheduled_events
	      See the section `The zsh/sched Module' in zshmodules(1).

       ZSH_VERSION
	      The version number of this zsh.

PARAMETERS USED BY THE SHELL
       The following parameters are used by the shell.

       In  cases  where	 there are two parameters with an upper- and lowercase
       form of the same name, such as path and PATH, the lowercase form is  an
       array and the uppercase form is a scalar with the elements of the array
       joined together by colons.  These are similar to tied  parameters  cre‐
       ated  via `typeset -T'.	The normal use for the colon-separated form is
       for exporting to the environment, while the array  form	is  easier  to
       manipulate  within  the	shell.	Note that unsetting either of the pair
       will unset the other; they retain their special properties when	recre‐
       ated, and recreating one of the pair will recreate the other.

       ARGV0  If  exported,  its value is used as the argv[0] of external com‐
	      mands.  Usually used in constructs like `ARGV0=emacs nethack'.

       BAUD   The rate in bits per second at which data reaches the  terminal.
	      The line editor will use this value in order to compensate for a
	      slow terminal by delaying updates to the	display	 until	neces‐
	      sary.   If  the parameter is unset or the value is zero the com‐
	      pensation mechanism is turned off.  The parameter is not set  by
	      default.

	      This parameter may be profitably set in some circumstances, e.g.
	      for slow modems dialing into a communications server,  or	 on  a
	      slow  wide  area	network.  It should be set to the baud rate of
	      the slowest part of the link for best performance.

       cdpath <S> <Z> (CDPATH <S>)
	      An array (colon-separated list) of  directories  specifying  the
	      search path for the cd command.

       COLUMNS <S>
	      The  number  of  columns	for  this  terminal session.  Used for
	      printing select lists and for the line editor.

       DIRSTACKSIZE
	      The maximum size of the directory	 stack.	  If  the  stack  gets
	      larger  than  this, it will be truncated automatically.  This is
	      useful with the AUTO_PUSHD option.

       ENV    If the ENV environment variable is set when zsh is invoked as sh
	      or ksh, $ENV is sourced after the profile scripts.  The value of
	      ENV is subjected to parameter expansion,	command	 substitution,
	      and arithmetic expansion before being interpreted as a pathname.
	      Note that ENV is not used unless zsh is emulating sh or ksh.

       FCEDIT The default editor for the fc builtin.  If FCEDIT	 is  not  set,
	      the  parameter  EDITOR  is  used;	 if  that is not set either, a
	      builtin default, usually vi, is used.

       fignore <S> <Z> (FIGNORE <S>)
	      An array (colon separated list) containing the suffixes of files
	      to  be  ignored during filename completion.  However, if comple‐
	      tion only generates files with suffixes in this list, then these
	      files are completed anyway.

       fpath <S> <Z> (FPATH <S>)
	      An  array	 (colon	 separated list) of directories specifying the
	      search path for function definitions.   This  path  is  searched
	      when a function with the -u attribute is referenced.  If an exe‐
	      cutable file is found, then it is read and executed in the  cur‐
	      rent environment.

       histchars <S>
	      Three  characters used by the shell's history and lexical analy‐
	      sis mechanism.  The first character signals the start of a  his‐
	      tory  expansion (default `!').  The second character signals the
	      start of a quick history substitution (default `^').  The	 third
	      character is the comment character (default `#').

	      The  characters  must be in the ASCII character set; any attempt
	      to set histchars to characters with a  locale-dependent  meaning
	      will be rejected with an error message.

       HISTCHARS <S> <Z>
	      Same as histchars.  (Deprecated.)

       HISTFILE
	      The file to save the history in when an interactive shell exits.
	      If unset, the history is not saved.

       HISTSIZE <S>
	      The maximum number of events  stored  in	the  internal  history
	      list.   If  you  use  the HIST_EXPIRE_DUPS_FIRST option, setting
	      this value larger than the SAVEHIST size will give you the  dif‐
	      ference as a cushion for saving duplicated history events.

       HOME <S>
	      The  default argument for the cd command.	 This is not set auto‐
	      matically by the shell in sh, ksh or csh emulation,  but	it  is
	      typically	 present  in the environment anyway, and if it becomes
	      set it has its usual special behaviour.

       IFS <S>
	      Internal field separators (by default space,  tab,  newline  and
	      NUL),  that are used to separate words which result from command
	      or parameter expansion and words read by the read builtin.   Any
	      characters  from	the  set space, tab and newline that appear in
	      the IFS are called IFS white space.  One or more IFS white space
	      characters  or  one  non-IFS white space character together with
	      any adjacent IFS white space character delimit a field.	If  an
	      IFS  white  space	 character  appears twice consecutively in the
	      IFS, this character is treated as if it were not	an  IFS	 white
	      space character.

       KEYTIMEOUT
	      The  time the shell waits, in hundredths of seconds, for another
	      key to be pressed when reading bound multi-character sequences.

       LANG <S>
	      This variable determines the locale category  for	 any  category
	      not specifically selected via a variable starting with `LC_'.

       LC_ALL <S>
	      This variable overrides the value of the `LANG' variable and the
	      value of any of the other variables starting with `LC_'.

       LC_COLLATE <S>
	      This variable determines the locale category for character  col‐
	      lation  information within ranges in glob brackets and for sort‐
	      ing.

       LC_CTYPE <S>
	      This variable determines the locale category for character  han‐
	      dling functions.

       LC_MESSAGES <S>
	      This  variable  determines the language in which messages should
	      be written.  Note that zsh does not use message catalogs.

       LC_NUMERIC <S>
	      This variable affects the decimal point character and  thousands
	      separator character for the formatted input/output functions and
	      string conversion functions.  Note that zsh ignores this setting
	      when parsing floating point mathematical expressions.

       LC_TIME <S>
	      This  variable  determines the locale category for date and time
	      formatting in prompt escape sequences.

       LINES <S>
	      The number of lines for this terminal session.  Used for	print‐
	      ing select lists and for the line editor.

       LISTMAX
	      In the line editor, the number of matches to list without asking
	      first. If the value is negative, the list will be	 shown	if  it
	      spans  at most as many lines as given by the absolute value.  If
	      set to zero, the shell asks only if the top of the listing would
	      scroll off the screen.

       LOGCHECK
	      The interval in seconds between checks for login/logout activity
	      using the watch parameter.

       MAIL   If this parameter is set and mailpath  is	 not  set,  the	 shell
	      looks for mail in the specified file.

       MAILCHECK
	      The interval in seconds between checks for new mail.

       mailpath <S> <Z> (MAILPATH <S>)
	      An  array	 (colon-separated  list) of filenames to check for new
	      mail.  Each filename can be followed by a `?' and a message that
	      will  be printed.	 The message will undergo parameter expansion,
	      command substitution and arithmetic expansion with the  variable
	      $_  defined  as  the  name  of  the  file that has changed.  The
	      default message is `You have new mail'.	If  an	element	 is  a
	      directory	 instead  of  a	 file the shell will recursively check
	      every file in every subdirectory of the element.

       manpath <S> <Z> (MANPATH <S> <Z>)
	      An array (colon-separated list) whose value is not used  by  the
	      shell.   The manpath array can be useful, however, since setting
	      it also sets MANPATH, and vice versa.

       module_path <S> <Z> (MODULE_PATH <S>)
	      An array (colon-separated list)  of  directories	that  zmodload
	      searches	for dynamically loadable modules.  This is initialized
	      to a standard  pathname,	usually	 `/usr/local/lib/zsh/$ZSH_VER‐
	      SION'.   (The  `/usr/local/lib' part varies from installation to
	      installation.)  For security reasons, any value set in the envi‐
	      ronment when the shell is started will be ignored.

	      These parameters only exist if the installation supports dynamic
	      module loading.

       NULLCMD <S>
	      The command name to assume if a redirection is specified with no
	      command.	 Defaults to cat.  For sh/ksh behavior, change this to
	      :.  For csh-like behavior, unset this parameter; the shell  will
	      print an error message if null commands are entered.

       path <S> <Z> (PATH <S>)
	      An  array	 (colon-separated  list)  of directories to search for
	      commands.	 When this parameter is set, each directory is scanned
	      and all files found are put in a hash table.

       POSTEDIT <S>
	      This  string  is output whenever the line editor exits.  It usu‐
	      ally contains termcap strings to reset the terminal.

       PROMPT <S> <Z>
       PROMPT2 <S> <Z>
       PROMPT3 <S> <Z>
       PROMPT4 <S> <Z>
	      Same as PS1, PS2, PS3 and PS4, respectively.

       prompt <S> <Z>
	      Same as PS1.

       PS1 <S>
	      The primary prompt string, printed before	 a  command  is	 read.
	      the  default  is `%m%# '.	 It undergoes a special form of expan‐
	      sion before being displayed; see the section `Prompt Expansion'.

       PS2 <S>
	      The secondary prompt, printed when the shell needs more informa‐
	      tion  to	complete a command.  It is expanded in the same way as
	      PS1.  The default is `%_> ', which displays any shell constructs
	      or quotation marks which are currently being processed.

       PS3 <S>
	      Selection	 prompt	 used within a select loop.  It is expanded in
	      the same way as PS1.  The default is `?# '.

       PS4 <S>
	      The execution trace prompt.  Default is `+%N:%i> ',  which  dis‐
	      plays  the name of the current shell structure and the line num‐
	      ber within it.  In sh or ksh emulation, the default is `+ '.

       psvar <S> <Z> (PSVAR <S>)
	      An array (colon-separated list) whose first nine values  can  be
	      used in PROMPT strings.  Setting psvar also sets PSVAR, and vice
	      versa.

       READNULLCMD <S>
	      The command name to assume if  a	single	input  redirection  is
	      specified with no command.  Defaults to more.

       REPORTTIME
	      If  nonnegative,	commands whose combined user and system execu‐
	      tion times (measured in seconds) are  greater  than  this	 value
	      have timing statistics printed for them.

       REPLY  This  parameter  is reserved by convention to pass string values
	      between shell scripts and shell builtins in situations  where  a
	      function call or redirection are impossible or undesirable.  The
	      read builtin and the select complex command may set  REPLY,  and
	      filename generation both sets and examines its value when evalu‐
	      ating certain expressions.  Some modules also employ  REPLY  for
	      similar purposes.

       reply  As REPLY, but for array values rather than strings.

       RPROMPT <S>
       RPS1 <S>
	      This  prompt  is	displayed on the right-hand side of the screen
	      when the primary prompt is being displayed on  the  left.	  This
	      does  not	 work  if  the	SINGLELINEZLE  option  is  set.	 It is
	      expanded in the same way as PS1.

       RPROMPT2 <S>
       RPS2 <S>
	      This prompt is displayed on the right-hand side  of  the	screen
	      when  the secondary prompt is being displayed on the left.  This
	      does not work  if	 the  SINGLELINEZLE  option  is	 set.	It  is
	      expanded in the same way as PS2.

       SAVEHIST
	      The  maximum  number  of	history	 events to save in the history
	      file.

       SPROMPT <S>
	      The prompt used for  spelling  correction.   The	sequence  `%R'
	      expands  to  the	string which presumably needs spelling correc‐
	      tion, and `%r' expands to the proposed  correction.   All	 other
	      prompt escapes are also allowed.

       STTY   If  this	parameter is set in a command's environment, the shell
	      runs the stty command with the value of this parameter as	 argu‐
	      ments  in order to set up the terminal before executing the com‐
	      mand. The modes apply only to the command, and are reset when it
	      finishes	or  is suspended. If the command is suspended and con‐
	      tinued later with the fg or wait builtins it will see the	 modes
	      specified	 by  STTY,  as if it were not suspended.  This (inten‐
	      tionally) does not apply if the command is continued  via	 `kill
	      -CONT'.	STTY  is  ignored  if  the command is run in the back‐
	      ground, or if it is in the environment  of  the  shell  but  not
	      explicitly  assigned  to	in the input line. This avoids running
	      stty at every external command  by  accidentally	exporting  it.
	      Also  note that STTY should not be used for window size specifi‐
	      cations; these will not be local to the command.

       TERM <S>
	      The type of terminal in use.  This is used when looking up term‐
	      cap  sequences.  An assignment to TERM causes zsh to re-initial‐
	      ize the terminal, even if	 the  value  does  not	change	(e.g.,
	      `TERM=$TERM').   It is necessary to make such an assignment upon
	      any change to the terminal definition database or terminal  type
	      in order for the new settings to take effect.

       TIMEFMT
	      The  format  of process time reports with the time keyword.  The
	      default is `%E real  %U user  %S system  %P %J'.	Recognizes the
	      following escape sequences, although not all may be available on
	      all systems, and some that are available may not be useful:

	      %%     A `%'.
	      %U     CPU seconds spent in user mode.
	      %S     CPU seconds spent in kernel mode.
	      %E     Elapsed time in seconds.
	      %P     The CPU percentage, computed as (100*%U+%S)/%E.
	      %W     Number of times the process was swapped.
	      %X     The average amount in (shared) text space used in Kbytes.
	      %D     The average amount in (unshared) data/stack space used in
		     Kbytes.
	      %K     The total space used (%X+%D) in Kbytes.
	      %M     The  maximum memory the process had in use at any time in
		     Kbytes.
	      %F     The number of  major  page	 faults	 (page	needed	to  be
		     brought from disk).
	      %R     The number of minor page faults.
	      %I     The number of input operations.
	      %O     The number of output operations.
	      %r     The number of socket messages received.
	      %s     The number of socket messages sent.
	      %k     The number of signals received.
	      %w     Number of voluntary context switches (waits).
	      %c     Number of involuntary context switches.
	      %J     The name of this job.

	      A star may be inserted between the percent sign and flags print‐
	      ing time.	 This cause the time to be printed  in	`hh:mm:ss.ttt'
	      format  (hours  and  minutes  are	 only  printed if they are not
	      zero).

       TMOUT  If this parameter is nonzero, the shell  will  receive  an  ALRM
	      signal  if  a command is not entered within the specified number
	      of seconds after issuing	a  prompt.  If	there  is  a  trap  on
	      SIGALRM,	it will be executed and a new alarm is scheduled using
	      the value of the TMOUT parameter after executing the  trap.   If
	      no  trap	is  set, and the idle time of the terminal is not less
	      than the value of the TMOUT parameter, zsh  terminates.	Other‐
	      wise  a  new  alarm is scheduled to TMOUT seconds after the last
	      keypress.

       TMPPREFIX
	      A pathname prefix which the shell will  use  for	all  temporary
	      files.   Note  that  this should include an initial part for the
	      file name as well	 as  any  directory  names.   The  default  is
	      `/tmp/zsh'.

       watch <S> <Z> (WATCH <S>)
	      An  array	 (colon-separated  list)  of  login/logout  events  to
	      report.	If  it	contains  the  single  word  `all',  then  all
	      login/logout  events  are	 reported.   If it contains the single
	      word `notme', then all events are reported as with `all'	except
	      $USERNAME.   An entry in this list may consist of a username, an
	      `@' followed by a remote hostname, and a `%' followed by a  line
	      (tty).   Any  or	all  of	 these components may be present in an
	      entry; if a login/logout	event  matches	all  of	 them,	it  is
	      reported.

       WATCHFMT
	      The  format  of  login/logout  reports if the watch parameter is
	      set.  Default is `%n has %a %l from %m'.	Recognizes the follow‐
	      ing escape sequences:

	      %n     The name of the user that logged in/out.

	      %a     The observed action, i.e. "logged on" or "logged off".

	      %l     The line (tty) the user is logged in on.

	      %M     The full hostname of the remote host.

	      %m     The hostname up to the first `.'.	If only the IP address
		     is available or the utmp field contains the  name	of  an
		     X-windows display, the whole name is printed.

		     NOTE:  The	 `%m' and `%M' escapes will work only if there
		     is a host name field in the utmp on your machine.	Other‐
		     wise they are treated as ordinary strings.

	      %S (%s)
		     Start (stop) standout mode.

	      %U (%u)
		     Start (stop) underline mode.

	      %B (%b)
		     Start (stop) boldface mode.

	      %t
	      %@     The time, in 12-hour, am/pm format.

	      %T     The time, in 24-hour format.

	      %w     The date in `day-dd' format.

	      %W     The date in `mm/dd/yy' format.

	      %D     The date in `yy-mm-dd' format.

	      %(x:true-text:false-text)
		     Specifies	a ternary expression.  The character following
		     the x is arbitrary; the same character is used  to	 sepa‐
		     rate  the	text  for  the "true" result from that for the
		     "false" result.  Both the separator and the right	paren‐
		     thesis  may be escaped with a backslash.  Ternary expres‐
		     sions may be nested.

		     The test character x may be any one of `l', `n',  `m'  or
		     `M',  which indicate a `true' result if the corresponding
		     escape sequence would return a non-empty value; or it may
		     be	 `a',  which  indicates a `true' result if the watched
		     user has logged in, or `false'  if	 he  has  logged  out.
		     Other  characters evaluate to neither true nor false; the
		     entire expression is omitted in this case.

		     If the result is `true', then the true-text is  formatted
		     according	to  the	 rules	above  and  printed,  and  the
		     false-text is skipped.   If  `false',  the	 true-text  is
		     skipped  and  the	false-text  is	formatted and printed.
		     Either or both of the branches may	 be  empty,  but  both
		     separators must be present in any case.

       WORDCHARS <S>
	      A	 list of non-alphanumeric characters considered part of a word
	      by the line editor.

       ZBEEP  If set, this gives a string of characters, which can use all the
	      same  codes  as  the bindkey command as described in the zsh/zle
	      module entry in zshmodules(1), that will be output to the termi‐
	      nal  instead  of beeping.	 This may have a visible instead of an
	      audible effect; for example,  the	 string	 `\e[?5h\e[?5l'	 on  a
	      vt100 or xterm will have the effect of flashing reverse video on
	      and off (if you usually use reverse video, you  should  use  the
	      string  `\e[?5l\e[?5h' instead).	This takes precedence over the
	      NOBEEP option.

       ZDOTDIR
	      The directory to search for shell startup files  (.zshrc,	 etc),
	      if not $HOME.

ZSHOPTIONS(1)							 ZSHOPTIONS(1)

NAME
       zshoptions - zsh options

SPECIFYING OPTIONS
       Options are primarily referred to by name.  These names are case insen‐
       sitive and underscores are ignored.  For example, `allexport' is equiv‐
       alent to `A__lleXP_ort'.

       The  sense of an option name may be inverted by preceding it with `no',
       so `setopt No_Beep' is equivalent to `unsetopt beep'.   This  inversion
       can only be done once, so `nonobeep' is not a synonym for `beep'.  Sim‐
       ilarly, `tify' is not  a	 synonym  for  `nonotify'  (the	 inversion  of
       `notify').

       Some  options also have one or more single letter names.	 There are two
       sets of single letter options: one used by default, and another used to
       emulate	sh/ksh	(used  when the SH_OPTION_LETTERS option is set).  The
       single letter options can be used on the shell command  line,  or  with
       the  set, setopt and unsetopt builtins, as normal Unix options preceded
       by `-'.

       The sense of the single letter options may be  inverted	by  using  `+'
       instead	of  `-'.   Some	 of the single letter option names refer to an
       option being off, in which case the inversion of that  name  refers  to
       the  option  being  on.	For example, `+n' is the short name of `exec',
       and `-n' is the short name of its inversion, `noexec'.

       In strings of single letter options supplied to the shell  at  startup,
       trailing	 whitespace  will  be ignored; for example the string `-f    '
       will be treated just as `-f', but the string `-f i' is an error.	  This
       is  because many systems which implement the `#!' mechanism for calling
       scripts do not strip trailing whitespace.

DESCRIPTION OF OPTIONS
       In the following list, options set by default  in  all  emulations  are
       marked  <D>;  those  set by default only in csh, ksh, sh, or zsh emula‐
       tions are marked <C>, <K>,  <S>,	 <Z>  as  appropriate.	 When  listing
       options	(by  `setopt', `unsetopt', `set -o' or `set +o'), those turned
       on by default appear in the list prefixed  with	`no'.	Hence  (unless
       KSH_OPTION_PRINT is set), `setopt' shows all options whose settings are
       changed from the default.

   Changing Directories
       AUTO_CD (-J)
	      If a command is issued that can't be executed as a  normal  com‐
	      mand, and the command is the name of a directory, perform the cd
	      command to that directory.

       AUTO_PUSHD (-N)
	      Make cd push the old directory onto the directory stack.

       CDABLE_VARS (-T)
	      If the argument to a cd command  (or  an	implied	 cd  with  the
	      AUTO_CD  option set) is not a directory, and does not begin with
	      a slash, try to expand the expression as if it were preceded  by
	      a `~' (see the section `Filename Expansion').

       CHASE_DOTS
	      When  changing  to  a  directory	containing a path segment `..'
	      which would otherwise be treated as canceling the previous  seg‐
	      ment in the path (in other words, `foo/..' would be removed from
	      the path, or if `..' is the first part of	 the  path,  the  last
	      part  of $PWD would be deleted), instead resolve the path to the
	      physical directory.  This option is overridden by CHASE_LINKS.

	      For example,  suppose  /foo/bar  is  a  link  to	the  directory
	      /alt/rod.	  Without this option set, `cd /foo/bar/..' changes to
	      /foo; with it set, it changes to /alt.  The same applies if  the
	      current  directory  is  /foo/bar and `cd ..' is used.  Note that
	      all other symbolic links in the path will also be resolved.

       CHASE_LINKS (-w)
	      Resolve symbolic links to their true values when changing direc‐
	      tory.   This also has the effect of CHASE_DOTS, i.e. a `..' path
	      segment will be treated as referring  to	the  physical  parent,
	      even if the preceding path segment is a symbolic link.

       PUSHD_IGNORE_DUPS
	      Don't push multiple copies of the same directory onto the direc‐
	      tory stack.

       PUSHD_MINUS
	      Exchanges the meanings of `+' and `-' when used with a number to
	      specify a directory in the stack.

       PUSHD_SILENT (-E)
	      Do not print the directory stack after pushd or popd.

       PUSHD_TO_HOME (-D)
	      Have pushd with no arguments act like `pushd $HOME'.

   Completion
       ALWAYS_LAST_PROMPT <D>
	      If  unset,  key functions that list completions try to return to
	      the last prompt if given a numeric argument. If set these	 func‐
	      tions try to return to the last prompt if given no numeric argu‐
	      ment.

       ALWAYS_TO_END
	      If a completion is performed with the cursor within a word,  and
	      a full completion is inserted, the cursor is moved to the end of
	      the word.	 That is, the cursor is moved to the end of  the  word
	      if  either a single match is inserted or menu completion is per‐
	      formed.

       AUTO_LIST (-9) <D>
	      Automatically list choices on an ambiguous completion.

       AUTO_MENU <D>
	      Automatically use menu completion after the  second  consecutive
	      request  for  completion,	 for  example  by pressing the tab key
	      repeatedly. This option is overridden by MENU_COMPLETE.

       AUTO_NAME_DIRS
	      Any parameter that is set to the absolute name  of  a  directory
	      immediately becomes a name for that directory, that will be used
	      by the `%~' and related prompt sequences, and will be  available
	      when completion is performed on a word starting with `~'.	 (Oth‐
	      erwise, the parameter must be used in the form `~param' first.)

       AUTO_PARAM_KEYS <D>
	      If a parameter name was  completed  and  a  following  character
	      (normally	 a space) automatically inserted, and the next charac‐
	      ter typed is one of those that have to come directly  after  the
	      name (like `}', `:', etc.), the automatically added character is
	      deleted, so that the character typed comes immediately after the
	      parameter	 name.	 Completion  in	 a brace expansion is affected
	      similarly: the added character is a `,', which will  be  removed
	      if `}' is typed next.

       AUTO_PARAM_SLASH <D>
	      If  a  parameter	is  completed  whose  content is the name of a
	      directory, then add a trailing slash instead of a space.

       AUTO_REMOVE_SLASH <D>
	      When the last character resulting from a completion is  a	 slash
	      and  the next character typed is a word delimiter, a slash, or a
	      character that ends a command (such as a semicolon or an	amper‐
	      sand), remove the slash.

       BASH_AUTO_LIST
	      On  an ambiguous completion, automatically list choices when the
	      completion function is called twice in succession.   This	 takes
	      precedence  over	AUTO_LIST.   The  setting of LIST_AMBIGUOUS is
	      respected.  If AUTO_MENU is set, the menu	 behaviour  will  then
	      start  with  the third press.  Note that this will not work with
	      MENU_COMPLETE, since repeated completion calls immediately cycle
	      through the list in that case.

       COMPLETE_ALIASES
	      Prevents	aliases on the command line from being internally sub‐
	      stituted before completion is attempted.	The effect is to  make
	      the alias a distinct command for completion purposes.

       COMPLETE_IN_WORD
	      If unset, the cursor is set to the end of the word if completion
	      is started. Otherwise it stays there and completion is done from
	      both ends.

       GLOB_COMPLETE
	      When  the current word has a glob pattern, do not insert all the
	      words resulting from the expansion but generate matches  as  for
	      completion  and  cycle  through  them  like  MENU_COMPLETE.  The
	      matches are generated as if a `*' was added to the  end  of  the
	      word,  or	 inserted  at the cursor when COMPLETE_IN_WORD is set.
	      This actually uses pattern matching, not globbing, so  it	 works
	      not only for files but for any completion, such as options, user
	      names, etc.

	      Note that when the pattern matcher  is  used,  matching  control
	      (for  example,  case-insensitive or anchored matching) cannot be
	      used.  This limitation only applies when the current  word  con‐
	      tains a pattern; simply turning on the GLOB_COMPLETE option does
	      not have this effect.

       HASH_LIST_ALL <D>
	      Whenever a command completion is attempted, make sure the entire
	      command  path  is hashed first.  This makes the first completion
	      slower.

       LIST_AMBIGUOUS <D>
	      This option works when AUTO_LIST or BASH_AUTO_LIST is also  set.
	      If there is an unambiguous prefix to insert on the command line,
	      that is done without a completion list being displayed; in other
	      words,  auto-listing  behaviour  only  takes  place when nothing
	      would be inserted.  In the case of  BASH_AUTO_LIST,  this	 means
	      that the list will be delayed to the third call of the function.

       LIST_BEEP <D>
	      Beep  on	an ambiguous completion.  More accurately, this forces
	      the completion widgets to return status 1 on an  ambiguous  com‐
	      pletion,	which  causes  the shell to beep if the option BEEP is
	      also set; this may be modified if completion is  called  from  a
	      user-defined widget.

       LIST_PACKED
	      Try  to  make the completion list smaller (occupying less lines)
	      by printing the matches in columns with different widths.

       LIST_ROWS_FIRST
	      Lay out the matches in  completion  lists	 sorted	 horizontally,
	      that  is, the second match is to the right of the first one, not
	      under it as usual.

       LIST_TYPES (-X) <D>
	      When listing files that are possible completions, show the  type
	      of each file with a trailing identifying mark.

       MENU_COMPLETE (-Y)
	      On  an ambiguous completion, instead of listing possibilities or
	      beeping, insert the first match immediately.  Then when  comple‐
	      tion  is	requested again, remove the first match and insert the
	      second match, etc.  When there are no more matches, go  back  to
	      the  first one again.  reverse-menu-complete may be used to loop
	      through the list in the other direction. This  option  overrides
	      AUTO_MENU.

       REC_EXACT (-S)
	      In  completion, recognize exact matches even if they are ambigu‐
	      ous.

   Expansion and Globbing
       BAD_PATTERN (+2) <C> <Z>
	      If a pattern for filename generation is badly formed,  print  an
	      error  message.	(If  this option is unset, the pattern will be
	      left unchanged.)

       BARE_GLOB_QUAL <Z>
	      In a glob pattern, treat a trailing  set	of  parentheses	 as  a
	      qualifier	 list,	if it contains no `|', `(' or (if special) `~'
	      characters.  See the section `Filename Generation'.

       BRACE_CCL
	      Expand expressions in braces which would not  otherwise  undergo
	      brace  expansion	to a lexically ordered list of all the charac‐
	      ters.  See the section `Brace Expansion'.

       CASE_GLOB <D>
	      Make globbing (filename generation)  sensitive  to  case.	  Note
	      that  other  uses	 of patterns are always sensitive to case.  If
	      the option is unset, the presence of any character which is spe‐
	      cial  to	filename generation will cause case-insensitive match‐
	      ing.  For example, cvs(/) can match the directory CVS  owing  to
	      the   presence   of   the	  globbing  flag  (unless  the	option
	      BARE_GLOB_QUAL is unset).

       CASE_MATCH <D>
	      Make regular expressions using the zsh/regex  module  (including
	      matches with =~) sensitive to case.

       CSH_NULL_GLOB <C>
	      If  a pattern for filename generation has no matches, delete the
	      pattern from the argument list; do not report  an	 error	unless
	      all  the	patterns  in  a	 command  have	no matches.  Overrides
	      NOMATCH.

       EQUALS <Z>
	      Perform = filename expansion.  (See the section `Filename Expan‐
	      sion'.)

       EXTENDED_GLOB
	      Treat  the  `#',	`~' and `^' characters as part of patterns for
	      filename generation, etc.	 (An initial unquoted `~' always  pro‐
	      duces named directory expansion.)

       GLOB (+F, ksh: +f) <D>
	      Perform filename generation (globbing).  (See the section `File‐
	      name Generation'.)

       GLOB_ASSIGN <C>
	      If this option is set, filename generation  (globbing)  is  per‐
	      formed on the right hand side of scalar parameter assignments of
	      the form `name=pattern (e.g. `foo=*').  If the result  has  more
	      than  one	 word  the  parameter  will become an array with those
	      words as arguments. This option is provided for  backwards  com‐
	      patibility  only: globbing is always performed on the right hand
	      side of array  assignments  of  the  form	 `name=(value)'	 (e.g.
	      `foo=(*)')  and  this form is recommended for clarity; with this
	      option set, it is not possible to	 predict  whether  the	result
	      will be an array or a scalar.

       GLOB_DOTS (-4)
	      Do not require a leading `.' in a filename to be matched explic‐
	      itly.

       GLOB_SUBST <C> <K> <S>
	      Treat any characters resulting from parameter expansion as being
	      eligible	for  file  expansion  and filename generation, and any
	      characters resulting from command substitution as being eligible
	      for  filename generation.	 Braces (and commas in between) do not
	      become eligible for expansion.

       HIST_SUBST_PATTERN
	      Substitutions using the :s and :&	 history  modifiers  are  per‐
	      formed  with  pattern matching instead of string matching.  This
	      occurs wherever history  modifiers  are  valid,  including  glob
	      qualifiers  and  parameters.   See the section Modifiers in zsh‐
	      exp(1).

       IGNORE_BRACES (-I) <S>
	      Do not perform brace expansion.

       KSH_GLOB <K>
	      In  pattern  matching,  the  interpretation  of  parentheses  is
	      affected by a preceding `@', `*', `+', `?' or `!'.  See the sec‐
	      tion `Filename Generation'.

       MAGIC_EQUAL_SUBST
	      All unquoted arguments of the form `anything=expression' appear‐
	      ing  after  the  command	name have filename expansion (that is,
	      where expression has a leading `~' or `=') performed on  expres‐
	      sion  as if it were a parameter assignment.  The argument is not
	      otherwise treated specially; it is passed to the	command	 as  a
	      single argument, and not used as an actual parameter assignment.
	      For example, in echo  foo=~/bar:~/rod,  both  occurrences	 of  ~
	      would  be	 replaced.  Note that this happens anyway with typeset
	      and similar statements.

	      This option respects the setting of the KSH_TYPESET option.   In
	      other  words,  if	 both options are in effect, arguments looking
	      like assignments will not undergo word splitting.

       MARK_DIRS (-8, ksh: -X)
	      Append a trailing `/' to	all  directory	names  resulting  from
	      filename generation (globbing).

       MULTIBYTE <C> <K> <Z>
	      Respect  multibyte  characters when found in strings.  When this
	      option is set, strings are examined using the system library  to
	      determine how many bytes form a character, depending on the cur‐
	      rent locale.  This affects the way  characters  are  counted  in
	      pattern matching, parameter values and various delimiters.

	      The  option  is  on  by  default	if the shell was compiled with
	      MULTIBYTE_SUPPORT except in sh emulation; otherwise it is off by
	      default  and  has no effect if turned on.	 The mode is off in sh
	      emulation for compatibility but for interative use may  need  to
	      be turned on if the terminal interprets multibyte characters.

	      If the option is off a single byte is always treated as a single
	      character.   This	 setting  is  designed	purely	for  examining
	      strings  known to contain raw bytes or other values that may not
	      be characters in the current locale.  It	is  not	 necessary  to
	      unset  the  option merely because the character set for the cur‐
	      rent locale does not contain multibyte characters.

	      The option does not affect the  shell's  editor,	 which	always
	      uses  the	 locale	 to  determine	multibyte characters.  This is
	      because the character set displayed by the terminal emulator  is
	      independent of shell settings.

       NOMATCH (+3) <C> <Z>
	      If  a  pattern  for filename generation has no matches, print an
	      error, instead of leaving it unchanged  in  the  argument	 list.
	      This also applies to file expansion of an initial `~' or `='.

       NULL_GLOB (-G)
	      If  a pattern for filename generation has no matches, delete the
	      pattern from the argument list instead of	 reporting  an	error.
	      Overrides NOMATCH.

       NUMERIC_GLOB_SORT
	      If  numeric  filenames are matched by a filename generation pat‐
	      tern, sort the filenames numerically rather  than	 lexicographi‐
	      cally.

       RC_EXPAND_PARAM (-P)
	      Array  expansions of the form `foo${xx}bar', where the parameter
	      xx is set to (a b c),  are  substituted  with  `fooabar  foobbar
	      foocbar' instead of the default `fooa b cbar'.

       REMATCH_PCRE <Z>
	      If  set,	regular	 expression matching with the =~ operator will
	      use Perl-Compatible Regular Expressions from the	PCRE  library,
	      if  available.   If  not	set,  regular expressions will use the
	      extended regexp syntax provided by the system libraries.

       SH_GLOB <K> <S>
	      Disables the special meaning of `(', `|', `)' and '<' for	 glob‐
	      bing  the	 result of parameter and command substitutions, and in
	      some other places where the shell accepts patterns.  This option
	      is set by default if zsh is invoked as sh or ksh.

       UNSET (+u, ksh: +u) <K> <S> <Z>
	      Treat  unset parameters as if they were empty when substituting.
	      Otherwise they are treated as an error.

       WARN_CREATE_GLOBAL
	      Print a warning message when a global parameter is created in  a
	      function	by an assignment.  This often indicates that a parame‐
	      ter has not been	declared  local	 when  it  should  have	 been.
	      Parameters  explicitly  declared	global	from within a function
	      using typeset -g do not cause a warning.	Note that there is  no
	      warning  when a local parameter is assigned to in a nested func‐
	      tion, which may also indicate an error.

   History
       APPEND_HISTORY <D>
	      If this is set, zsh sessions will append their history  list  to
	      the  history file, rather than replace it. Thus, multiple paral‐
	      lel zsh sessions will all have the new entries from  their  his‐
	      tory  lists  added  to  the history file, in the order that they
	      exit.  The file will still be periodically re-written to trim it
	      when the number of lines grows 20% beyond the value specified by
	      $SAVEHIST (see also the HIST_SAVE_BY_COPY option).

       BANG_HIST (+K) <C> <Z>
	      Perform textual history expansion, csh-style, treating the char‐
	      acter `!' specially.

       EXTENDED_HISTORY <C>
	      Save  each  command's  beginning timestamp (in seconds since the
	      epoch) and the duration (in seconds) to the history  file.   The
	      format of this prefixed data is:

	      `:<beginning time>:<elapsed seconds>:<command>'.

       HIST_ALLOW_CLOBBER
	      Add `|' to output redirections in the history.  This allows his‐
	      tory references to clobber files even when CLOBBER is unset.

       HIST_BEEP <D>
	      Beep when an attempt is made to access  a	 history  entry	 which
	      isn't there.

       HIST_EXPIRE_DUPS_FIRST
	      If  the  internal history needs to be trimmed to add the current
	      command line, setting this option will cause the oldest  history
	      event  that  has	a  duplicate to be lost before losing a unique
	      event from the list.  You should be sure to  set	the  value  of
	      HISTSIZE	to  a larger number than SAVEHIST in order to give you
	      some room for the duplicated events, otherwise this option  will
	      behave  just like HIST_IGNORE_ALL_DUPS once the history fills up
	      with unique events.

       HIST_FIND_NO_DUPS
	      When searching for history entries in the line  editor,  do  not
	      display  duplicates  of  a  line	previously  found, even if the
	      duplicates are not contiguous.

       HIST_IGNORE_ALL_DUPS
	      If a new command line being added to the history list duplicates
	      an  older	 one, the older command is removed from the list (even
	      if it is not the previous event).

       HIST_IGNORE_DUPS (-h)
	      Do not enter command lines into the history  list	 if  they  are
	      duplicates of the previous event.

       HIST_IGNORE_SPACE (-g)
	      Remove  command lines from the history list when the first char‐
	      acter on the line is a  space,  or  when	one  of	 the  expanded
	      aliases contains a leading space.	 Note that the command lingers
	      in the internal history until the next command is entered before
	      it vanishes, allowing you to briefly reuse or edit the line.  If
	      you want to make it vanish right away without  entering  another
	      command, type a space and press return.

       HIST_NO_FUNCTIONS
	      Remove  function	definitions  from the history list.  Note that
	      the function lingers in the internal history until the next com‐
	      mand  is entered before it vanishes, allowing you to briefly re‐
	      use or edit the definition.

       HIST_NO_STORE
	      Remove the history (fc -l) command from the  history  list  when
	      invoked.	 Note that the command lingers in the internal history
	      until the next command is entered before it  vanishes,  allowing
	      you to briefly reuse or edit the line.

       HIST_REDUCE_BLANKS
	      Remove  superfluous blanks from each command line being added to
	      the history list.

       HIST_SAVE_BY_COPY <D>
	      When the history file is re-written, we  normally	 write	out  a
	      copy of the file named $HISTFILE.new and then rename it over the
	      old one.	However, if this option is unset, we instead  truncate
	      the old history file and write out the new version in-place.  If
	      one of the history-appending options  is	enabled,  this	option
	      only  has	 an  effect when the enlarged history file needs to be
	      re-written to trim it down to size.  Disable this	 only  if  you
	      have  special  needs, as doing so makes it possible to lose his‐
	      tory entries if zsh gets interrupted during the save.

	      When writing out a copy of the history file, zsh	preserves  the
	      old file's permissions and group information, but will refuse to
	      write out a new file if  it  would  change  the  history	file's
	      owner.

       HIST_SAVE_NO_DUPS
	      When writing out the history file, older commands that duplicate
	      newer ones are omitted.

       HIST_VERIFY
	      Whenever the user enters a line with  history  expansion,	 don't
	      execute  the  line  directly; instead, perform history expansion
	      and reload the line into the editing buffer.

       INC_APPEND_HISTORY
	      This options works like APPEND_HISTORY except that  new  history
	      lines  are added to the $HISTFILE incrementally (as soon as they
	      are entered), rather than waiting until the  shell  exits.   The
	      file  will  still be periodically re-written to trim it when the
	      number of lines grows 20% beyond the value specified  by	$SAVE‐
	      HIST (see also the HIST_SAVE_BY_COPY option).

       SHARE_HISTORY <K>

	      This option both imports new commands from the history file, and
	      also causes your typed commands to be appended  to  the  history
	      file  (the  latter  is like specifying INC_APPEND_HISTORY).  The
	      history lines are also output with timestamps ala	 EXTENDED_HIS‐
	      TORY  (which  makes it easier to find the spot where we left off
	      reading the file after it gets re-written).

	      By default, history movement commands visit the  imported	 lines
	      as  well	as the local lines, but you can toggle this on and off
	      with the set-local-history zle binding.  It is also possible  to
	      create a zle widget that will make some commands ignore imported
	      commands, and some include them.

	      If you find that you want more control over  when	 commands  get
	      imported,	   you	 may   wish   to   turn	  SHARE_HISTORY	  off,
	      INC_APPEND_HISTORY on, and then manually import  commands	 when‐
	      ever you need them using `fc -RI'.

   Initialisation
       ALL_EXPORT (-a, ksh: -a)
	      All parameters subsequently defined are automatically exported.

       GLOBAL_EXPORT (<Z>)
	      If  this	option	is  set,  passing  the -x flag to the builtins
	      declare, float, integer, readonly and typeset  (but  not	local)
	      will  also  set  the  -g flag;  hence parameters exported to the
	      environment will not be made local to  the  enclosing  function,
	      unless they were already or the flag +g is given explicitly.  If
	      the option is unset, exported parameters will be made  local  in
	      just the same way as any other parameter.

	      This  option is set by default for backward compatibility; it is
	      not recommended that its behaviour be relied  upon.   Note  that
	      the  builtin  export  always  sets both the -x and -g flags, and
	      hence its effect extends beyond the scope of the enclosing func‐
	      tion; this is the most portable way to achieve this behaviour.

       GLOBAL_RCS (-d) <D>
	      If  this	option	is  unset,  the	 startup  files /etc/zprofile,
	      /etc/zshrc, /etc/zlogin and /etc/zlogout will not	 be  run.   It
	      can  be  disabled	 and  re-enabled at any time, including inside
	      local startup files (.zshrc, etc.).

       RCS (+f) <D>
	      After /etc/zshenv is sourced on  startup,	 source	 the  .zshenv,
	      /etc/zprofile, .zprofile, /etc/zshrc, .zshrc, /etc/zlogin, .zlo‐
	      gin, and .zlogout files, as described in	the  section  `Files'.
	      If  this option is unset, the /etc/zshenv file is still sourced,
	      but any of the others will not be; it can be set at any time  to
	      prevent  the remaining startup files after the currently execut‐
	      ing one from being sourced.

   Input/Output
       ALIASES <D>
	      Expand aliases.

       CLOBBER (+C, ksh: +C) <D>
	      Allows `>' redirection to truncate existing files, and  `>>'  to
	      create files.  Otherwise `>!' or `>|' must be used to truncate a
	      file, and `>>!' or `>>|' to create a file.

       CORRECT (-0)
	      Try to correct the spelling of commands.	Note  that,  when  the
	      HASH_LIST_ALL  option is not set or when some directories in the
	      path are not readable, this may falsely report  spelling	errors
	      the first time some commands are used.

       CORRECT_ALL (-O)
	      Try to correct the spelling of all arguments in a line.

       DVORAK Use  the Dvorak keyboard instead of the standard qwerty keyboard
	      as a basis for examining spelling mistakes for the  CORRECT  and
	      CORRECT_ALL options and the spell-word editor command.

       FLOW_CONTROL <D>
	      If  this	option	is  unset,  output flow control via start/stop
	      characters (usually  assigned  to	 ^S/^Q)	 is  disabled  in  the
	      shell's editor.

       IGNORE_EOF (-7)
	      Do  not  exit on end-of-file.  Require the use of exit or logout
	      instead.	However, ten consecutive EOFs will cause the shell  to
	      exit anyway, to avoid the shell hanging if its tty goes away.

	      Also,  if	 this  option  is set and the Zsh Line Editor is used,
	      widgets implemented by shell functions can be bound to EOF (nor‐
	      mally  Control-D)	 without  printing the normal warning message.
	      This works only for normal widgets, not for completion widgets.

       INTERACTIVE_COMMENTS (-k) <K> <S>
	      Allow comments even in interactive shells.

       HASH_CMDS <D>
	      Note the location of each command the first time it is executed.
	      Subsequent  invocations  of  the same command will use the saved
	      location, avoiding a path search.	 If this option is  unset,  no
	      path hashing is done at all.  However, when CORRECT is set, com‐
	      mands whose names do not appear in the functions or aliases hash
	      tables  are  hashed in order to avoid reporting them as spelling
	      errors.

       HASH_DIRS <D>
	      Whenever a command name is hashed, hash the directory containing
	      it,  as  well as all directories that occur earlier in the path.
	      Has no effect if neither HASH_CMDS nor CORRECT is set.

       MAIL_WARNING (-U)
	      Print a warning message if a mail file has been  accessed	 since
	      the shell last checked.

       PATH_DIRS (-Q)
	      Perform  a  path	search	even  on command names with slashes in
	      them.  Thus if `/usr/local/bin' is in the user's path, and he or
	      she  types  `X11/xinit',	the command `/usr/local/bin/X11/xinit'
	      will be executed	(assuming  it  exists).	  Commands  explicitly
	      beginning	 with  `/',  `./' or `../' are not subject to the path
	      search.  This also applies to the . builtin.

	      Note that subdirectories of the  current	directory  are	always
	      searched	for  executables  specified  in this form.  This takes
	      place before any search indicated by this option, and regardless
	      of  whether  `.'	or the current directory appear in the command
	      search path.

       PRINT_EIGHT_BIT
	      Print eight bit characters literally in completion  lists,  etc.
	      This  option  is	not necessary if your system correctly returns
	      the printability of eight bit characters (see ctype(3)).

       PRINT_EXIT_VALUE (-1)
	      Print the exit value of programs with non-zero exit status.

       RC_QUOTES
	      Allow the character sequence `'''	 to  signify  a	 single	 quote
	      within  singly  quoted  strings.	 Note  this  does not apply in
	      quoted strings using the format $'...', where a backslashed sin‐
	      gle quote can be used.

       RM_STAR_SILENT (-H) <K> <S>
	      Do not query the user before executing `rm *' or `rm path/*'.

       RM_STAR_WAIT
	      If  querying  the	 user  before executing `rm *' or `rm path/*',
	      first wait ten seconds and ignore anything typed in  that	 time.
	      This  avoids  the	 problem of reflexively answering `yes' to the
	      query when one didn't really mean it.  The wait  and  query  can
	      always be avoided by expanding the `*' in ZLE (with tab).

       SHORT_LOOPS <C> <Z>
	      Allow  the  short forms of for, repeat, select, if, and function
	      constructs.

       SUN_KEYBOARD_HACK (-L)
	      If a line ends with a backquote, and there are an odd number  of
	      backquotes  on the line, ignore the trailing backquote.  This is
	      useful on some keyboards where the return key is too small,  and
	      the backquote key lies annoyingly close to it.

   Job Control
       AUTO_CONTINUE
	      With this option set, stopped jobs that are removed from the job
	      table with the disown builtin command are automatically  sent  a
	      CONT signal to make them running.

       AUTO_RESUME (-W)
	      Treat  single word simple commands without redirection as candi‐
	      dates for resumption of an existing job.

       BG_NICE (-6) <C> <Z>
	      Run all background jobs at a lower priority.  This option is set
	      by default.

       CHECK_JOBS <Z>
	      Report  the status of background and suspended jobs before exit‐
	      ing a shell with job control; a second attempt to exit the shell
	      will  succeed.   NO_CHECK_JOBS  is best used only in combination
	      with NO_HUP, else such jobs will be killed automatically.

	      The check is omitted if the commands run from the previous  com‐
	      mand  line  included  a  `jobs' command, since it is assumed the
	      user is aware that there are background or  suspended  jobs.   A
	      `jobs' command run from one of the hook functions defined in the
	      section SPECIAL FUNCTIONS in zshmisc(1) is not counted for  this
	      purpose.

       HUP <Z>
	      Send the HUP signal to running jobs when the shell exits.

       LONG_LIST_JOBS (-R)
	      List jobs in the long format by default.

       MONITOR (-m, ksh: -m)
	      Allow job control.  Set by default in interactive shells.

       NOTIFY (-5, ksh: -b) <Z>
	      Report  the  status  of background jobs immediately, rather than
	      waiting until just before printing a prompt.

   Prompting
       PROMPT_BANG <K>
	      If set, `!' is treated specially in prompt expansion.   See  the
	      section `Prompt Expansion'.

       PROMPT_CR (+V) <D>
	      Print  a	carriage  return  just before printing a prompt in the
	      line editor.  This is on by default  as  multi-line  editing  is
	      only  possible  if  the editor knows where the start of the line
	      appears.

       PROMPT_SP <D>
	      Attempt to preserve a partial line (i.e. a line that did not end
	      with  a  newline) that would otherwise be covered up by the com‐
	      mand prompt due to the PROMPT_CR option.	 This  works  by  out‐
	      putting  some  cursor-control  characters, including a series of
	      spaces, that should make the terminal wrap to the next line when
	      a	 partial line is present (note that this is only successful if
	      your terminal has automatic margins, which is typical).

	      When a partial line is preserved, you will see  an  inverse+bold
	      character	 at  the  end of the partial line:  a "%" for a normal
	      user or a "#" for root.

	      NOTE: if the PROMPT_CR option is not set, enabling  this	option
	      will have no effect.  This option is on by default.

       PROMPT_PERCENT <C> <Z>
	      If  set,	`%' is treated specially in prompt expansion.  See the
	      section `Prompt Expansion'.

       PROMPT_SUBST <K>
	      If set, parameter expansion, command substitution and arithmetic
	      expansion	  are  performed  in  prompts.	 Substitutions	within
	      prompts do not affect the command status.

       TRANSIENT_RPROMPT
	      Remove any right prompt from display when	 accepting  a  command
	      line.   This  may	 be useful with terminals with other cut/paste
	      methods.

   Scripts and Functions
       C_BASES
	      Output hexadecimal numbers in the standard C format, for example
	      `0xFF' instead of the usual `16#FF'.  If the option OCTAL_ZEROES
	      is also set (it is  not  by  default),  octal  numbers  will  be
	      treated  similarly  and hence appear as `077' instead of `8#77'.
	      This option has no effect on the choice of the output base,  nor
	      on  the  output of bases other than hexadecimal and octal.  Note
	      that these formats will be understood on input  irrespective  of
	      the setting of C_BASES.

       DEBUG_BEFORE_CMD
	      Run  the	DEBUG  trap  before  each command; otherwise it is run
	      after each command.  Setting this option mimics the behaviour of
	      ksh 93; with the option unset the behaviour is that of ksh 88.

       ERR_EXIT (-e, ksh: -e)
	      If  a command has a non-zero exit status, execute the ZERR trap,
	      if set, and exit.	 This is disabled while running initialization
	      scripts.

       ERR_RETURN
	      If a command has a non-zero exit status, return immediately from
	      the enclosing function.  The logic  is  identical	 to  that  for
	      ERR_EXIT,	 except	 that an implicit return statement is executed
	      instead of an exit.  This will trigger an exit at the  outermost
	      level of a non-interactive script.

       EVAL_LINENO <Z>
	      If  set, line numbers of expressions evaluated using the builtin
	      eval are tracked separately of the enclosing environment.	  This
	      applies  both to the parameter LINENO and the line number output
	      by the prompt escape %i.	If  the	 option	 is  set,  the	prompt
	      escape  %N will output the string `(eval)' instead of the script
	      or function name as an indication.   (The two prompt escapes are
	      typically used in the parameter PS4 to be output when the option
	      XTRACE is set.)  If EVAL_LINENO is unset, the line number of the
	      surrounding  script  or  function is retained during the evalua‐
	      tion.

       EXEC (+n, ksh: +n) <D>
	      Do execute commands.  Without this option, commands are read and
	      checked for syntax errors, but not executed.  This option cannot
	      be turned off in an interactive shell, except when `-n' is  sup‐
	      plied to the shell at startup.

       FUNCTION_ARGZERO <C> <Z>
	      When  executing  a  shell	 function or sourcing a script, set $0
	      temporarily to the name of the function/script.

       LOCAL_OPTIONS <K>
	      If this option is set at the point of return from a shell	 func‐
	      tion,  all  the options (including this one) which were in force
	      upon entry to the function are restored.	Otherwise,  only  this
	      option and the XTRACE and PRINT_EXIT_VALUE options are restored.
	      Hence if this is explicitly unset by a shell function the	 other
	      options in force at the point of return will remain so.  A shell
	      function can also guarantee itself a known  shell	 configuration
	      with  a  formulation  like  `emulate  -L	zsh'; the -L activates
	      LOCAL_OPTIONS.

       LOCAL_TRAPS <K>
	      If this option is set when a signal trap is set inside  a	 func‐
	      tion,  then the previous status of the trap for that signal will
	      be restored when the function exits.  Note that this option must
	      be  set  prior  to  altering  the	 trap behaviour in a function;
	      unlike LOCAL_OPTIONS, the value on exit  from  the  function  is
	      irrelevant.   However,  it  does	not  need to be set before any
	      global trap for that to be correctly  restored  by  a  function.
	      For example,

		     unsetopt localtraps
		     trap - INT
		     fn() { setopt localtraps; trap '' INT; sleep 3; }

	      will  restore  normally  handling	 of  SIGINT after the function
	      exits.

       MULTIOS <Z>
	      Perform implicit tees or cats  when  multiple  redirections  are
	      attempted (see the section `Redirection').

       OCTAL_ZEROES <S>
	      Interpret	 any integer constant beginning with a 0 as octal, per
	      IEEE Std 1003.2-1992 (ISO 9945-2:1993).  This is not enabled  by
	      default as it causes problems with parsing of, for example, date
	      and time strings with leading zeroes.

	      Sequences of digits indicating a numeric base such as  the  `08'
	      component	 in `08#77' are always interpreted as decimal, regard‐
	      less of leading zeroes.

       TYPESET_SILENT
	      If this is unset, executing any of the `typeset' family of  com‐
	      mands with no options and a list of parameters that have no val‐
	      ues to be assigned but already exist will display the  value  of
	      the  parameter.	If  the option is set, they will only be shown
	      when parameters are selected with the `-m' option.   The	option
	      `-p' is available whether or not the option is set.

       VERBOSE (-v, ksh: -v)
	      Print shell input lines as they are read.

       XTRACE (-x, ksh: -x)
	      Print commands and their arguments as they are executed.

   Shell Emulation
       BASH_REMATCH
	      When  set,  matches  performed with the =~ operator will set the
	      BASH_REMATCH array variable, instead of the  default  MATCH  and
	      match  variables.	  The  first element of the BASH_REMATCH array
	      will contain the entire matched  text  and  subsequent  elements
	      will contain extracted substrings.  This option makes more sense
	      when KSH_ARRAYS is also set, so that the entire matched  portion
	      is  stored  at  index  0	and the first substring is at index 1.
	      Without this option, the	MATCH  variable	 contains  the	entire
	      matched text and the match array variable contains substrings.

       BSD_ECHO <S>
	      Make  the	 echo builtin compatible with the BSD echo(1) command.
	      This disables  backslashed  escape  sequences  in	 echo  strings
	      unless the -e option is specified.

       CSH_JUNKIE_HISTORY <C>
	      A history reference without an event specifier will always refer
	      to the previous command.	Without this option,  such  a  history
	      reference	 refers to the same event as the previous history ref‐
	      erence, defaulting to the previous command.

       CSH_JUNKIE_LOOPS <C>
	      Allow loop bodies to take the form `list; end'  instead  of  `do
	      list; done'.

       CSH_JUNKIE_QUOTES <C>
	      Changes  the  rules  for single- and double-quoted text to match
	      that of csh.  These require that embedded newlines  be  preceded
	      by  a backslash; unescaped newlines will cause an error message.
	      In double-quoted strings, it is made impossible to  escape  `$',
	      ``'  or  `"' (and `\' itself no longer needs escaping).  Command
	      substitutions are only expanded once, and cannot be nested.

       CSH_NULLCMD <C>
	      Do not use the values of NULLCMD and  READNULLCMD	 when  running
	      redirections  with no command.  This make such redirections fail
	      (see the section `Redirection').

       KSH_ARRAYS <K> <S>
	      Emulate ksh array handling as  closely  as  possible.   If  this
	      option  is  set, array elements are numbered from zero, an array
	      parameter without subscript refers to the first element  instead
	      of  the  whole  array, and braces are required to delimit a sub‐
	      script (`${path[2]}' rather than just `$path[2]').

       KSH_AUTOLOAD <K> <S>
	      Emulate ksh function autoloading.	 This means that when a	 func‐
	      tion  is	autoloaded, the corresponding file is merely executed,
	      and must define the function itself.  (By default, the  function
	      is  defined to the contents of the file.	However, the most com‐
	      mon ksh-style case - of the file containing only a simple	 defi‐
	      nition of the function - is always handled in the ksh-compatible
	      manner.)

       KSH_OPTION_PRINT <K>
	      Alters the way options settings are printed: instead of separate
	      lists  of	 set  and unset options, all options are shown, marked
	      `on' if they are in the non-default state, `off' otherwise.

       KSH_TYPESET <K>
	      Alters the way arguments to  the	typeset	 family	 of  commands,
	      including	 declare,  export, float, integer, local and readonly,
	      are processed.  Without this option,  zsh	 will  perform	normal
	      word  splitting  after  command and parameter expansion in argu‐
	      ments of an assignment; with it, word splitting  does  not  take
	      place in those cases.

       KSH_ZERO_SUBSCRIPT
	      Treat  use  of  a	 subscript  of	value  zero in array or string
	      expressions as a reference to the first element, i.e.  the  ele‐
	      ment that usually has the subscript 1.  Ignored if KSH_ARRAYS is
	      also set.

	      If neither this option nor KSH_ARRAYS is	set,  accesses	to  an
	      element  of  an  array  or  string with subscript zero return an
	      empty element or string, while attempts to set element  zero  of
	      an  array	 or string are treated as an error.  However, attempts
	      to set an otherwise valid subscript  range  that	includes  zero
	      will succeed.  For example, if KSH_ZERO_SUBSCRIPT is not set,

		     array[0]=(element)

	      is an error, while

		     array[0,1]=(element)

	      is not and will replace the first element of the array.

	      This  option  is	for  compatibility  with older versions of the
	      shell and is not recommended in new code.

       POSIX_BUILTINS <K> <S>
	      When this option is set the command builtin can be used to  exe‐
	      cute  shell  builtin  commands.  Parameter assignments specified
	      before shell functions and special builtins are kept  after  the
	      command  completes  unless  the special builtin is prefixed with
	      the command builtin.  Special builtins are  .,  :,  break,  con‐
	      tinue,  declare,	eval,  exit, export, integer, local, readonly,
	      return, set, shift, source, times, trap and unset.

       POSIX_IDENTIFIERS <K> <S>
	      When this option is set, only the ASCII characters a to z, A  to
	      Z,  0  to	 9  and	 _  may be used in identifiers (names of shell
	      parameters and modules).

	      When the option is unset	and  multibyte	character  support  is
	      enabled  (i.e.  it  is  compiled	in and the option MULTIBYTE is
	      set), then additionally any alphanumeric characters in the local
	      character set may be used in identifiers.	 Note that scripts and
	      functions written with this feature are not portable,  and  also
	      that  both  options must be set before the script or function is
	      parsed; setting them during execution is not sufficient  as  the
	      syntax  variable=value  has  already  been  parsed  as a command
	      rather than an assignment.

	      If multibyte character support is not compiled  into  the	 shell
	      this  option  is ignored; all octets with the top bit set may be
	      used in identifiers.  This is non-standard  but  is  the	tradi‐
	      tional zsh behaviour.

       SH_FILE_EXPANSION <K> <S>
	      Perform  filename expansion (e.g., ~ expansion) before parameter
	      expansion, command substitution, arithmetic expansion and	 brace
	      expansion.  If this option is unset, it is performed after brace
	      expansion, so things like `~$USERNAME' and `~{pfalstad,rc}' will
	      work.

       SH_NULLCMD <K> <S>
	      Do  not  use  the	 values	 of NULLCMD and READNULLCMD when doing
	      redirections, use `:' instead (see the section `Redirection').

       SH_OPTION_LETTERS <K> <S>
	      If this option is set the shell tries to interpret single letter
	      options  (which  are  used  with	set and setopt) like ksh does.
	      This also affects the value of the - special parameter.

       SH_WORD_SPLIT (-y) <K> <S>
	      Causes field splitting to be  performed  on  unquoted  parameter
	      expansions.   Note  that this option has nothing to do with word
	      splitting.  (See the section `Parameter Expansion'.)

       TRAPS_ASYNC
	      While waiting for a program to  exit,  handle  signals  and  run
	      traps  immediately.   Otherwise  the  trap  is run after a child
	      process has exited.  Note this does  not	affect	the  point  at
	      which  traps  are	 run for any case other than when the shell is
	      waiting for a child process.

   Shell State
       INTERACTIVE (-i, ksh: -i)
	      This is an interactive shell.  This option is set upon initiali‐
	      sation  if  the  standard	 input is a tty and commands are being
	      read from standard input.	 (See the discussion  of  SHIN_STDIN.)
	      This  heuristic may be overridden by specifying a state for this
	      option on the command line.  The value of this option cannot  be
	      changed anywhere other than the command line.

       LOGIN (-l, ksh: -l)
	      This  is	a  login shell.	 If this option is not explicitly set,
	      the shell is a login shell if the first character of the argv[0]
	      passed to the shell is a `-'.

       PRIVILEGED (-p, ksh: -p)
	      Turn  on	privileged  mode.  This	 is  enabled  automatically on
	      startup if the effective user (group) ID is  not	equal  to  the
	      real user (group) ID.  Turning this option off causes the effec‐
	      tive user and group IDs to be set to the	real  user  and	 group
	      IDs.  This  option disables sourcing user startup files.	If zsh
	      is invoked as `sh' or `ksh' with this option set, /etc/suid_pro‐
	      file  is	sourced	 (after	 /etc/profile  on interactive shells).
	      Sourcing ~/.profile is disabled and  the	contents  of  the  ENV
	      variable	is ignored. This option cannot be changed using the -m
	      option of setopt and unsetopt, and changing it inside a function
	      always  changes  it  globally  regardless	 of  the LOCAL_OPTIONS
	      option.

       RESTRICTED (-r)
	      Enables restricted mode.	This option cannot  be	changed	 using
	      unsetopt,	 and  setting  it  inside a function always changes it
	      globally regardless of the LOCAL_OPTIONS option.	See  the  sec‐
	      tion `Restricted Shell'.

       SHIN_STDIN (-s, ksh: -s)
	      Commands	are  being read from the standard input.  Commands are
	      read from standard input if no command is specified with -c  and
	      no  file of commands is specified.  If SHIN_STDIN is set explic‐
	      itly on the command line, any argument that would otherwise have
	      been  taken as a file to run will instead be treated as a normal
	      positional parameter.   Note  that  setting  or  unsetting  this
	      option on the command line does not necessarily affect the state
	      the option will have while the shell is running - that is purely
	      an  indicator of whether on not commands are actually being read
	      from standard input.  The value of this option cannot be changed
	      anywhere other than the command line.

       SINGLE_COMMAND (-t, ksh: -t)
	      If  the  shell  is reading from standard input, it exits after a
	      single command has been executed.	 This  also  makes  the	 shell
	      non-interactive, unless the INTERACTIVE option is explicitly set
	      on the command line.  The value of this option cannot be changed
	      anywhere other than the command line.

   Zle
       BEEP (+B) <D>
	      Beep on error in ZLE.

       EMACS  If  ZLE  is  loaded,  turning  on this option has the equivalent
	      effect of `bindkey -e'.  In addition, the VI  option  is	unset.
	      Turning it off has no effect.  The option setting is not guaran‐
	      teed to reflect the current keymap.  This option is provided for
	      compatibility; bindkey is the recommended interface.

       OVERSTRIKE
	      Start up the line editor in overstrike mode.

       SINGLE_LINE_ZLE (-M) <K>
	      Use single-line command line editing instead of multi-line.

       VI     If  ZLE  is  loaded,  turning  on this option has the equivalent
	      effect of `bindkey -v'.  In addition, the EMACS option is unset.
	      Turning it off has no effect.  The option setting is not guaran‐
	      teed to reflect the current keymap.  This option is provided for
	      compatibility; bindkey is the recommended interface.

       ZLE (-Z)
	      Use  the	zsh line editor.  Set by default in interactive shells
	      connected to a terminal.

OPTION ALIASES
       Some options have alternative names.  These aliases are never used  for
       output,	but  can be used just like normal option names when specifying
       options to the shell.

       BRACE_EXPAND
	      NO_IGNORE_BRACES (ksh and bash compatibility)

       DOT_GLOB
	      GLOB_DOTS (bash compatibility)

       HASH_ALL
	      HASH_CMDS (bash compatibility)

       HIST_APPEND
	      APPEND_HISTORY (bash compatibility)

       HIST_EXPAND
	      BANG_HIST (bash compatibility)

       LOG    NO_HIST_NO_FUNCTIONS (ksh compatibility)

       MAIL_WARN
	      MAIL_WARNING (bash compatibility)

       ONE_CMD
	      SINGLE_COMMAND (bash compatibility)

       PHYSICAL
	      CHASE_LINKS (ksh and bash compatibility)

       PROMPT_VARS
	      PROMPT_SUBST (bash compatibility)

       STDIN  SHIN_STDIN (ksh compatibility)

       TRACK_ALL
	      HASH_CMDS (ksh compatibility)

SINGLE LETTER OPTIONS
   Default set
       -0     CORRECT
       -1     PRINT_EXIT_VALUE
       -2     NO_BAD_PATTERN
       -3     NO_NOMATCH
       -4     GLOB_DOTS
       -5     NOTIFY
       -6     BG_NICE
       -7     IGNORE_EOF
       -8     MARK_DIRS
       -9     AUTO_LIST
       -B     NO_BEEP
       -C     NO_CLOBBER
       -D     PUSHD_TO_HOME
       -E     PUSHD_SILENT
       -F     NO_GLOB
       -G     NULL_GLOB
       -H     RM_STAR_SILENT
       -I     IGNORE_BRACES
       -J     AUTO_CD
       -K     NO_BANG_HIST
       -L     SUN_KEYBOARD_HACK
       -M     SINGLE_LINE_ZLE
       -N     AUTO_PUSHD
       -O     CORRECT_ALL
       -P     RC_EXPAND_PARAM
       -Q     PATH_DIRS
       -R     LONG_LIST_JOBS
       -S     REC_EXACT
       -T     CDABLE_VARS
       -U     MAIL_WARNING
       -V     NO_PROMPT_CR
       -W     AUTO_RESUME
       -X     LIST_TYPES
       -Y     MENU_COMPLETE
       -Z     ZLE
       -a     ALL_EXPORT
       -e     ERR_EXIT
       -f     NO_RCS
       -g     HIST_IGNORE_SPACE
       -h     HIST_IGNORE_DUPS
       -i     INTERACTIVE
       -k     INTERACTIVE_COMMENTS
       -l     LOGIN
       -m     MONITOR
       -n     NO_EXEC
       -p     PRIVILEGED
       -r     RESTRICTED
       -s     SHIN_STDIN
       -t     SINGLE_COMMAND
       -u     NO_UNSET
       -v     VERBOSE
       -w     CHASE_LINKS
       -x     XTRACE
       -y     SH_WORD_SPLIT

   sh/ksh emulation set
       -C     NO_CLOBBER
       -T     TRAPS_ASYNC
       -X     MARK_DIRS
       -a     ALL_EXPORT
       -b     NOTIFY
       -e     ERR_EXIT
       -f     NO_GLOB
       -i     INTERACTIVE
       -l     LOGIN
       -m     MONITOR
       -n     NO_EXEC
       -p     PRIVILEGED
       -r     RESTRICTED
       -s     SHIN_STDIN
       -t     SINGLE_COMMAND
       -u     NO_UNSET
       -v     VERBOSE
       -x     XTRACE

   Also note
       -A     Used by set for setting arrays
       -b     Used on the command line to specify end of option processing
       -c     Used on the command line to specify a single command
       -m     Used by setopt for pattern-matching option setting
       -o     Used in all places to allow use of long option names
       -s     Used by set to sort positional parameters

ZSHBUILTINS(1)							ZSHBUILTINS(1)

NAME
       zshbuiltins - zsh built-in commands

SHELL BUILTIN COMMANDS
       - simple command
	      See the section `Precommand Modifiers'.

       . file [ arg ... ]
	      Read commands from file and execute them in  the	current	 shell
	      environment.

	      If  file	does  not contain a slash, or if PATH_DIRS is set, the
	      shell looks in the components of $path  to  find	the  directory
	      containing  file.	  Files	 in the current directory are not read
	      unless  `.'  appears  somewhere  in  $path.   If	a  file	 named
	      `file.zwc'  is  found,  is  newer than file, and is the compiled
	      form (created with the zcompile builtin) of file, then  commands
	      are read from that file instead of file.

	      If  any  arguments  arg  are  given,  they become the positional
	      parameters; the old positional parameters are restored when  the
	      file  is	done executing.	 The exit status is the exit status of
	      the last command executed.

       : [ arg ... ]
	      This command does nothing, although normal  argument  expansions
	      is performed which may have effects on shell parameters.	A zero
	      exit status is returned.

       alias [ {+|-}gmrsL ] [ name[=value] ... ]
	      For each name with a corresponding value, define an  alias  with
	      that  value.   A trailing space in value causes the next word to
	      be checked for alias expansion.  If  the	-g  flag  is  present,
	      define  a global alias; global aliases are expanded even if they
	      do not occur in command position.

	      If the -s flags is present, define a suffix alias: if  the  com‐
	      mand  word  on  a command line is in the form `text.name', where
	      text is any non-empty string, it is replaced by the text	`value
	      text.name'.   Note that name is treated as a literal string, not
	      a pattern.  A trailing space in value is	not  special  in  this
	      case.  For example,

		     alias -s ps=gv

	      will  cause  the command `*.ps' to be expanded to `gv *.ps'.  As
	      alias expansion is carried out earlier than globbing, the `*.ps'
	      will  then  be  expanded.	 Suffix aliases constitute a different
	      name space from other aliases (so in the	above  example	it  is
	      still  possible  to  create an alias for the command ps) and the
	      two sets are never listed together.

	      For each name with no value, print the value of  name,  if  any.
	      With  no	arguments,  print  all currently defined aliases other
	      than suffix aliases.  If the -m flag is given the arguments  are
	      taken  as	 patterns (they should be quoted to preserve them from
	      being interpreted as glob patterns), and	the  aliases  matching
	      these  patterns  are  printed.  When printing aliases and one of
	      the -g, -r or -s flags is	 present,  restrict  the  printing  to
	      global, regular or suffix aliases, respectively; a regular alias
	      is one which is neither a global nor a suffix alias.   Using `+'
	      instead  of  `-',	 or  ending the option list with a single `+',
	      prevents the values of the aliases from being printed.

	      If the -L flag is present, then print each  alias	 in  a	manner
	      suitable	for  putting  in a startup script.  The exit status is
	      nonzero if a name (with no value) is given for  which  no	 alias
	      has been defined.

       autoload [ {+|-}UXktz ] [ -w ] [ name ... ]
	      Equivalent to functions -u, with the exception of -X/+X and -w.

	      The  flag	 -X  may be used only inside a shell function, and may
	      not be followed by a name.  It causes the calling function to be
	      marked for autoloading and then immediately loaded and executed,
	      with the current array of positional  parameters	as  arguments.
	      This  replaces  the  previous definition of the function.	 If no
	      function definition is found, an error is printed and the	 func‐
	      tion remains undefined and marked for autoloading.

	      The  flag	 +X  attempts to load each name as an autoloaded func‐
	      tion, but does not execute it.  The exit status  is  zero	 (suc‐
	      cess)  if	 the function was not previously defined and a defini‐
	      tion for it was found.  This does not replace any existing defi‐
	      nition of the function.  The exit status is nonzero (failure) if
	      the function was already	defined	 or  when  no  definition  was
	      found.   In  the	latter case the function remains undefined and
	      marked for autoloading.  If ksh-style  autoloading  is  enabled,
	      the  function created will contain the contents of the file plus
	      a call to the function itself appended to it, thus giving normal
	      ksh autoloading behaviour on the first call to the function.

	      With the -w flag, the names are taken as names of files compiled
	      with the zcompile builtin, and all functions defined in them are
	      marked for autoloading.

       bg [ job ... ]
       job ... &
	      Put  each specified job in the background, or the current job if
	      none is specified.

       bindkey
	      See the section `Zle Builtins' in zshzle(1).

       break [ n ]
	      Exit from an enclosing for, while, until, select or repeat loop.
	      If n is specified, then break n levels instead of just one.

       builtin name [ args ... ]
	      Executes the builtin name, with the given args.

       bye    Same as exit.

       cap    See the section `The zsh/cap Module' in zshmodules(1).

       cd [ -qsLP ] [ arg ]
       cd [ -qsLP ] old new
       cd [ -qsLP ] {+|-}n
	      Change  the  current  directory.	 In the first form, change the
	      current directory to arg, or to the value of $HOME if arg is not
	      specified.   If  arg is `-', change to the value of $OLDPWD, the
	      previous directory.

	      Otherwise, if arg begins with a slash, attempt to change to  the
	      directory given by arg.

	      If  arg  does  not  begin with a slash, the behaviour depends on
	      whether the current directory `.' occurs in the list of directo‐
	      ries  contained  in the shell parameter cdpath.  If it does not,
	      first attempt to change to the directory arg under  the  current
	      directory,  and  if that fails but cdpath is set and contains at
	      least one element attempt to change to the directory  arg	 under
	      each  component  of  cdpath  in  turn  until successful.	If `.'
	      occurs in cdpath, then cdpath is searched strictly in  order  so
	      that `.' is only tried at the appropriate point.

	      If  no  directory is found, the option CDABLE_VARS is set, and a
	      parameter named arg exists whose	value  begins  with  a	slash,
	      treat  its  value as the directory.  In that case, the parameter
	      is added to the named directory hash table.

	      The second form of cd substitutes the string new for the	string
	      old in the name of the current directory, and tries to change to
	      this new directory.

	      The third form of cd extracts an entry from the directory stack,
	      and  changes  to	that  directory.  An argument of the form `+n'
	      identifies a stack entry by counting from the left of  the  list
	      shown  by	 the dirs command, starting with zero.	An argument of
	      the form `-n' counts from the right.  If the PUSHD_MINUS	option
	      is set, the meanings of `+' and `-' in this context are swapped.

	      If  the  -q (quiet) option is specified, the hook function chpwd
	      and the functions in the array chpwd_functions are  not  called.
	      This  is	useful for calls to cd that do not change the environ‐
	      ment seen by an interactive user.

	      If the -s option is specified, cd refuses to change the  current
	      directory	 if  the  given pathname contains symlinks.  If the -P
	      option is given or the CHASE_LINKS option is set, symbolic links
	      are  resolved  to	 their true values.  If the -L option is given
	      symbolic links are retained in the directory (and not  resolved)
	      regardless of the state of the CHASE_LINKS option.

       chdir  Same as cd.

       clone  See the section `The zsh/clone Module' in zshmodules(1).

       command [ -pvV ] simple command
	      The  simple  command  argument  is  taken as an external command
	      instead of a  function  or  builtin  and	is  executed.  If  the
	      POSIX_BUILTINS option is set, builtins will also be executed but
	      certain special properties of them are suppressed. The  -p  flag
	      causes  a	 default path to be searched instead of that in $path.
	      With the -v flag, command is similar to whence and with  -V,  it
	      is equivalent to whence -v.

	      See also the section `Precommand Modifiers'.

       comparguments
	      See the section `The zsh/computil Module' in zshmodules(1).

       compcall
	      See the section `The zsh/compctl Module' in zshmodules(1).

       compctl
	      See the section `The zsh/compctl Module' in zshmodules(1).

       compdescribe
	      See the section `The zsh/computil Module' in zshmodules(1).

       compfiles
	      See the section `The zsh/computil Module' in zshmodules(1).

       compgroups
	      See the section `The zsh/computil Module' in zshmodules(1).

       compquote
	      See the section `The zsh/computil Module' in zshmodules(1).

       comptags
	      See the section `The zsh/computil Module' in zshmodules(1).

       comptry
	      See the section `The zsh/computil Module' in zshmodules(1).

       compvalues
	      See the section `The zsh/computil Module' in zshmodules(1).

       continue [ n ]
	      Resume  the  next	 iteration of the enclosing for, while, until,
	      select or repeat loop.  If n is  specified,  break  out  of  n-1
	      loops and resume at the nth enclosing loop.

       declare
	      Same as typeset.

       dirs [ -c ] [ arg ... ]
       dirs [ -lpv ]
	      With  no	arguments,  print the contents of the directory stack.
	      Directories are added to this stack with the pushd command,  and
	      removed  with  the cd or popd commands.  If arguments are speci‐
	      fied, load them onto the	directory  stack,  replacing  anything
	      that was there, and push the current directory onto the stack.

	      -c     clear the directory stack.

	      -l     print directory names in full instead of using of using ~
		     expressions.

	      -p     print directory entries one per line.

	      -v     number the directories in the stack when printing.

       disable [ -afmrs ] name ...
	      Temporarily disable the named hash table elements.  The  default
	      is  to  disable  builtin	commands.   This  allows you to use an
	      external command with the same name as a builtin	command.   The
	      -a  option  causes  disable to act on regular or global aliases.
	      The -s option causes disable to act on suffix aliases.   The  -f
	      option causes disable to act on shell functions.	The -r options
	      causes disable to act on reserved words.	Without arguments  all
	      disabled	hash  table elements from the corresponding hash table
	      are printed.  With the -m flag the arguments are taken  as  pat‐
	      terns  (which  should  be quoted to prevent them from undergoing
	      filename expansion), and all hash table elements from the corre‐
	      sponding	hash table matching these patterns are disabled.  Dis‐
	      abled objects can be enabled with the enable command.

       disown [ job ... ]
       job ... &|
       job ... &!
	      Remove the specified jobs from the job table; the shell will  no
	      longer  report their status, and will not complain if you try to
	      exit an interactive shell with them running or stopped.	If  no
	      job is specified, disown the current job.

	      If  the  jobs are currently stopped and the AUTO_CONTINUE option
	      is not set, a warning is printed	containing  information	 about
	      how  to make them running after they have been disowned.	If one
	      of the latter two forms is used, the jobs will automatically  be
	      made  running,  independent  of the setting of the AUTO_CONTINUE
	      option.

       echo [ -neE ] [ arg ... ]
	      Write each arg on the standard output, with a  space  separating
	      each one.	 If the -n flag is not present, print a newline at the
	      end.  echo recognizes the following escape sequences:

	      \a     bell character
	      \b     backspace
	      \c     suppress final newline
	      \e     escape
	      \f     form feed
	      \n     linefeed (newline)
	      \r     carriage return
	      \t     horizontal tab
	      \v     vertical tab
	      \\     backslash
	      \0NNN  character code in octal
	      \xNN   character code in hexadecimal
	      \uNNNN unicode character code in hexadecimal
	      \UNNNNNNNN
		     unicode character code in hexadecimal

	      The -E flag, or the BSD_ECHO option,  can	 be  used  to  disable
	      these escape sequences.  In the latter case, -e flag can be used
	      to enable them.

       echotc See the section `The zsh/termcap Module' in zshmodules(1).

       echoti See the section `The zsh/terminfo Module' in zshmodules(1).

       emulate [ -LR ] {zsh|sh|ksh|csh}
	      Set up zsh options to emulate the specified  shell  as  much  as
	      possible.	 csh will never be fully emulated.  If the argument is
	      not one of the shells listed  above,  zsh	 will  be  used	 as  a
	      default; more precisely, the tests performed on the argument are
	      the same as those used to determine  the	emulation  at  startup
	      based on the shell name, see the section `Compatibility' in zsh‐
	      misc(1) .	 If the -R option is given, all options are  reset  to
	      their  default  value  corresponding  to the specified emulation
	      mode, except for	certain	 options  describing  the  interactive
	      environment;  otherwise,	only  those  options  likely  to cause
	      portability problems in scripts and functions are	 altered.   If
	      the   -L	 option	  is  given,  the  options  LOCAL_OPTIONS  and
	      LOCAL_TRAPS will be set as well, causing the effects of the emu‐
	      late command and any setopt and trap commands to be local to the
	      immediately surrounding shell function, if any;  normally	 these
	      options are turned off in all emulation modes except ksh.

       enable [ -afmrs ] name ...
	      Enable  the  named hash table elements, presumably disabled ear‐
	      lier with disable.  The default is to enable  builtin  commands.
	      The -a option causes enable to act on regular or global aliases.
	      The -s option causes enable to act on suffix  aliases.   The  -f
	      option  causes  enable to act on shell functions.	 The -r option
	      causes enable to act on reserved words.  Without	arguments  all
	      enabled  hash  table  elements from the corresponding hash table
	      are printed.  With the -m flag the arguments are taken  as  pat‐
	      terns  (should  be  quoted) and all hash table elements from the
	      corresponding hash table matching these  patterns	 are  enabled.
	      Enabled  objects	can  be disabled with the disable builtin com‐
	      mand.

       eval [ arg ... ]
	      Read the arguments as input to the shell and execute the result‐
	      ing command in the current shell process.

       exec [ -cl ] [ -a argv0 ] simple command
	      Replace  the  current shell with an external command rather than
	      forking.	With -c clear the environment; with -l	prepend	 -  to
	      the  argv[0] string of the command executed (to simulate a login
	      shell); with -a argv0 set the argv[0] string of the command exe‐
	      cuted.  See the section `Precommand Modifiers'.

       exit [ n ]
	      Exit  the	 shell with the exit status specified by n; if none is
	      specified, use the exit status from the last  command  executed.
	      An  EOF  condition will also cause the shell to exit, unless the
	      IGNORE_EOF option is set.

       export [ name[=value] ... ]
	      The specified names are marked for automatic export to the envi‐
	      ronment  of subsequently executed commands.  Equivalent to type‐
	      set -gx.	If a parameter specified does not already exist, it is
	      created in the global scope.

       false [ arg ... ]
	      Do nothing and return an exit status of 1.

       fc [ -e ename ] [ -nlrdDfEim ] [ old=new ... ] [ first [ last ] ]
       fc -p [ -a ] [ filename [ histsize [ savehistsize ] ] ]
       fc -P
       fc -ARWI [ filename ]
	      Select  a	 range of commands from first to last from the history
	      list.  The arguments first and last may be specified as a number
	      or  as  a string.	 A negative number is used as an offset to the
	      current history event  number.   A  string  specifies  the  most
	      recent event beginning with the given string.  All substitutions
	      old=new, if any, are then performed on the commands.

	      If the -l flag is given, the resulting commands  are  listed  on
	      standard	output.	  If the -m flag is also given the first argu‐
	      ment is taken as a pattern (should be quoted) and only the  his‐
	      tory  events matching this pattern will be shown.	 Otherwise the
	      editor program ename is invoked on a file containing these  his‐
	      tory  events.  If ename is not given, the value of the parameter
	      FCEDIT is used; if that is not set the value  of	the  parameter
	      EDITOR  is  used;	 if that is not set a builtin default, usually
	      `vi' is used.  If ename is `-',  no  editor  is  invoked.	  When
	      editing is complete, the edited command is executed.

	      If first is not specified, it will be set to -1 (the most recent
	      event), or to -16 if the -l flag is given.  If last is not spec‐
	      ified,  it  will	be  set	 to  first, or to -1 if the -l flag is
	      given.

	      The flag -r reverses the order of the commands and the  flag  -n
	      suppresses  command numbers when listing.	 Also when listing, -d
	      prints timestamps for each command, and -f prints full time-date
	      stamps.	Adding	the  -E flag causes the dates to be printed as
	      `dd.mm.yyyy', instead of the default `mm/dd/yyyy'.   Adding  the
	      -i  flag	causes the dates to be printed in ISO8601 `yyyy-mm-dd'
	      format.  With the -D flag, fc prints elapsed times.

	      `fc -p' pushes  the  current  history  list  onto	 a  stack  and
	      switches to a new history list.  If the -a option is also speci‐
	      fied, this history list will be automatically  popped  when  the
	      current  function	 scope is exited, which is a much better solu‐
	      tion than creating a trap function to call `fc -P' manually.  If
	      no  arguments  are  specified,  the  history list is left empty,
	      $HISTFILE is unset, and $HISTSIZE & $SAVEHIST are set  to	 their
	      default  values.	 If one argument is given, $HISTFILE is set to
	      that filename, $HISTSIZE & $SAVEHIST are left unchanged, and the
	      history  file  is	 read  in (if it exists) to initialize the new
	      list.  If a second argument is specified, $HISTSIZE &  $SAVEHIST
	      are instead set to the single specified numeric value.  Finally,
	      if a third argument is specified, $SAVEHIST is set to a separate
	      value  from $HISTSIZE.  You are free to change these environment
	      values for the new history list however you desire in  order  to
	      manipulate the new history list.

	      `fc -P' pops the history list back to an older list saved by `fc
	      -p'.  The current list is saved to its $HISTFILE	before	it  is
	      destroyed	 (assuming that $HISTFILE and $SAVEHIST are set appro‐
	      priately, of course).  The values of $HISTFILE,  $HISTSIZE,  and
	      $SAVEHIST	 are  restored to the values they had when `fc -p' was
	      called.  Note that this restoration  can	conflict  with	making
	      these variables "local", so your best bet is to avoid local dec‐
	      larations for these variables in functions  that	use  `fc  -p'.
	      The  one	other  guaranteed-safe	combination is declaring these
	      variables to be local at the top of your function and using  the
	      automatic	 option	 (-a)  with `fc -p'.  Finally, note that it is
	      legal to manually pop a push marked for automatic popping if you
	      need to do so before the function exits.

	      `fc  -R'	reads  the history from the given file, `fc -W' writes
	      the history out to the given file, and `fc -A' appends the  his‐
	      tory  out	 to  the given file.  If no filename is specified, the
	      $HISTFILE is assumed.  If the -I option is  added	 to  -R,  only
	      those  events that are not already contained within the internal
	      history list are added.  If the -I option is added to -A or  -W,
	      only   those   events   that  are	 new  since  last  incremental
	      append/write to the history file are appended/written.   In  any
	      case, the created file will have no more than $SAVEHIST entries.

       fg [ job ... ]
       job ...
	      Bring  each  specified job in turn to the foreground.  If no job
	      is specified, resume the current job.

       float [ {+|-}EFHghlprtux ] [ -LRZ [ n ]] [ name[=value] ... ]
	      Equivalent to typeset -E,	 except	 that  options	irrelevant  to
	      floating point numbers are not permitted.

       functions [ {+|-}UXkmtuz ] [ name ... ]
       functions -M mathfn [ min [ max [ shellfn ] ] ]
       functions -M [ -m pattern ... ]
       functions +M [ -m ] mathfn
	      Equivalent  to  typeset -f, with the exception of the -M option.
	      Use of the -M option may not be combined with any of the options
	      handled by typeset -f.

	      functions -M mathfn defines mathfn as the name of a mathematical
	      function recognised in all forms	of  arithmetical  expressions;
	      see  the	section	 `Arithmetic  Evaluation'  in  zshmisc(1).  By
	      default mathfn may take any number of comma-separated arguments.
	      If  min  is given, it must have exactly min args; if min and max
	      are both given, it must have at least min and and	 at  most  max
	      args.  max may be -1 to indicate that there is no upper limit.

	      By  default  the	function is implemented by a shell function of
	      the same name; if shellfn is specified it gives the name of  the
	      corresponding  shell function while mathfn remains the name used
	      in arithmetical expressions.  The name of the function in $0  is
	      mathfn  (not shellfn as would usually be the case), provided the
	      option FUNCTION_ARGZERO is in effect.  The positional parameters
	      in  the shell function correspond to the arguments of the mathe‐
	      matical function call.  The  result  of  the  last  arithmetical
	      expression  evaluated inside the shell function (even if it is a
	      form that normally only returns a status) gives  the  result  of
	      the mathematical function.

	      functions -M with no arguments lists all such user-defined func‐
	      tions in the same form as a  definition.	 With  the  additional
	      option  -m  and  a list of arguments, all functions whose mathfn
	      matches one of the pattern arguments are listed.

	      function +M removes the list of mathematical functions; with the
	      additional  option  -m the arguments are treated as patterns and
	      all functions whose mathfn  matches  the	pattern	 are  removed.
	      Note  that  the shell function implementing the behaviour is not
	      removed (regardless of whether its name coincides with mathfn).

	      For example, the following prints the cube of 3:

		     zmath_cube() { (( $1 * $1 * $1 )) }
		     functions -M cube 1 1 zmath_cube
		     print $(( cube(3) ))

       getcap See the section `The zsh/cap Module' in zshmodules(1).

       getln [ -AclneE ] name ...
	      Read the top value from the buffer stack and put it in the shell
	      parameter name.  Equivalent to read -zr.

       getopts optstring name [ arg ... ]
	      Checks the args for legal options.  If the args are omitted, use
	      the positional parameters.  A valid option argument begins  with
	      a	 `+' or a `-'.	An argument not beginning with a `+' or a `-',
	      or the argument `--', ends the options.  Note that a single  `-'
	      is  not  considered a valid option argument.  optstring contains
	      the letters that getopts recognizes.  If a letter is followed by
	      a `:', that option is expected to have an argument.  The options
	      can be separated from the argument by blanks.

	      Each time it is invoked, getopts places  the  option  letter  it
	      finds in the shell parameter name, prepended with a `+' when arg
	      begins with a `+'.  The index of	the  next  arg	is  stored  in
	      OPTIND.  The option argument, if any, is stored in OPTARG.

	      The  first  option  to  be examined may be changed by explicitly
	      assigning to OPTIND.  OPTIND has an initial value of 1,  and  is
	      normally	reset to 1 upon exit from a shell function.  OPTARG is
	      not reset and retains its value from the	most  recent  call  to
	      getopts.	 If either of OPTIND or OPTARG is explicitly unset, it
	      remains unset, and the index or option argument is  not  stored.
	      The option itself is still stored in name in this case.

	      A leading `:' in optstring causes getopts to store the letter of
	      any invalid option in OPTARG, and to set	name  to  `?'  for  an
	      unknown  option  and  to	`:' when a required option is missing.
	      Otherwise, getopts sets name to `?' and prints an error  message
	      when  an	option	is  invalid.   The exit status is nonzero when
	      there are no more options.

       hash [ -Ldfmrv ] [ name[=value] ] ...
	      hash can be used to directly modify the contents of the  command
	      hash  table,  and	 the named directory hash table.  Normally one
	      would modify these tables by modifying one's PATH (for the  com‐
	      mand  hash  table)  or  by creating appropriate shell parameters
	      (for the named directory hash table).  The choice of hash	 table
	      to  work	on  is determined by the -d option; without the option
	      the command hash table is used, and with the  option  the	 named
	      directory hash table is used.

	      Given  no	 arguments,  and  neither  the	-r  or -f options, the
	      selected hash table will be listed in full.

	      The -r option causes the selected hash table to be emptied.   It
	      will  be	subsequently  rebuilt  in  the normal fashion.	The -f
	      option causes the selected hash table to be fully rebuilt	 imme‐
	      diately.	 For  the command hash table this hashes all the abso‐
	      lute directories in the PATH, and for the named  directory  hash
	      table  this adds all users' home directories.  These two options
	      cannot be used with any arguments.

	      The -m option causes the	arguments  to  be  taken  as  patterns
	      (which  should  be  quoted)  and	the elements of the hash table
	      matching those patterns are printed.  This is the	 only  way  to
	      display a limited selection of hash table elements.

	      For  each	 name  with  a	corresponding value, put `name' in the
	      selected hash table, associating it with the  pathname  `value'.
	      In  the  command	hash table, this means that whenever `name' is
	      used as a command argument, the shell will try  to  execute  the
	      file  given by `value'.  In the named directory hash table, this
	      means that `value' may be referred to as `~name'.

	      For each name with no corresponding value, attempt to  add  name
	      to the hash table, checking what the appropriate value is in the
	      normal manner for that hash  table.   If	an  appropriate	 value
	      can't be found, then the hash table will be unchanged.

	      The -v option causes hash table entries to be listed as they are
	      added by explicit specification.	If has no effect if used  with
	      -f.

	      If the -L flag is present, then each hash table entry is printed
	      in the form of a call to hash.

       history
	      Same as fc -l.

       integer [ {+|-}Hghilprtux ] [ -LRZ [ n ]] [ name[=value] ... ]
	      Equivalent to typeset -i,	 except	 that  options	irrelevant  to
	      integers are not permitted.

       jobs [ -dlprs ] [ job ... ]
       jobs -Z string
	      Lists  information  about	 each given job, or all jobs if job is
	      omitted.	The -l flag lists process IDs, and the -p  flag	 lists
	      process  groups.	 If the -r flag is specified only running jobs
	      will be listed and if the -s flag is given only stopped jobs are
	      shown.   If  the	-d flag is given, the directory from which the
	      job was started (which may not be the current directory  of  the
	      job) will also be shown.

	      The  -Z  option  replaces	 the  shell's argument and environment
	      space with the given string,  truncated  if  necessary  to  fit.
	      This will normally be visible in ps (ps(1)) listings.  This fea‐
	      ture is typically used by daemons, to indicate their state.

       kill [ -s signal_name | -n signal_number | -sig ] job ...
       kill -l [ sig ... ]
	      Sends either SIGTERM or the specified signal to the  given  jobs
	      or  processes.  Signals are given by number or by names, with or
	      without the `SIG' prefix.	 If  the  signal  being	 sent  is  not
	      `KILL'  or  `CONT', then the job will be sent a `CONT' signal if
	      it is stopped.  The argument job can be the process ID of a  job
	      not in the job list.  In the second form, kill -l, if sig is not
	      specified the signal names are listed.  Otherwise, for each  sig
	      that  is a name, the corresponding signal number is listed.  For
	      each sig that is a signal number or a  number  representing  the
	      exit  status  of	a process which was terminated or stopped by a
	      signal the name of the signal is printed.

	      On some systems, alternative signal names are allowed for a  few
	      signals.	Typical examples are SIGCHLD and SIGCLD or SIGPOLL and
	      SIGIO, assuming they correspond to the same signal number.  kill
	      -l  will	only list the preferred form, however kill -l alt will
	      show if the alternative form corresponds	to  a  signal  number.
	      For example, under Linux kill -l IO and kill -l POLL both output
	      29, hence kill -IO and kill -POLL have the same effect.

	      Many systems will allow process IDs to be	 negative  to  kill  a
	      process group or zero to kill the current process group.

       let arg ...
	      Evaluate	each arg as an arithmetic expression.  See the section
	      `Arithmetic Evaluation'  in  zshmisc(1)  for  a  description  of
	      arithmetic  expressions.	 The  exit status is 0 if the value of
	      the last expression is nonzero, 1 if it is zero,	and  2	if  an
	      error occurred.

       limit [ -hs ] [ resource [ limit ] ] ...
	      Set  or  display	resource limits.  Unless the -s flag is given,
	      the limit applies only the children of  the  shell.   If	-s  is
	      given  without  other arguments, the resource limits of the cur‐
	      rent shell is set to the previously set resource limits  of  the
	      children.

	      If  limit	 is  not  specified, print the current limit placed on
	      resource, otherwise set the limit to the	specified  value.   If
	      the  -h  flag  is given, use hard limits instead of soft limits.
	      If no resource is given, print all limits.

	      When looping over multiple resources, the shell will abort imme‐
	      diately  if  it detects a badly formed argument.	However, if it
	      fails to set a limit for some other reason it will continue try‐
	      ing to set the remaining limits.

	      resource can be one of:

	      addressspace
		     Maximum amount of address space used.
	      aiomemorylocked
		     Maximum  amount  of  memory  locked in RAM for AIO opera‐
		     tions.
	      aiooperations
		     Maximum number of AIO operations.
	      cachedthreads
		     Maximum number of cached threads.
	      coredumpsize
		     Maximum size of a core dump.
	      cputime
		     Maximum CPU seconds per process.
	      datasize
		     Maximum data size (including stack) for each process.
	      descriptors
		     Maximum value for a file descriptor.
	      filesize
		     Largest single file allowed.
	      maxproc
		     Maximum number of processes.
	      maxpthreads
		     Maximum number of threads per process.
	      memorylocked
		     Maximum amount of memory locked in RAM.
	      memoryuse
		     Maximum resident set size.
	      msgqueue
		     Maximum number of bytes in POSIX message queues.
	      resident
		     Maximum resident set size.
	      sigpending
		     Maximum number of pending signals.
	      sockbufsize
		     Maximum size of all socket buffers.
	      stacksize
		     Maximum stack size for each process.
	      vmemorysize
		     Maximum amount of virtual memory.

	      Which of these resource limits are available depends on the sys‐
	      tem.  resource can be abbreviated to any unambiguous prefix.  It
	      can also be an integer, which corresponds to the integer defined
	      for the resource by the operating system.

	      If argument corresponds to a number which is out of the range of
	      the resources configured into the shell, the shell will  try  to
	      read or write the limit anyway, and will report an error if this
	      fails.  As the shell does not store such	resources  internally,
	      an  attempt  to  set the limit will fail unless the -s option is
	      present.

	      limit is a number, with an optional scaling factor, as follows:

	      nh     hours
	      nk     kilobytes (default)
	      nm     megabytes or minutes
	      [mm:]ss
		     minutes and seconds

       local [ {+|-}AEFHUahlprtux ] [ -LRZi [ n ]] [ name[=value] ] ...
	      Same as typeset, except that the options -g, and -f are not per‐
	      mitted.	In  this  case the -x option does not force the use of
	      -g, i.e. exported variables will be local to functions.

       log    List all users currently logged in who are affected by the  cur‐
	      rent setting of the watch parameter.

       logout [ n ]
	      Same as exit, except that it only works in a login shell.

       noglob simple command
	      See the section `Precommand Modifiers'.

       popd [ [-q] {+|-}n ]
	      Remove  an  entry	 from the directory stack, and perform a cd to
	      the new top directory.  With no argument, the current top	 entry
	      is  removed.   An	 argument  of the form `+n' identifies a stack
	      entry by counting from the left of the list shown	 by  the  dirs
	      command,	starting with zero.  An argument of the form -n counts
	      from the right.  If the PUSHD_MINUS option is set, the  meanings
	      of `+' and `-' in this context are swapped.

	      If  the  -q (quiet) option is specified, the hook function chpwd
	      and the functions in the array $chpwd_functions are not  called,
	      and  the new directory stack is not printed.  This is useful for
	      calls to popd that do not change	the  environment  seen	by  an
	      interactive user.

       print [ -abcDilmnNoOpPrsz ] [ -u n ] [ -f format ] [ -C cols ]
	 [ -R [ -en ]] [ arg ... ]
	      With  the	 `-f' option the arguments are printed as described by
	      printf.  With no flags or with the flag `-', the	arguments  are
	      printed  on  the	standard output as described by echo, with the
	      following differences: the escape sequence `\M-x'	 metafies  the
	      character	 x  (sets  the highest bit), `\C-x' produces a control
	      character	 (`\C-@'  and  `\C-?'  give  the  characters  NUL  and
	      delete),	and `\E' is a synonym for `\e'.	 Finally, if not in an
	      escape sequence, `\' escapes the following character and is  not
	      printed.

	      -a     Print arguments with the column incrementing first.  Only
		     useful with the -c and -C options.

	      -b     Recognize all the escape sequences defined for the	 bind‐
		     key command, see zshzle(1).

	      -c     Print the arguments in columns.  Unless -a is also given,
		     arguments are printed with the row incrementing first.

	      -C cols
		     Print the arguments in cols columns.  Unless -a  is  also
		     given,  arguments	are  printed with the row incrementing
		     first.

	      -D     Treat the arguments as directory  names,  replacing  pre‐
		     fixes with ~ expressions, as appropriate.

	      -i     If	 given	together  with	-o or -O, sorting is performed
		     case-independently.

	      -l     Print the arguments separated by newlines instead of spa‐
		     ces.

	      -m     Take  the first argument as a pattern (should be quoted),
		     and remove it from the argument list together with subse‐
		     quent arguments that do not match this pattern.

	      -n     Do not add a newline to the output.

	      -N     Print the arguments separated and terminated by nulls.

	      -o     Print the arguments sorted in ascending order.

	      -O     Print the arguments sorted in descending order.

	      -p     Print the arguments to the input of the coprocess.

	      -P     Perform prompt expansion (see zshmisc(1)).

	      -r     Ignore the escape conventions of echo.

	      -R     Emulate  the  BSD	echo  command,	which does not process
		     escape sequences unless the -e flag  is  given.   The  -n
		     flag suppresses the trailing newline.  Only the -e and -n
		     flags are recognized after -R; all	 other	arguments  and
		     options are printed.

	      -s     Place  the	 results in the history list instead of on the
		     standard output.

	      -u n   Print the arguments to file descriptor n.

	      -z     Push the arguments onto the editing buffer	 stack,	 sepa‐
		     rated by spaces.

	      If  any  of `-m', `-o' or `-O' are used in combination with `-f'
	      and there are no arguments (after the  removal  process  in  the
	      case of `-m') then nothing is printed.

       printf format [ arg ... ]
	      Print  the arguments according to the format specification. For‐
	      matting rules are the  same  as  used  in	 C.  The  same	escape
	      sequences	 as  for echo are recognised in the format. All C con‐
	      version specifications ending in one of csdiouxXeEfgGn are  han‐
	      dled.  In	 addition to this, `%b' can be used instead of `%s' to
	      cause escape sequences in the argument to be recognised and `%q'
	      can  be  used to quote the argument in such a way that allows it
	      to be reused as shell input. With the numeric format specifiers,
	      if the corresponding argument starts with a quote character, the
	      numeric value of the following character is used as  the	number
	      to  print	 otherwise  the argument is evaluated as an arithmetic
	      expression. See the  section  `Arithmetic	 Evaluation'  in  zsh‐
	      misc(1)  for a description of arithmetic expressions. With `%n',
	      the corresponding argument is taken as an	 identifier  which  is
	      created as an integer parameter.

	      Normally, conversion specifications are applied to each argument
	      in order but they can explicitly specify the nth argument is  to
	      be  used by replacing `%' by `%n$' and `*' by `*n$'.  It is rec‐
	      ommended that you do not mix references of this  explicit	 style
	      with  the normal style and the handling of such mixed styles may
	      be subject to future change.

	      If arguments remain unused after formatting, the	format	string
	      is reused until all arguments have been consumed. With the print
	      builtin, this can be suppressed by using the -r option. If  more
	      arguments	 are  required by the format than have been specified,
	      the behaviour is as if zero or an empty string had  been	speci‐
	      fied as the argument.

       pushd [ -qsLP ] [ arg ]
       pushd [ -qsLP ] old new
       pushd [ -qsLP ] {+|-}n
	      Change the current directory, and push the old current directory
	      onto the directory stack.	 In the first form, change the current
	      directory to arg.	 If arg is not specified, change to the second
	      directory on the stack (that is, exchange the top two  entries),
	      or  change  to  $HOME  if	 the PUSHD_TO_HOME option is set or if
	      there is only one entry on the stack.  Otherwise, arg is	inter‐
	      preted  as it would be by cd.  The meaning of old and new in the
	      second form is also the same as for cd.

	      The third form of pushd changes directory by rotating the direc‐
	      tory  list.   An	argument  of  the form `+n' identifies a stack
	      entry by counting from the left of the list shown	 by  the  dirs
	      command,	starting  with	zero.	An  argument  of the form `-n'
	      counts from the right.  If the PUSHD_MINUS option	 is  set,  the
	      meanings of `+' and `-' in this context are swapped.

	      If  the  -q (quiet) option is specified, the hook function chpwd
	      and the functions in the array $chpwd_functions are not  called,
	      and  the new directory stack is not printed.  This is useful for
	      calls to pushd that do not change the  environment  seen	by  an
	      interactive user.

	      If  the  option  -q  is  not  specified  and  the	 shell	option
	      PUSHD_SILENT is not set, the directory  stack  will  be  printed
	      after a pushd is performed.

	      The  options  -s, -L and -P have the same meanings as for the cd
	      builtin.

       pushln [ arg ... ]
	      Equivalent to print -nz.

       pwd [ -rLP ]
	      Print the absolute pathname of the  current  working  directory.
	      If the -r or the -P flag is specified, or the CHASE_LINKS option
	      is set and the -L flag is not given, the printed path  will  not
	      contain symbolic links.

       r      Same as fc -e -.

       read [ -rszpqAclneE ] [ -t [ num ] ] [ -k [ num ] ] [ -d delim ]
	[ -u n ] [ name[?prompt] ] [ name ...  ]
	      Read  one	 line and break it into fields using the characters in
	      $IFS as separators, except as noted below.  The first  field  is
	      assigned to the first name, the second field to the second name,
	      etc., with leftover fields assigned to the last name.   If  name
	      is omitted then REPLY is used for scalars and reply for arrays.

	      -r     Raw  mode:	 a  `\'	 at the end of a line does not signify
		     line continuation and backslashes in the line don't quote
		     the following character and are not removed.

	      -s     Don't  echo back characters if reading from the terminal.
		     Currently does not work with the -q option.

	      -q     Read only one character from the terminal and set name to
		     `y'  if  this  character was `y' or `Y' and to `n' other‐
		     wise.  With this flag set the return status is zero  only
		     if	 the  character was `y' or `Y'.	 Note that this always
		     reads from the terminal, even if used with the -p	or  -u
		     or	 -z  flags  or with redirected input.  This option may
		     also be used within zle widgets.

	      -k [ num ]
		     Read only one (or num) characters.	 All are  assigned  to
		     the  first	 name,	without	 word splitting.  This flag is
		     ignored when -q is present.  Input is read from the  ter‐
		     minal unless one of -u or -p is present.  This option may
		     also be used within zle widgets.

		     Note that despite the mnemonic  `key'  this  option  does
		     read full characters, which may consist of multiple bytes
		     if the option MULTIBYTE is set.

	      -z     Read one entry from the editor buffer stack and assign it
		     to	 the  first  name,  without  word  splitting.  Text is
		     pushed onto the stack with `print -z' or  with  push-line
		     from  the	line  editor  (see  zshzle(1)).	  This flag is
		     ignored when the -k or -q flags are present.

	      -e
	      -E     The input read is printed (echoed) to the	standard  out‐
		     put.  If the -e flag is used, no input is assigned to the
		     parameters.

	      -A     The first name is taken as the name of an array  and  all
		     words are assigned to it.

	      -c
	      -l     These  flags are allowed only if called inside a function
		     used for completion (specified with the -K flag  to  com‐
		     pctl).  If the -c flag is given, the words of the current
		     command are read. If the -l flag is given, the whole line
		     is	 assigned  as a scalar.	 If both flags are present, -l
		     is used and -c is ignored.

	      -n     Together with -c, the number of the word the cursor is on
		     is	 read.	With -l, the index of the character the cursor
		     is on is read.  Note that the command name is word number
		     1,	 not word 0, and that when the cursor is at the end of
		     the line, its character index is the length of  the  line
		     plus one.

	      -u n   Input is read from file descriptor n.

	      -p     Input is read from the coprocess.

	      -d delim
		     Input  is	terminated  by	the  first  character of delim
		     instead of by newline.

	      -t [ num ]
		     Test if input is available before attempting to read.  If
		     num  is  present,	it must begin with a digit and will be
		     evaluated to give a number of seconds,  which  may	 be  a
		     floating point number; in this case the read times out if
		     input is not available within this time.  If num  is  not
		     present,  it  is  taken  to be zero, so that read returns
		     immediately if no input is available.   If	 no  input  is
		     available, return status 1 and do not set any variables.

		     This option is not available when reading from the editor
		     buffer with -z, when called from within  completion  with
		     -c	 or  -l,  with	-q which clears the input queue before
		     reading, or within zle where other mechanisms  should  be
		     used to test for input.

		     Note  that	 read does not attempt to alter the input pro‐
		     cessing mode.  The default mode is	 canonical  input,  in
		     which  an entire line is read at a time, so usually `read
		     -t' will not read anything until an entire line has  been
		     typed.   However,	when reading from the terminal with -k
		     input is processed one key at a time; in this case,  only
		     availability  of  the  first character is tested, so that
		     e.g. `read -t -k 2' can still block on the second charac‐
		     ter.   Use	 two  instances of `read -t -k' if this is not
		     what is wanted.  If the first argument  contains  a  `?',
		     the  remainder  of this word is used as a prompt on stan‐
		     dard error when the shell is interactive.

	      The value (exit status) of read is  1  when  an  end-of-file  is
	      encountered,  or when -c or -l is present and the command is not
	      called from a compctl function, or as described for -q.	Other‐
	      wise the value is 0.

	      The  behavior  of some combinations of the -k, -p, -q, -u and -z
	      flags is undefined.  Presently -q cancels	 all  the  others,  -p
	      cancels  -u, -k cancels -z, and otherwise -z cancels both -p and
	      -u.

	      The -c or -l flags cancel any and all of -kpquz.

       readonly
	      Same as typeset -r.

       rehash Same as hash -r.

       return [ n ]
	      Causes a shell function or . script to return  to	 the  invoking
	      script  with the return status specified by n.  If n is omitted,
	      the return status is that of the last command executed.

	      If return was executed from a trap in a  TRAPNAL	function,  the
	      effect  is  different for zero and non-zero return status.  With
	      zero status (or after an implicit	 return	 at  the  end  of  the
	      trap),  the shell will return to whatever it was previously pro‐
	      cessing; with a non-zero status, the shell will behave as inter‐
	      rupted  except  that  the return status of the trap is retained.
	      Note that the numeric value of the signal which caused the  trap
	      is  passed  as  the  first  argument,  so	 the statement `return
	      $((128+$1))' will return the same status as if  the  signal  had
	      not been trapped.

       sched  See the section `The zsh/sched Module' in zshmodules(1).

       set [ {+|-}options | {+|-}o [ option_name ] ] ... [ {+|-}A [ name ] ] [
       arg ... ]
	      Set the options for the shell and/or set the positional  parame‐
	      ters,  or	 declare and set an array.  If the -s option is given,
	      it causes the specified arguments to be sorted before  assigning
	      them to the positional parameters (or to the array name if -A is
	      used).  With +s sort arguments in	 descending  order.   For  the
	      meaning  of  the	other  flags, see zshoptions(1).  Flags may be
	      specified by name using the -o option. If no option name is sup‐
	      plied  with  -o, the current option states are printed:  see the
	      description of setopt below for more information on the  format.
	      With  +o they are printed in a form that can be used as input to
	      the shell.

	      If the -A flag is specified, name is set to an array  containing
	      the  given args; if no name is specified, all arrays are printed
	      together with their values.

	      If +A is used and name is an array,  the	given  arguments  will
	      replace the initial elements of that array; if no name is speci‐
	      fied, all arrays are printed without their values.

	      The behaviour of arguments after -A name or +A name  depends  on
	      whether  the  option  KSH_ARRAYS	is set.	 If it is not set, all
	      arguments following name are treated as values  for  the	array,
	      regardless  of  their form.  If the option is set, normal option
	      processing continues at that point; only regular	arguments  are
	      treated as values for the array.	This means that

		     set -A array -x -- foo

	      sets array to `-x -- foo' if KSH_ARRAYS is not set, but sets the
	      array to foo and turns on the option `-x' if it is set.

	      If the -A flag is not present, but there	are  arguments	beyond
	      the  options,  the positional parameters are set.	 If the option
	      list (if any) is terminated by `--', and there  are  no  further
	      arguments, the positional parameters will be unset.

	      If no arguments and no `--' are given, then the names and values
	      of all parameters are printed on the standard  output.   If  the
	      only argument is `+', the names of all parameters are printed.

	      For historical reasons, `set -' is treated as `set +xv' and `set
	      - args' as `set +xv -- args' when in any	other  emulation  mode
	      than zsh's native mode.

       setcap See the section `The zsh/cap Module' in zshmodules(1).

       setopt [ {+|-}options | {+|-}o option_name ] [ name ... ]
	      Set  the	options	 for  the shell.  All options specified either
	      with flags or by name are set.

	      If no arguments are supplied, the names of all options currently
	      set  are printed.	 The form is chosen so as to minimize the dif‐
	      ferences from the default options for the current emulation (the
	      default  emulation  being	 native	 zsh,  shown  as <Z> in zshop‐
	      tions(1)).  Options that are on by default for the emulation are
	      shown  with  the	prefix	no  only  if they are off, while other
	      options are shown without the prefix no and only if they are on.
	      In  addition  to	options	 changed from the default state by the
	      user, any options activated  automatically  by  the  shell  (for
	      example,	SHIN_STDIN  or INTERACTIVE) will be shown in the list.
	      The format is further modified by the  option  KSH_OPTION_PRINT,
	      however  the  rationale for choosing options with or without the
	      no prefix remains the same in this case.

	      If the -m flag is given the  arguments  are  taken  as  patterns
	      (which  should  be  quoted  to protect them from filename expan‐
	      sion), and all options with names matching  these	 patterns  are
	      set.

       shift [ n ] [ name ... ]
	      The  positional  parameters  ${n+1}  ...	are renamed to $1 ...,
	      where n is an arithmetic expression that defaults to 1.  If  any
	      names  are  given	 then  the arrays with these names are shifted
	      instead of the positional parameters.

       source file [ arg ... ]
	      Same as ., except that the current directory is always  searched
	      and is always searched first, before directories in $path.

       stat   See the section `The zsh/stat Module' in zshmodules(1).

       suspend [ -f ]
	      Suspend  the execution of the shell (send it a SIGTSTP) until it
	      receives a SIGCONT.  Unless the -f option is  given,  this  will
	      refuse to suspend a login shell.

       test [ arg ... ]
       [ [ arg ... ] ]
	      Like  the	 system version of test.  Added for compatibility; use
	      conditional expressions instead (see  the	 section  `Conditional
	      Expressions').   The  main  differences  between the conditional
	      expression syntax and the test and [ builtins are:   these  com‐
	      mands  are  not  handled	syntactically, so for example an empty
	      variable expansion may cause an argument to be  omitted;	syntax
	      errors  cause  status 2 to be returned instead of a shell error;
	      and arithmetic operators expect integer  arguments  rather  than
	      arithmetic expressions.

	      The command attempts to implement POSIX and its extensions where
	      these are specified.  Unfortunately there are intrinsic ambigui‐
	      ties  in	the  syntax;  in  particular  there  is no distinction
	      between test operators and  strings  that	 resemble  them.   The
	      standard	attempts  to  resolve these for small numbers of argu‐
	      ments (up to four); for five  or	more  arguments	 compatibility
	      cannot  be  relied on.  Users are urged wherever possible to use
	      the `[[' test syntax which does not have these ambiguities.

       times  Print the accumulated user and system times for  the  shell  and
	      for processes run from the shell.

       trap [ arg ] [ sig ... ]
	      arg  is  a series of commands (usually quoted to protect it from
	      immediate evaluation by the shell) to be read and executed  when
	      the  shell  receives any of the signals specified by one or more
	      sig args.	 Each sig can be given as a number, or as the name  of
	      a signal either with or without the string SIG in front (e.g. 1,
	      HUP, and SIGHUP are all the same signal).

	      If arg is `-', then the specified signals	 are  reset  to	 their
	      defaults, or, if no sig args are present, all traps are reset.

	      If  arg  is  an  empty  string,  then  the specified signals are
	      ignored by the shell (and by the commands it invokes).

	      If arg is omitted but one or more sig args  are  provided	 (i.e.
	      the first argument is a valid signal number or name), the effect
	      is the same as if arg had been specified as `-'.

	      The trap command with no arguments prints	 a  list  of  commands
	      associated with each signal.

	      If sig is ZERR then arg will be executed after each command with
	      a nonzero exit status.  ERR is an alias for ZERR on systems that
	      have no SIGERR signal (this is the usual case).  If sig is DEBUG
	      then arg will be executed after each command.  If sig  is	 0  or
	      EXIT  and	 the  trap  statement is executed inside the body of a
	      function, then the command arg is executed  after	 the  function
	      completes.   The	value  of  $? at the start of execution is the
	      exit status of the shell or the return status  of	 the  function
	      exiting.	If sig is 0 or EXIT and the trap statement is not exe‐
	      cuted inside the body of a function, then	 the  command  arg  is
	      executed when the shell terminates.

	      ZERR, DEBUG, and EXIT traps are not executed inside other traps.

	      Note  that traps defined with the trap builtin are slightly dif‐
	      ferent from those defined as `TRAPNAL () { ... }', as the latter
	      have  their  own function environment (line numbers, local vari‐
	      ables, etc.) while the former use the environment of the command
	      in which they were called.  For example,

		     trap 'print $LINENO' DEBUG

	      will  print  the	line number of a command executed after it has
	      run, while

		     TRAPDEBUG() { print $LINENO; }

	      will always print the number zero.

	      Alternative signal names are allowed  as	described  under  kill
	      above.   Defining a trap under either name causes any trap under
	      an alternative name to be removed.  However, it  is  recommended
	      that  for	 consistency  users  stick  exclusively to one name or
	      another.

       true [ arg ... ]
	      Do nothing and return an exit status of 0.

       ttyctl -fu
	      The -f option freezes the tty, and -u unfreezes  it.   When  the
	      tty  is  frozen, no changes made to the tty settings by external
	      programs will be honored by the shell, except for changes in the
	      size  of the screen; the shell will simply reset the settings to
	      their previous values as soon as each command exits or  is  sus‐
	      pended.  Thus, stty and similar programs have no effect when the
	      tty is frozen.  Without options it reports whether the  terminal
	      is frozen or not.

       type [ -wfpams ] name ...
	      Equivalent to whence -v.

       typeset [ {+|-}AEFHUafghklprtuxmz ] [ -LRZi [ n ]] [ name[=value] ... ]
       typeset -T [ {+|-}Urux ] [ -LRZ [ n ]] SCALAR[=value] array [ sep ]
	      Set or display attributes and values for shell parameters.

	      A parameter is created for each name that does not already refer
	      to one.  When inside a function, a new parameter is created  for
	      every  name  (even those that already exist), and is unset again
	      when the function completes.  See	 `Local	 Parameters'  in  zsh‐
	      param(1).	  The  same  rules  apply to special shell parameters,
	      which retain their special attributes when made local.

	      For each name=value assignment, the parameter  name  is  set  to
	      value.  Note that arrays currently cannot be assigned in typeset
	      expressions, only	 scalars  and  integers.   Unless  the	option
	      KSH_TYPESET  is  set, normal expansion rules apply to assignment
	      arguments, so value may be split into  separate  words;  if  the
	      option  is  set, assignments which can be recognised when expan‐
	      sion is performed are treated as single words.  For example  the
	      command  typeset	vbl=$(echo  one	 two) is treated as having one
	      argument if KSH_TYPESET is set, but otherwise is treated as hav‐
	      ing the two arguments vbl=one and two.

	      If  the shell option TYPESET_SILENT is not set, for each remain‐
	      ing name that refers to a parameter that is set,	the  name  and
	      value of the parameter are printed in the form of an assignment.
	      Nothing is printed for newly-created  parameters,	 or  when  any
	      attribute	 flags	listed	below  are  given along with the name.
	      Using `+' instead of minus to introduce an  attribute  turns  it
	      off.

	      If  the -p option is given, parameters and values are printed in
	      the form of a typeset command and an assignment (which  will  be
	      printed  separately  for arrays and associative arrays), regard‐
	      less of other flags and options.	 Note  that  the  -h  flag  on
	      parameters is respected; no value will be shown for these param‐
	      eters.

	      If the -T option is  given,  two	or  three  arguments  must  be
	      present (an exception is that zero arguments are allowed to show
	      the list of parameters created in this fashion).	The first  two
	      are  the name of a scalar and an array parameter (in that order)
	      that will be tied together in the manner	of  $PATH  and	$path.
	      The  optional  third  argument  is  a single-character separator
	      which will be used to join the elements of the array to form the
	      scalar;  if  absent,  a  colon is used, as with $PATH.  Only the
	      first character of the separator is significant;	any  remaining
	      characters  are  ignored.	  Only	the  scalar  parameter	may be
	      assigned an initial value.  Both the scalar and  the  array  may
	      otherwise	 be manipulated as normal.  If one is unset, the other
	      will automatically be unset too.	There is no way of untying the
	      variables	 without unsetting them, or converting the type of one
	      of them with another typeset command; +T does not work,  assign‐
	      ing  an  array  to SCALAR is an error, and assigning a scalar to
	      array sets it to be a  single-element  array.   Note  that  both
	      `typeset	-xT ...' and `export -T ...' work, but only the scalar
	      will be marked for export.  Setting the value using  the	scalar
	      version  causes  a  split	 on  all  separators  (which cannot be
	      quoted).

	      The -g (global) flag is treated specially:  it  means  that  any
	      resulting parameter will not be restricted to local scope.  Note
	      that this does not necessarily mean that the parameter  will  be
	      global,  as  the flag will apply to any existing parameter (even
	      if unset) from an enclosing function.  This flag does not affect
	      the  parameter after creation, hence it has no effect when list‐
	      ing existing parameters, nor does the flag +g  have  any	effect
	      except in combination with -m (see below).

	      If  no  name  is present, the names and values of all parameters
	      are printed.  In this case the attribute flags restrict the dis‐
	      play   to	  only	 those	parameters  that  have	the  specified
	      attributes, and using `+' rather than `-' to introduce the  flag
	      suppresses printing of the values of parameters when there is no
	      parameter name.  Also, if the last option is the word `+',  then
	      names are printed but values are not.

	      If the -m flag is given the name arguments are taken as patterns
	      (which should be quoted).	 With no attribute flags, all  parame‐
	      ters  (or	 functions  with  the -f flag) with matching names are
	      printed (the shell option TYPESET_SILENT is  not	used  in  this
	      case).   Note  that  -m is ignored if no patterns are given.  If
	      the +g flag is combined with -m, a new local parameter  is  cre‐
	      ated  for	 every	matching  parameter that is not already local.
	      Otherwise -m applies all	other  flags  or  assignments  to  the
	      existing	parameters.   Except  when  assignments	 are made with
	      name=value, using	 +m  forces  the  matching  parameters	to  be
	      printed, even inside a function.

	      If no attribute flags are given and either no -m flag is present
	      or the +m form was used, each parameter name printed is preceded
	      by  a  list of the attributes of that parameter (array, associa‐
	      tion,  exported,	integer,  readonly).   If  +m  is  used	  with
	      attribute	 flags, and all those flags are introduced with +, the
	      matching parameter names are printed but their values are not.

	      Attribute flags that transform the final value (-L, -R, -Z,  -l,
	      u)  are  only  applied  to  the expanded value at the point of a
	      parameter expansion expression using `$'.	 They are not  applied
	      when  a  parameter  is retrieved internally by the shell for any
	      purpose.

	      The following attribute flags may be specified:

	      -A     The names refer  to  associative  array  parameters;  see
		     `Array Parameters' in zshparam(1).

	      -L     Left  justify and remove leading blanks from value.  If n
		     is nonzero, it defines the width of the field.  If	 n  is
		     zero,  the	 width is determined by the width of the value
		     of the first assignment.  In the case of numeric  parame‐
		     ters,  the	 length	 of the complete value assigned to the
		     parameter is used to determine the width, not  the	 value
		     that would be output.

		     The width is the count of characters, which may be multi‐
		     byte characters if the MULTIBYTE  option  is  in  effect.
		     Note  that the screen width of the character is not taken
		     into account; if  this  is	 required,  use	 padding  with
		     parameter	expansion  flags ${(ml...)...} as described in
		     `Parameter Expansion Flags' in zshexpn(1).

		     When the parameter is expanded, it is filled on the right
		     with  blanks  or truncated if necessary to fit the field.
		     Note truncation  can  lead	 to  unexpected	 results  with
		     numeric  parameters.  Leading zeros are removed if the -Z
		     flag is also set.

	      -R     Similar to -L, except that right justification  is	 used;
		     when  the parameter is expanded, the field is left filled
		     with blanks or truncated from the end.  May not  be  com‐
		     bined with the -Z flag.

	      -U     For  arrays  (but	not for associative arrays), keep only
		     the first occurrence of each duplicated value.  This  may
		     also  be  set for colon-separated special parameters like
		     PATH or FIGNORE, etc.  This flag has a different  meaning
		     when used with -f; see below.

	      -Z     Specially	handled if set along with the -L flag.	Other‐
		     wise, similar to -R, except that leading zeros  are  used
		     for  padding  instead  of	blanks	if the first non-blank
		     character is a digit.  Numeric parameters	are  specially
		     handled:  they  are  always  eligible  for	 padding  with
		     zeroes, and the zeroes are	 inserted  at  an  appropriate
		     place in the output.

	      -a     The  names refer to array parameters.  An array parameter
		     may be created this way, but it may not be assigned to in
		     the  typeset statement.  When displaying, both normal and
		     associative arrays are shown.

	      -f     The names refer to functions rather than parameters.   No
		     assignments  can  be made, and the only other valid flags
		     are -t, -k, -u, -U and -z.	 The flag -t turns  on	execu‐
		     tion  tracing  for	 this  function.   The -u and -U flags
		     cause the function to be marked for autoloading; -U  also
		     causes alias expansion to be suppressed when the function
		     is loaded.	 The fpath parameter will be searched to  find
		     the function definition when the function is first refer‐
		     enced; see the section `Functions'. The -k and  -z	 flags
		     make  the function be loaded using ksh-style or zsh-style
		     autoloading respectively. If neither is given,  the  set‐
		     ting  of the KSH_AUTOLOAD option determines how the func‐
		     tion is loaded.

	      -h     Hide: only useful for special  parameters	(those	marked
		     `<S>' in the table in zshparam(1)), and for local parame‐
		     ters with the same name as a  special  parameter,	though
		     harmless  for  others.   A	 special  parameter  with this
		     attribute will not retain its special  effect  when  made
		     local.  Thus after `typeset -h PATH', a function contain‐
		     ing `typeset PATH' will create an ordinary local  parame‐
		     ter  without the usual behaviour of PATH.	Alternatively,
		     the local parameter may itself be given  this  attribute;
		     hence  inside  a  function	 `typeset  -h PATH' creates an
		     ordinary local parameter and the special  PATH  parameter
		     is not altered in any way.	 It is also possible to create
		     a local parameter using `typeset +h special',  where  the
		     local  copy of special will retain its special properties
		     regardless of having the -h  attribute.   Global  special
		     parameters	 loaded from shell modules (currently those in
		     zsh/mapfile and zsh/parameter)  are  automatically	 given
		     the -h attribute to avoid name clashes.

	      -H     Hide  value:  specifies that typeset will not display the
		     value of the parameter when listing parameters; the  dis‐
		     play for such parameters is always as if the `+' flag had
		     been given.  Use of the parameter is  in  other  respects
		     normal, and the option does not apply if the parameter is
		     specified by name, or by  pattern	with  the  -m  option.
		     This   is	on  by	default	 for  the  parameters  in  the
		     zsh/parameter and zsh/mapfile  modules.   Note,  however,
		     that  unlike the -h flag this is also useful for non-spe‐
		     cial parameters.

	      -i     Use an internal integer representation.  If n is  nonzero
		     it	 defines  the  output arithmetic base, otherwise it is
		     determined by the first assignment.

	      -E     Use an internal double-precision floating point represen‐
		     tation.  On output the variable will be converted to sci‐
		     entific notation.	If n is nonzero it defines the	number
		     of significant figures to display; the default is ten.

	      -F     Use an internal double-precision floating point represen‐
		     tation.  On output the  variable  will  be	 converted  to
		     fixed-point decimal notation.  If n is nonzero it defines
		     the number of digits to display after the decimal	point;
		     the default is ten.

	      -l     Convert  the  result to lower case whenever the parameter
		     is expanded.  The value is not converted when assigned.

	      -r     The given names are marked readonly.  Note that  if  name
		     is	 a  special  parameter,	 the readonly attribute can be
		     turned on, but cannot then be turned off.

	      -t     Tags the named parameters.	 Tags have no special  meaning
		     to	 the  shell.   This  flag has a different meaning when
		     used with -f; see above.

	      -u     Convert the result to upper case whenever	the  parameter
		     is	 expanded.   The value is not converted when assigned.
		     This flag has a different meaning when used with -f;  see
		     above.

	      -x     Mark  for	automatic  export to the environment of subse‐
		     quently executed commands.	 If the	 option	 GLOBAL_EXPORT
		     is	 set,  this  implies  the option -g, unless +g is also
		     explicitly given; in other words  the  parameter  is  not
		     made  local  to the enclosing function.  This is for com‐
		     patibility with previous versions of zsh.

       ulimit [ [ -SHacdfilmnpqstvx | -N resource [ limit ] ... ]
	      Set or display resource limits of the shell  and	the  processes
	      started by the shell.  The value of limit can be a number in the
	      unit specified below or the value `unlimited'.  By default, only
	      soft  limits  are	 manipulated. If the -H flag is given use hard
	      limits instead of soft limits.  If the -S flag is given together
	      with  the	 -H flag set both hard and soft limits.	 If no options
	      are used, the file size limit (-f)  is  assumed.	 If  limit  is
	      omitted  the  current  value  of	the  specified	resources  are
	      printed.	When more than one resource  values  are  printed  the
	      limit name and unit is printed before each value.

	      When looping over multiple resources, the shell will abort imme‐
	      diately if it detects a badly formed argument.  However,	if  it
	      fails  to set a limit for some other reson it will continue try‐
	      ing to set the remaining limits.

	      -a     Lists all of the current resource limits.
	      -c     512-byte blocks on the size of core dumps.
	      -d     K-bytes on the size of the data segment.
	      -f     512-byte blocks on the size of files written.
	      -i     The number of pending signals.
	      -l     K-bytes on the size of locked-in memory.
	      -m     K-bytes on the size of physical memory.
	      -n     open file descriptors.
	      -q     Bytes in POSIX message queues.
	      -s     K-bytes on the size of the stack.
	      -t     CPU seconds to be used.
	      -u     processes available to the user.
	      -v     K-bytes on the size of virtual memory.  On	 some  systems
		     this refers to the limit called `address space'.
	      -x     The number of locks on files.

	      A	 resource  may	also  be  specified by integer in the form `-N
	      resource', where resource corresponds to the integer defined for
	      the  resource  by the operating system.  This may be used to set
	      the limits for resources known to the shell which do not	corre‐
	      spond to option letters.	Such limits will be shown by number in
	      the output of `ulimit -a'.

	      The number may alternatively be out of the range of limits  com‐
	      piled  into  the shell.  The shell will try to read or write the
	      limit anyway, and will report an error if this fails.

       umask [ -S ] [ mask ]
	      The umask is set to mask.	 mask can be either an octal number or
	      a	 symbolic value as described in chmod(1).  If mask is omitted,
	      the current value is printed.  The -S option causes the mask  to
	      be  printed as a symbolic value.	Otherwise, the mask is printed
	      as an octal number.  Note that in the symbolic form the  permis‐
	      sions you specify are those which are to be allowed (not denied)
	      to the users specified.

       unalias
	      Same as unhash -a.

       unfunction
	      Same as unhash -f.

       unhash [ -adfms ] name ...
	      Remove the element named name from an internal hash table.   The
	      default  is remove elements from the command hash table.	The -a
	      option causes unhash to remove regular or global	aliases;  note
	      when  removing a global aliases that the argument must be quoted
	      to prevent it from being expanded before	being  passed  to  the
	      command.	 The -s option causes unhash to remove suffix aliases.
	      The -f option causes unhash to remove shell functions.   The  -d
	      options  causes  unhash  to remove named directories.  If the -m
	      flag is given the arguments are taken  as	 patterns  (should  be
	      quoted)  and  all	 elements of the corresponding hash table with
	      matching names will be removed.

       unlimit [ -hs ] resource ...
	      The resource limit for each resource is set to the  hard	limit.
	      If  the  -h  flag	 is given and the shell has appropriate privi‐
	      leges, the hard resource limit for  each	resource  is  removed.
	      The  resources  of  the shell process are only changed if the -s
	      flag is given.

       unset [ -fmv ] name ...
	      Each named parameter is unset.  Local  parameters	 remain	 local
	      even  if unset; they appear unset within scope, but the previous
	      value will still reappear when the scope ends.

	      Individual elements of associative array parameters may be unset
	      by  using	 subscript  syntax on name, which should be quoted (or
	      the entire command prefixed with noglob)	to  protect  the  sub‐
	      script from filename generation.

	      If  the -m flag is specified the arguments are taken as patterns
	      (should be quoted) and all parameters with  matching  names  are
	      unset.  Note that this cannot be used when unsetting associative
	      array elements, as the subscript will be treated as part of  the
	      pattern.

	      The  -v  flag  specifies that name refers to parameters. This is
	      the default behaviour.

	      unset -f is equivalent to unfunction.

       unsetopt [ {+|-}options | {+|-}o option_name ] [ name ... ]
	      Unset the options for the shell.	All options  specified	either
	      with  flags or by name are unset.	 If no arguments are supplied,
	      the names of all options currently unset are printed.  If the -m
	      flag  is given the arguments are taken as patterns (which should
	      be quoted to preserve them from being interpreted as  glob  pat‐
	      terns),  and  all options with names matching these patterns are
	      unset.

       vared  See the section `Zle Builtins' in zshzle(1).

       wait [ job ... ]
	      Wait for the specified jobs or processes.	 If job is  not	 given
	      then  all currently active child processes are waited for.  Each
	      job can be either a job specification or the process ID of a job
	      in  the job table.  The exit status from this command is that of
	      the job waited for.

       whence [ -vcwfpams ] name ...
	      For each name, indicate how it would be interpreted if used as a
	      command name.

	      -v     Produce a more verbose report.

	      -c     Print  the	 results  in  a	 csh-like  format.  This takes
		     precedence over -v.

	      -w     For each name, print `name: word' where word  is  one  of
		     alias,  builtin,  command,	 function, hashed, reserved or
		     none, according  as  name	corresponds  to	 an  alias,  a
		     built-in  command, an external command, a shell function,
		     a command defined with the hash builtin, a reserved word,
		     or	 is not recognised.  This takes precedence over -v and
		     -c.

	      -f     Causes the contents of a shell function to be  displayed,
		     which  would otherwise not happen unless the -c flag were
		     used.

	      -p     Do a path search  for  name  even	if  it	is  an	alias,
		     reserved word, shell function or builtin.

	      -a     Do	 a  search  for all occurrences of name throughout the
		     command path.  Normally  only  the	 first	occurrence  is
		     printed.

	      -m     The  arguments  are taken as patterns (should be quoted),
		     and the information is displayed for each command	match‐
		     ing one of these patterns.

	      -s     If	 a  pathname contains symlinks, print the symlink-free
		     pathname as well.

       where [ -wpms ] name ...
	      Equivalent to whence -ca.

       which [ -wpams ] name ...
	      Equivalent to whence -c.

       zcompile [ -U ] [ -z | -k ] [ -R | -M ] file [ name ... ]
       zcompile -ca [ -m ] [ -R | -M ] file [ name ... ]
       zcompile -t file [ name ... ]
	      This builtin  command  can  be  used  to	compile	 functions  or
	      scripts,	storing	 the  compiled	form in a file, and to examine
	      files  containing	 the  compiled	form.	This   allows	faster
	      autoloading  of  functions  and execution of scripts by avoiding
	      parsing of the text when the files are read.

	      The first form (without the -c, -a or -t options) creates a com‐
	      piled file.  If only the file argument is given, the output file
	      has the name `file.zwc' and will be placed in the same directory
	      as  the  file.  The shell will load the compiled file instead of
	      the normal function file when the function  is  autoloaded;  see
	      the section `Autoloading Functions' in zshfunc(1) for a descrip‐
	      tion of how autoloaded functions are  searched.	The  extension
	      .zwc stands for `zsh word code'.

	      If  there is at least one name argument, all the named files are
	      compiled into the output file given as the first	argument.   If
	      file  does  not  end  in	.zwc,  this extension is automatically
	      appended.	 Files	containing  multiple  compiled	functions  are
	      called  `digest'	files, and are intended to be used as elements
	      of the FPATH/fpath special array.

	      The second form, with the -c or -a options, writes the  compiled
	      definitions  for all the named functions into file.  For -c, the
	      names must be functions currently	 defined  in  the  shell,  not
	      those  marked  for  autoloading.	 Undefined  functions that are
	      marked for autoloading may be written by using the -a option, in
	      which case the fpath is searched and the contents of the defini‐
	      tion files for those functions,  if  found,  are	compiled  into
	      file.   If both -c and -a are given, names of both defined func‐
	      tions and functions marked for autoloading  may  be  given.   In
	      either  case,  the  functions in files written with the -c or -a
	      option will be autoloaded as if  the  KSH_AUTOLOAD  option  were
	      unset.

	      The reason for handling loaded and not-yet-loaded functions with
	      different options is that some definition files for  autoloading
	      define  multiple functions, including the function with the same
	      name as the file, and, at the end, call that function.  In  such
	      cases  the  output  of  `zcompile -c' does not include the addi‐
	      tional functions defined in the file, and any other  initializa‐
	      tion code in the file is lost.  Using `zcompile -a' captures all
	      this extra information.

	      If the -m option is combined with -c or -a, the names  are  used
	      as  patterns  and	 all  functions whose names match one of these
	      patterns will be written. If no name is given,  the  definitions
	      of  all functions currently defined or marked as autoloaded will
	      be written.

	      The third form, with the -t option, examines  an	existing  com‐
	      piled  file.  Without further arguments, the names of the origi‐
	      nal files compiled into it are listed.  The first line of output
	      shows  the  version of the shell which compiled the file and how
	      the file will be used (i.e. by reading it directly or by mapping
	      it  into	memory).   With	 arguments,  nothing is output and the
	      return status is set to zero if definitions for all  names  were
	      found  in	 the compiled file, and non-zero if the definition for
	      at least one name was not found.

	      Other options:

	      -U     Aliases are not expanded when compiling the named files.

	      -R     When the compiled file is read, its contents  are	copied
		     into  the	shell's memory, rather than memory-mapped (see
		     -M).  This happens automatically on systems that  do  not
		     support memory mapping.

		     When compiling scripts instead of autoloadable functions,
		     it is often desirable to use this option;	otherwise  the
		     whole  file, including the code to define functions which
		     have already been defined,	 will  remain  mapped,	conse‐
		     quently wasting memory.

	      -M     The  compiled file is mapped into the shell's memory when
		     read. This is done in such a way that multiple  instances
		     of	 the  shell  running  on the same host will share this
		     mapped file.  If neither -R nor -M is given, the zcompile
		     builtin  decides what to do based on the size of the com‐
		     piled file.

	      -k
	      -z     These options are used when the  compiled	file  contains
		     functions which are to be autoloaded. If -z is given, the
		     function will be autoloaded as if the KSH_AUTOLOAD option
		     is	 not  set,  even if it is set at the time the compiled
		     file is read, while if the -k is given, the function will
		     be	 loaded as if KSH_AUTOLOAD is set.  These options also
		     take precedence over any -k or -z	options	 specified  to
		     the  autoload  builtin.  If  neither  of these options is
		     given, the function will be loaded as determined  by  the
		     setting  of  the KSH_AUTOLOAD option at the time the com‐
		     piled file is read.

		     These options may also appear as many times as  necessary
		     between  the listed names to specify the loading style of
		     all following functions, up to the next -k or -z.

		     The created file always contains two versions of the com‐
		     piled  format,  one  for  big-endian machines and one for
		     small-endian machines.  The upshot of this	 is  that  the
		     compiled file is machine independent and if it is read or
		     mapped, only one half of the file is actually  used  (and
		     mapped).

       zformat
	      See the section `The zsh/zutil Module' in zshmodules(1).

       zftp   See the section `The zsh/zftp Module' in zshmodules(1).

       zle    See the section `Zle Builtins' in zshzle(1).

       zmodload [ -dL ] [ ... ]
       zmodload -F [ -lLe -P param ] module [+-]feature...
       zmodload -e [ -A ] [ ... ]
       zmodload [ -a [ -bcpf [ -I ] ] ] [ -iL ] ...
       zmodload -u [ -abcdpf [ -I ] ] [ -iL ] ...
       zmodload -A [ -L ] [ modalias[=module] ... ]
       zmodload -R modalias ...
	      Performs operations relating to zsh's loadable modules.  Loading
	      of modules while the shell is running (`dynamical	 loading')  is
	      not  available on all operating systems, or on all installations
	      on a particular operating system, although the zmodload  command
	      itself is always available and can be used to manipulate modules
	      built into versions of the shell	executable  without  dynamical
	      loading.

	      Without  arguments the names of all currently loaded binary mod‐
	      ules are printed.	 The -L option causes this list to be  in  the
	      form  of	a  series  of zmodload commands.  Forms with arguments
	      are:

	      zmodload [ -i ] name ...
	      zmodload -u [ -i ] name ...
		     In the simplest case, zmodload  loads  a  binary  module.
		     The  module  must	be in a file with a name consisting of
		     the specified name followed by a standard suffix, usually
		     `.so'  (`.sl'  on	HPUX).	 If the module to be loaded is
		     already loaded the duplicate module is ignored.  If zmod‐
		     load  detects an inconsistency, such as an invalid module
		     name or circular dependency list, the current code	 block
		     is aborted.   Hence `zmodload module 2>/dev/null' is suf‐
		     ficient to test whether a module is available.  If it  is
		     available, the module is loaded if necessary, while if it
		     is not available, non-zero status is  silently  returned.
		     The  option  -i  is accepted for compatibility but has no
		     effect.

		     The named module is searched for in the same way  a  com‐
		     mand  is,	using $module_path instead of $path.  However,
		     the path search is performed even when  the  module  name
		     contains  a  `/', which it usually does.  There is no way
		     to prevent the path search.

		     If the module supports  features  (see  below),  zmodload
		     tries  to	enable all features when loading a module.  If
		     the module was successfully loaded but not	 all  features
		     could be enabled, zmodload returns status 2.

		     With -u, zmodload unloads modules.	 The same name must be
		     given that was given when the module was loaded,  but  it
		     is	 not necessary for the module to exist in the filesys‐
		     tem.  The -i option suppresses the error if the module is
		     already unloaded (or was never loaded).

		     Each  module has a boot and a cleanup function.  The mod‐
		     ule will not be loaded if its boot function fails.	 Simi‐
		     larly  a module can only be unloaded if its cleanup func‐
		     tion runs successfully.

	      zmodload -F [ -alLe -P param ] module [+-]feature...
		     zmodload -F allows more selective control over  the  fea‐
		     tures  provided  by  modules.  With no options apart from
		     -F, the module named module is  loaded,  if  it  was  not
		     already  loaded,  and  the list of features is set to the
		     required state.  If no features are specified, the module
		     is loaded, if it was not already loaded, but the state of
		     features is unchanged.  Each feature may be preceded by a
		     +	to  turn the feature on, or - to turn it off; the + is
		     assumed if neither character is present.  Any feature not
		     explicitly mentioned is left in its current state; if the
		     module was not previously loaded this means any such fea‐
		     tures will remain disabled.  The return status is zero if
		     all features were set, 1 if the module  failed  to	 load,
		     and  2  if some features could not be set (for example, a
		     parameter couldn't be added because there was a different
		     parameter of the same name) but the module was loaded.

		     The  standard  features are builtins, conditions, parame‐
		     ters and math functions; these are indicated by the  pre‐
		     fix  `b:',	 `c:'  (`C:' for an infix condition), `p:' and
		     `f:', respectively, followed by the name that the	corre‐
		     sponding  feature	would have in the shell.  For example,
		     `b:strftime'  indicates  a	 builtin  named	 strftime  and
		     p:EPOCHSECONDS  indicates a parameter named EPOCHSECONDS.
		     The module may provide other (`abstract') features of its
		     own as indicated by its documentation; these have no pre‐
		     fix.

		     With -l or	 -L,  features	provided  by  the  module  are
		     listed.   With -l alone, a list of features together with
		     their states is shown, one feature	 per  line.   With  -L
		     alone,  a	zmodload  -F  command that would cause enabled
		     features of the module to be turned on  is	 shown.	  With
		     -lL,  a zmodload -F command that would cause all the fea‐
		     tures to be set to their current state is shown.  If  one
		     of	 these	combinations is given the option -P param then
		     the parameter param is  set  to  an  array	 of  features,
		     either features together with their state or (if -L alone
		     is given) enabled features.

		     With the option -L the module name may be omitted; then a
		     list  of  all  enabled features for all modules providing
		     features is printed in the form of zmodload -F  commands.
		     If	 -l  is also given, the state of both enabled and dis‐
		     abled features is output in that form.

		     A set of features may be provided together with -l or  -L
		     and  a  module name; in that case only the state of those
		     features is considered.  Each feature may be preceded  by
		     +	or  -  but  the character has no effect.  If no set of
		     features is provided, all features are considered.

		     With -e, the command  first  tests	 that  the  module  is
		     loaded;  if it is not, status 1 is returned.  If the mod‐
		     ule is loaded, the list of features given as an  argument
		     is	 examined.  Any feature given with no prefix is simply
		     tested to see if the  module  provides  it;  any  feature
		     given  with  a  prefix + or - is tested to see if is pro‐
		     vided and in the given state.  If the tests on  all  fea‐
		     tures  in	the  list  succeed, status 0 is returned, else
		     status 1.

		     With -a,  the  given  list	 of  features  is  marked  for
		     autoload  from the specified module, which may not yet be
		     loaded.  An optional +  may  appear  before  the  feature
		     name.   If	 the  feature is prefixed with -, any existing
		     autoload is removed.  The options -l and -L may  be  used
		     to list autoloads.	 Autoloading is specific to individual
		     features; when the module is loaded  only	the  requested
		     feature  is  enabled.  Autoload requests are preserved if
		     the module is subsequently	 unloaded  until  an  explicit
		     `zmodload	-Fa  module -feature' is issued.  It is not an
		     error to request an autoload for a feature	 of  a	module
		     that is already loaded.

		     When  the	module	is  loaded  each  autoload  is checked
		     against the features actually provided by the module;  if
		     the  feature  is  not  provided  the  autoload request is
		     deleted.  A warning message is output; if the  module  is
		     being  loaded  to	provide	 a different feature, and that
		     autoload is successful, there is no effect on the	status
		     of	 the current command.  If the module is already loaded
		     at the time when zmodload -Fa is run, an error message is
		     printed and status 1 returned.

		     zmodload  -Fa  can	 be  used  with	 the -l, -L, -e and -P
		     options  for  listing  and	 testing  the	existence   of
		     autoloadable  features.  In this case -l is ignored if -L
		     is specified.  zmodload -FaL with no  module  name	 lists
		     autoloads for all modules.

		     Note  that	 only standard features as described above can
		     be autoloaded; other features require the	module	to  be
		     loaded before enabling.

	      zmodload -d [ -L ] [ name ]
	      zmodload -d name dep ...
	      zmodload -ud name [ dep ... ]
		     The -d option can be used to specify module dependencies.
		     The modules named in the second and subsequent  arguments
		     will be loaded before the module named in the first argu‐
		     ment.

		     With -d and one argument, all dependencies for that  mod‐
		     ule  are  listed.	 With  -d and no arguments, all module
		     dependencies are listed.  This listing is by default in a
		     Makefile-like  format.  The -L option changes this format
		     to a list of zmodload -d commands.

		     If -d and -u are both used, dependencies are removed.  If
		     only  one	argument  is  given, all dependencies for that
		     module are removed.

	      zmodload -ab [ -L ]
	      zmodload -ab [ -i ] name [ builtin ... ]
	      zmodload -ub [ -i ] builtin ...
		     The -ab option defines autoloaded builtins.   It  defines
		     the  specified  builtins.	 When any of those builtins is
		     called, the module specified in  the  first  argument  is
		     loaded  and  all  its features are enabled (for selective
		     control of features use `zmodload	-F  -a'	 as  described
		     above).   If  only	 the  name  is	given,	one builtin is
		     defined, with the same name as the module.	 -i suppresses
		     the   error   if	the  builtin  is  already  defined  or
		     autoloaded, but not if another builtin of the  same  name
		     is already defined.

		     With  -ab	and  no arguments, all autoloaded builtins are
		     listed, with the module  name  (if	 different)  shown  in
		     parentheses  after	 the  builtin  name.   The  -L	option
		     changes this format to a list of zmodload -a commands.

		     If -b is used together with the  -u  option,  it  removes
		     builtins  previously defined with -ab.  This is only pos‐
		     sible if the builtin is not yet  loaded.	-i  suppresses
		     the  error	 if  the  builtin is already removed (or never
		     existed).

		     Autoload requests are retained if the  module  is	subse‐
		     quently unloaded until an explicit `zmodload -ub builtin'
		     is issued.

	      zmodload -ac [ -IL ]
	      zmodload -ac [ -iI ] name [ cond ... ]
	      zmodload -uc [ -iI ] cond ...
		     The -ac option is used  to	 define	 autoloaded  condition
		     codes.  The cond strings give the names of the conditions
		     defined by the module. The optional -I option is used  to
		     define  infix condition names. Without this option prefix
		     condition names are defined.

		     If given no condition names, all defined names are listed
		     (as  a  series  of	 zmodload commands if the -L option is
		     given).

		     The -uc option removes definitions for autoloaded	condi‐
		     tions.

	      zmodload -ap [ -L ]
	      zmodload -ap [ -i ] name [ parameter ... ]
	      zmodload -up [ -i ] parameter ...
		     The  -p  option  is like the -b and -c options, but makes
		     zmodload work on autoloaded parameters instead.

	      zmodload -af [ -L ]
	      zmodload -af [ -i ] name [ function ... ]
	      zmodload -uf [ -i ] function ...
		     The -f option is like the -b, -p,	and  -c	 options,  but
		     makes zmodload work on autoloaded math functions instead.

	      zmodload -a [ -L ]
	      zmodload -a [ -i ] name [ builtin ... ]
	      zmodload -ua [ -i ] builtin ...
		     Equivalent to -ab and -ub.

	      zmodload -e [ -A ] [ string ... ]
		     The -e option without arguments lists all loaded modules;
		     if the -A option is also  given,  module  aliases	corre‐
		     sponding  to loaded modules are also shown.  If arguments
		     are provided, nothing is printed; the  return  status  is
		     set  to  zero if all strings given as arguments are names
		     of loaded modules and to one if at least on string is not
		     the  name	of  a loaded module.  This can be used to test
		     for the availability of things  implemented  by  modules.
		     In	 this case, any aliases are automatically resolved and
		     the -A flag is not used.

	      zmodload -A [ -L ] [ modalias[=module] ... ]
		     For each argument, if both modalias and module are given,
		     define modalias to be an alias for the module module.  If
		     the  module  modalias  is	ever  subsequently  requested,
		     either  via  a  call to zmodload or implicitly, the shell
		     will attempt to load module instead.  If  module  is  not
		     given,  show the definition of modalias.  If no arguments
		     are given, list all defined module aliases.   When	 list‐
		     ing,  if  the -L flag was also given, list the definition
		     as a zmodload command to recreate the alias.

		     The existence of aliases for modules is completely	 inde‐
		     pendent  of  whether the name resolved is actually loaded
		     as a module: while the alias exists, loading and  unload‐
		     ing  the  module  under  any  alias  has exactly the same
		     effect as using the resolved name, and  does  not	affect
		     the  connection  between  the alias and the resolved name
		     which can be removed either by zmodload -R or by redefin‐
		     ing  the  alias.  Chains of aliases (i.e. where the first
		     resolved name is itself an alias) are valid  so  long  as
		     these  are	 not  circular.	  As the aliases take the same
		     format as module names, they may include path separators:
		     in this case, there is no requirement for any part of the
		     path named to exist as the alias will be resolved	first.
		     For example, `any/old/alias' is always a valid alias.

		     Dependencies  added to aliased modules are actually added
		     to the resolved module; these  remain  if	the  alias  is
		     removed.	It  is	valid to create an alias whose name is
		     one of the standard shell modules and which resolves to a
		     different module.	However, if a module has dependencies,
		     it will not be possible to use  the  module  name	as  an
		     alias  as the module will already be marked as a loadable
		     module in its own right.

		     Apart from the above, aliases can be used in the zmodload
		     command  anywhere	module	names  are required.  However,
		     aliases will not be shown in lists of loaded modules with
		     a bare `zmodload'.

	      zmodload -R modalias ...
		     For each modalias argument that was previously defined as
		     a module alias via zmodload -A, delete the alias.	If any
		     was  not defined, an error is caused and the remainder of
		     the line is ignored.

	      Note that zsh makes no distinction  between  modules  that  were
	      linked  into  the shell and modules that are loaded dynamically.
	      In both cases this builtin command has to be used to make avail‐
	      able  the	 builtins  and other things defined by modules (unless
	      the module is autoloaded on these	 definitions).	This  is  true
	      even for systems that don't support dynamic loading of modules.

       zparseopts
	      See the section `The zsh/zutil Module' in zshmodules(1).

       zprof  See the section `The zsh/zprof Module' in zshmodules(1).

       zpty   See the section `The zsh/zpty Module' in zshmodules(1).

       zregexparse
	      See the section `The zsh/zutil Module' in zshmodules(1).

       zsocket
	      See the section `The zsh/net/socket Module' in zshmodules(1).

       zstyle See the section `The zsh/zutil Module' in zshmodules(1).

       ztcp   See the section `The zsh/net/tcp Module' in zshmodules(1).

ZSHZLE(1)							     ZSHZLE(1)

NAME
       zshzle - zsh command line editor

DESCRIPTION
       If the ZLE option is set (which it is by default in interactive shells)
       and the shell input is attached to the terminal, the user  is  able  to
       edit command lines.

       There  are  two	display	 modes.	  The  first,  multiline  mode, is the
       default.	 It only works if the TERM parameter is set to a valid	termi‐
       nal type that can move the cursor up.  The second, single line mode, is
       used if TERM is invalid or incapable of moving the cursor up, or if the
       SINGLE_LINE_ZLE	option	is set.	 This mode is similar to ksh, and uses
       no termcap sequences.  If TERM is "emacs", the ZLE option will be unset
       by default.

       The  parameters BAUD, COLUMNS, and LINES are also used by the line edi‐
       tor.  See Parameters Used By The Shell in zshparam(1).

KEYMAPS
       A keymap in ZLE contains a set of bindings between  key	sequences  and
       ZLE commands.  The empty key sequence cannot be bound.

       There can be any number of keymaps at any time, and each keymap has one
       or more names.  If all of a keymap's names are deleted, it  disappears.
       bindkey can be used to manipulate keymap names.

       Initially, there are four keymaps:

       emacs  EMACS emulation
       viins  vi emulation - insert mode
       vicmd  vi emulation - command mode
       .safe  fallback keymap

       The  `.safe'  keymap is special.	 It can never be altered, and the name
       can never be removed.  However, it can be linked to other names,	 which
       can  be	removed.   In  the  future other special keymaps may be added;
       users should avoid  using  names	 beginning  with  `.'  for  their  own
       keymaps.

       In  addition  to	 these	four  names, either `emacs' or `viins' is also
       linked to the name `main'.  If one of the VISUAL or EDITOR  environment
       variables contain the string `vi' when the shell starts up then it will
       be `viins', otherwise it will be `emacs'.  bindkey's -e and -v  options
       provide a convenient way to override this default choice.

       When  the  editor starts up, it will select the `main' keymap.  If that
       keymap doesn't exist, it will use `.safe' instead.

       In the `.safe' keymap, each single key is bound to self-insert,	except
       for  ^J	(line  feed)  and  ^M (return) which are bound to accept-line.
       This is deliberately not pleasant to use; if you are using it, it means
       you deleted the main keymap, and you should put it back.

   Reading Commands
       When ZLE is reading a command from the terminal, it may read a sequence
       that is bound to some command and is also a prefix of  a	 longer	 bound
       string.	In this case ZLE will wait a certain time to see if more char‐
       acters are typed, and if not (or they don't match any longer string) it
       will  execute  the  binding.  This timeout is defined by the KEYTIMEOUT
       parameter; its default is 0.4 sec.  There is no timeout if  the	prefix
       string is not itself bound to a command.

       The  key	 timeout  is also applied when ZLE is reading the bytes from a
       multibyte character string when it is in the appropriate	 mode.	 (This
       requires that the shell was compiled with multibyte mode enabled; typi‐
       cally also the locale has characters with the UTF-8 encoding,  although
       any multibyte encoding known to the operating system is supported.)  If
       the second or a subsequent byte is not read within the timeout  period,
       the shell acts as if ? were typed and resets the input state.

       As  well	 as ZLE commands, key sequences can be bound to other strings,
       by using `bindkey -s'.  When such a sequence is read,  the  replacement
       string  is pushed back as input, and the command reading process starts
       again using these fake keystrokes.  This input can itself  invoke  fur‐
       ther replacement strings, but in order to detect loops the process will
       be stopped if there are twenty such replacements without a real command
       being read.

       A  key sequence typed by the user can be turned into a command name for
       use in user-defined widgets with	 the  read-command  widget,  described
       below.

ZLE BUILTINS
       The  ZLE	 module	 contains  three related builtin commands. The bindkey
       command manipulates keymaps and key bindings; the vared command invokes
       ZLE  on the value of a shell parameter; and the zle command manipulates
       editing widgets and allows command line access  to  ZLE	commands  from
       within shell functions.

       bindkey [ options ] -l
       bindkey [ options ] -d
       bindkey [ options ] -D keymap ...
       bindkey [ options ] -A old-keymap new-keymap
       bindkey [ options ] -N new-keymap [ old-keymap ]
       bindkey [ options ] -m
       bindkey [ options ] -r in-string ...
       bindkey [ options ] -s in-string out-string ...
       bindkey [ options ] in-string command ...
       bindkey [ options ] [ in-string ]
	      bindkey's	 options  can be divided into three categories: keymap
	      selection, operation selection, and others.  The	keymap	selec‐
	      tion options are:

	      -e     Selects keymap `emacs', and also links it to `main'.

	      -v     Selects keymap `viins', and also links it to `main'.

	      -a     Selects keymap `vicmd'.

	      -M keymap
		     The keymap specifies a keymap name.

	      If  a keymap selection is required and none of the options above
	      are used, the `main' keymap is used.   Some  operations  do  not
	      permit a keymap to be selected, namely:

	      -l     List all existing keymap names.  If the -L option is also
		     used, list in the form of bindkey commands to create  the
		     keymaps.

	      -d     Delete  all  existing  keymaps  and  reset to the default
		     state.

	      -D keymap ...
		     Delete the named keymaps.

	      -A old-keymap new-keymap
		     Make the new-keymap name an alias for old-keymap, so that
		     both  names  refer	 to  the  same keymap.	The names have
		     equal standing; if either is deleted, the other  remains.
		     If there is already a keymap with the new-keymap name, it
		     is deleted.

	      -N new-keymap [ old-keymap ]
		     Create a new  keymap,  named  new-keymap.	 If  a	keymap
		     already  has  that name, it is deleted.  If an old-keymap
		     name is given, the new keymap  is	initialized  to	 be  a
		     duplicate of it, otherwise the new keymap will be empty.

	      To  use  a  newly	 created  keymap, it should be linked to main.
	      Hence the sequence of commands to create and use	a  new	keymap
	      `mymap'	initialized  from  the	emacs  keymap  (which  remains
	      unchanged) is:

		     bindkey -N mymap emacs
		     bindkey -A mymap main

	      Note that while `bindkey -A newmap main' will work  when	newmap
	      is emacs or viins, it will not work for vicmd, as switching from
	      vi insert to command mode becomes impossible.

	      The following operations act on the `main' keymap if  no	keymap
	      selection option was given:

	      -m     Add the built-in set of meta-key bindings to the selected
		     keymap.   Only  keys  that	 are  unbound  or   bound   to
		     self-insert are affected.

	      -r in-string ...
		     Unbind  the  specified in-strings in the selected keymap.
		     This is exactly equivalent	 to  binding  the  strings  to
		     undefined-key.

		     When -R is also used, interpret the in-strings as ranges.

		     When  -p  is  also used, the in-strings specify prefixes.
		     Any binding that has the given in-string as a prefix, not
		     including	the  binding for the in-string itself, if any,
		     will be removed.  For example,

			    bindkey -rpM viins '^['

		     will remove all bindings in the vi-insert	keymap	begin‐
		     ning with an escape character (probably cursor keys), but
		     leave the binding for the escape character itself (proba‐
		     bly  vi-cmd-mode).	  This is incompatible with the option
		     -R.

	      -s in-string out-string ...
		     Bind each in-string to each out-string.   When  in-string
		     is	 typed,	 out-string will be pushed back and treated as
		     input to the line editor.	When -R is also	 used,	inter‐
		     pret the in-strings as ranges.

	      in-string command ...
		     Bind  each	 in-string  to each command.  When -R is used,
		     interpret the in-strings as ranges.

	      [ in-string ]
		     List key bindings.	 If an	in-string  is  specified,  the
		     binding  of  that	string	in the selected keymap is dis‐
		     played.  Otherwise, all  key  bindings  in	 the  selected
		     keymap  are  displayed.  (As a special case, if the -e or
		     -v option is used alone, the keymap is  not  displayed  -
		     the  implicit  linking  of keymaps is the only thing that
		     happens.)

		     When the  option  -p  is  used,  the  in-string  must  be
		     present.	The  listing shows all bindings which have the
		     given key sequence as a prefix, not including  any	 bind‐
		     ings for the key sequence itself.

		     When  the	-L  option is used, the list is in the form of
		     bindkey commands to create the key bindings.

       When the -R option is used as noted above, a valid  range  consists  of
       two  characters,	 with  an  optional  `-' between them.	All characters
       between the two specified, inclusive, are bound as specified.

       For either in-string or out-string, the following escape sequences  are
       recognised:

       \a     bell character
       \b     backspace
       \e, \E escape
       \f     form feed
       \n     linefeed (newline)
       \r     carriage return
       \t     horizontal tab
       \v     vertical tab
       \NNN   character code in octal
       \xNN   character code in hexadecimal
       \M[-]X character with meta bit set
       \C[-]X control character
       ^X     control character

       In  all	other  cases,  `\' escapes the following character.  Delete is
       written as `^?'.	 Note that `\M^?' and `^\M?' are  not  the  same,  and
       that  (unlike  emacs),  the bindings `\M-X' and `\eX' are entirely dis‐
       tinct, although they are initialized to the same bindings  by  `bindkey
       -m'.

       vared [ -Aache ] [ -p prompt ] [ -r rprompt ]
	 [ -M main-keymap ] [ -m vicmd-keymap ] name
	      The  value of the parameter name is loaded into the edit buffer,
	      and the line editor is invoked.  When the editor exits, name  is
	      set  to  the  string  value returned by the editor.  When the -c
	      flag is given, the parameter is created if  it  doesn't  already
	      exist.   The  -a	flag  may  be given with -c to create an array
	      parameter, or the -A flag to create an  associative  array.   If
	      the  type of an existing parameter does not match the type to be
	      created, the parameter is unset and recreated.

	      If an array or array slice is being edited, separator characters
	      as  defined  in  $IFS  will be shown quoted with a backslash, as
	      will backslashes themselves.  Conversely, when the  edited  text
	      is  split	 into an array, a backslash quotes an immediately fol‐
	      lowing separator character or backslash; no other	 special  han‐
	      dling of backslashes, or any handling of quotes, is performed.

	      Individual  elements  of	existing  array	 or  associative array
	      parameters may be edited by using subscript syntax on name.  New
	      elements are created automatically, even without -c.

	      If  the  -p flag is given, the following string will be taken as
	      the prompt to display at the left.  If the -r flag is given, the
	      following	 string	 gives the prompt to display at the right.  If
	      the -h flag is specified, the history can be accessed from  ZLE.
	      If  the -e flag is given, typing ^D (Control-D) on an empty line
	      causes vared to exit immediately with a non-zero return value.

	      The -M option gives a keymap to link to the main	keymap	during
	      editing,	and  the -m option gives a keymap to link to the vicmd
	      keymap during editing.  For vi-style editing, this allows a pair
	      of  keymaps  to override viins and vicmd.	 For emacs-style edit‐
	      ing, only -M is normally needed but the -m option may  still  be
	      used.  On exit, the previous keymaps will be restored.

       zle
       zle -l [ -L | -a ] [ string ... ]
       zle -D widget ...
       zle -A old-widget new-widget
       zle -N widget [ function ]
       zle -C widget completion-widget function
       zle -R [ -c ] [ display-string ] [ string ... ]
       zle -M string
       zle -U string
       zle -K keymap
       zle -F [ -L ] [ fd [ handler ] ]
       zle -I
       zle widget [ -n num ] [ -Nw ] [ -K keymap ] args ...
	      The  zle builtin performs a number of different actions concern‐
	      ing ZLE.

	      With no options and no arguments, only the return status will be
	      set.  It is zero if ZLE is currently active and widgets could be
	      invoked using this builtin command and non-zero otherwise.  Note
	      that  even  if  non-zero	status	is  returned, zle may still be
	      active as part of the completion system;	this  does  not	 allow
	      direct calls to ZLE widgets.

	      Otherwise, which operation it performs depends on its options:

	      -l [ -L | -a ]
		     List all existing user-defined widgets.  If the -L option
		     is used, list in the form of zle commands to  create  the
		     widgets.

		     When  combined  with  the -a option, all widget names are
		     listed, including the builtin ones. In this case  the  -L
		     option is ignored.

		     If	 at least one string is given, nothing will be printed
		     but the return status will be zero	 if  all  strings  are
		     names  of existing widgets (or of user-defined widgets if
		     the -a flag is not given) and non-zero if	at  least  one
		     string is not a name of an defined widget.

	      -D widget ...
		     Delete the named widgets.

	      -A old-widget new-widget
		     Make the new-widget name an alias for old-widget, so that
		     both names refer to the  same  widget.   The  names  have
		     equal  standing; if either is deleted, the other remains.
		     If there is already a widget with the new-widget name, it
		     is deleted.

	      -N widget [ function ]
		     Create a user-defined widget.  If there is already a wid‐
		     get with the specified name, it is overwritten.  When the
		     new  widget is invoked from within the editor, the speci‐
		     fied shell function is called.  If no  function  name  is
		     specified,	 it  defaults  to the same name as the widget.
		     For further information, see the section Widgets in  zsh‐
		     zle(1).

	      -C widget completion-widget function
		     Create a user-defined completion widget named widget. The
		     completion widget will behave like the  built-in  comple‐
		     tion-widget  whose name is given as completion-widget. To
		     generate the completions,	the  shell  function  function
		     will  be  called.	 For further information, see zshcomp‐
		     wid(1).

	      -R [ -c ] [ display-string ] [ string ... ]
		     Redisplay the command line; this is  to  be  called  from
		     within  a	user-defined widget to allow changes to become
		     visible.  If a display-string is  given  and  not	empty,
		     this  is  shown in the status line (immediately below the
		     line being edited).

		     If the optional strings are given they are	 listed	 below
		     the  prompt  in  the  same	 way  as  completion lists are
		     printed. If no strings are given but  the	-c  option  is
		     used such a list is cleared.

		     Note  that this option is only useful for widgets that do
		     not exit immediately after using it because  the  strings
		     displayed	will  be  erased immediately after return from
		     the widget.

		     This command can safely be called	outside	 user  defined
		     widgets; if zle is active, the display will be refreshed,
		     while if zle is not active, the command  has  no  effect.
		     In this case there will usually be no other arguments.

		     The status is zero if zle was active, else one.

	      -M string
		     As with the -R option, the string will be displayed below
		     the command line; unlike the -R option, the  string  will
		     not  be  put  into	 the  status  line but will instead be
		     printed normally below the prompt.	 This means  that  the
		     string  will  still be displayed after the widget returns
		     (until it is overwritten by subsequent commands).

	      -U string
		     This pushes the characters in the string onto  the	 input
		     stack  of	ZLE.  After the widget currently executed fin‐
		     ishes ZLE will behave as if the characters in the	string
		     were typed by the user.

		     As	 ZLE  uses  a stack, if this option is used repeatedly
		     the last string pushed onto the stack will	 be  processed
		     first.   However,	the  characters in each string will be
		     processed in the  order  in  which	 they  appear  in  the
		     string.

	      -K keymap
		     Selects  the  keymap named keymap.	 An error message will
		     be displayed if there is no such keymap.

		     This keymap selection affects the interpretation of  fol‐
		     lowing  keystrokes	 within	 this  invocation of ZLE.  Any
		     following invocation (e.g., the next command  line)  will
		     start as usual with the `main' keymap selected.

	      -F [ -L ] [ fd [ handler ] ]
		     Only  available if your system supports one of the `poll'
		     or `select' system calls; most modern systems do.

		     Installs handler (the name of a shell function) to handle
		     input from file descriptor fd.  When zle is attempting to
		     read data, it will examine both the terminal and the list
		     of	 handled fd's.	If data becomes available on a handled
		     fd, zle will call handler with the fd which is ready  for
		     reading  as  the  only argument.  If the handler produces
		     output to the terminal, it should call  `zle  -I'	before
		     doing  so (see below).  The handler should not attempt to
		     read from the terminal.  Note that zle makes  no  attempt
		     to	 check	whether	 this  fd  is  actually	 readable when
		     installing the handler.  The user	must  make  their  own
		     arrangements for handling the file descriptor when zle is
		     not active.

		     Any number of handlers for any number  of	readable  file
		     descriptors  may  be installed.  Installing a handler for
		     an fd which is already handled causes the	existing  han‐
		     dler to be replaced.

		     If no handler is given, but an fd is present, any handler
		     for that fd is removed.  If there is none, an error  mes‐
		     sage is printed and status 1 is returned.

		     If	 no arguments are given, or the -L option is supplied,
		     a list of handlers is printed in  a  form	which  can  be
		     stored for later execution.

		     An	 fd  (but  not a handler) may optionally be given with
		     the -L option; in this case, the function will  list  the
		     handler if any, else silently return status 1.

		     Note  that this feature should be used with care.	Activ‐
		     ity on one of the fd's which is not properly handled  can
		     cause the terminal to become unusable.

		     Here  is  a simple example of using this feature.	A con‐
		     nection to a remote TCP port is created  using  the  ztcp
		     command; see the description of the zsh/net/tcp module in
		     zshmodules(1).  Then a handler is installed which	simply
		     prints  out  any  data  which arrives on this connection.
		     Note that `select' will indicate that the file descriptor
		     needs  handling if the remote side has closed the connec‐
		     tion; we handle that by testing for a failed read.
			    if ztcp pwspc 2811; then
			      tcpfd=$REPLY
			      handler() {
				zle -I
				local line
				if ! read -r line <&$1; then
				  # select marks this fd if we reach EOF,
				  # so handle this specially.
				  print "[Read on fd $1 failed, removing.]" >&2
				  zle -F $1
				  return 1
				fi
				print -r - $line
			      }
			      zle -F $tcpfd handler
			    fi

	      -I     Unusually, this option is most  useful  outside  ordinary
		     widget  functions, though it may be used within if normal
		     output to the terminal is required.  It  invalidates  the
		     current  zle display in preparation for output; typically
		     this will be from a trap function.	 It has no  effect  if
		     zle  is  not active.  When a trap exits, the shell checks
		     to see if the display needs restoring, hence the  follow‐
		     ing will print output in such a way as not to disturb the
		     line being edited:

			    TRAPUSR1() {
				# Invalidate zle display
			      [[ -o zle ]] && zle -I
				# Show output
			      print Hello
			    }

		     In general, the trap function may need  to	 test  whether
		     zle  is  active before using this method (as shown in the
		     example), since  the  zsh/zle  module  may	 not  even  be
		     loaded; if it is not, the command can be skipped.

		     It is possible to call `zle -I' several times before con‐
		     trol is returned to the editor; the display will only  be
		     invalidated the first time to minimise disruption.

		     Note  that there are normally better ways of manipulating
		     the display from within zle widgets;  see,	 for  example,
		     `zle -R' above.

		     The  returned status is zero if zle was invalidated, even
		     though this may have been by a previous call to `zle  -I'
		     or by a system notification.  To test if a zle widget may
		     be called at this point, execute zle  with	 no  arguments
		     and examine the return status.

	      widget [ -n num ] [ -Nw ] [ -K keymap ] args ...
		     Invoke  the specified widget.  This can only be done when
		     ZLE  is  active;  normally	 this	will   be   within   a
		     user-defined widget.

		     With  the	options -n and -N, the current numerical argu‐
		     ment will be saved and then restored after	 the  call  to
		     widget;  `-n num' sets the numerical argument temporarily
		     to num, while `-N' sets it to the	default,  i.e.	as  if
		     there were none.

		     With  the	option	-K, keymap will be used as the current
		     keymap during the execution of the widget.	 The  previous
		     keymap will be restored when the widget exits.

		     Normally,	calling	 a widget in this way does not set the
		     special parameter WIDGET and related parameters, so  that
		     the environment appears as if the top-level widget called
		     by the user were still active.  With the option -w,  WID‐
		     GET  and related parameters are set to reflect the widget
		     being executed by the zle call.

		     Any further arguments will be passed to the widget;  note
		     that as standard argument handling is performed, any gen‐
		     eral argument list should be preceded by --.  If it is  a
		     shell  function,  these  are  passed  down	 as positional
		     parameters; for builtin widgets it is up to the widget in
		     question what it does with them.  Currently arguments are
		     only handled by the incremental-search commands, the his‐
		     tory-search-forward  and  -backward and the corresponding
		     functions prefixed by vi-, and by universal-argument.  No
		     error  is	flagged	 if the command does not use the argu‐
		     ments, or only uses some of them.

		     The return status reflects the success or failure of  the
		     operation	carried	 out  by  the  widget,	or  if it is a
		     user-defined widget the return status of the shell	 func‐
		     tion.

		     A	non-zero  return  status causes the shell to beep when
		     the widget exits, unless the BEEP options	was  unset  or
		     the  widget  was  called  via the zle command.  Thus if a
		     user defined widget requires an immediate beep, it should
		     call the beep widget directly.

WIDGETS
       All  actions  in the editor are performed by `widgets'.	A widget's job
       is simply to perform some small action.	 The  ZLE  commands  that  key
       sequences  in keymaps are bound to are in fact widgets.	Widgets can be
       user-defined or built in.

       The standard widgets built in to ZLE are	 listed	 in  Standard  Widgets
       below.	Other  built-in	 widgets  can be defined by other modules (see
       zshmodules(1)).	Each built-in widget has two names: its normal canoni‐
       cal  name,  and	the same name preceded by a `.'.  The `.' name is spe‐
       cial: it can't be rebound to a different widget.	 This makes the widget
       available even when its usual name has been redefined.

       User-defined  widgets  are  defined  using `zle -N', and implemented as
       shell functions.	 When the widget is executed, the corresponding	 shell
       function	 is  executed, and can perform editing (or other) actions.  It
       is recommended that user-defined widgets should not have names starting
       with `.'.

USER-DEFINED WIDGETS
       User-defined widgets, being implemented as shell functions, can execute
       any normal shell command.  They can also	 run  other  widgets  (whether
       built-in	 or user-defined) using the zle builtin command.  The standard
       input of the function is closed to prevent external commands from unin‐
       tentionally  blocking  ZLE by reading from the terminal, but read -k or
       read -q can be used to read characters.	Finally, they can examine  and
       edit  the  ZLE  buffer  being edited by reading and setting the special
       parameters described below.

       These special parameters are always available in widget functions,  but
       are not in any way special outside ZLE.	If they have some normal value
       outside ZLE, that value is temporarily inaccessible,  but  will	return
       when  the widget function exits.	 These special parameters in fact have
       local scope, like parameters created in a function using local.

       Inside completion widgets and traps called while ZLE is	active,	 these
       parameters are available read-only.

       BUFFER (scalar)
	      The  entire  contents  of the edit buffer.  If it is written to,
	      the cursor remains at the same offset, unless that would put  it
	      outside the buffer.

       BUFFERLINES (integer)
	      The  number of screen lines needed for the edit buffer currently
	      displayed on screen (i.e. without any changes to	the  preceding
	      parameters done after the last redisplay); read-only.

       CONTEXT (scalar)
	      The  context  in which zle was called to read a line; read-only.
	      One of the values:
       start  The start of a command line (at prompt PS1).

       cont   A continuation to a command line (at prompt PS2).

       select In a select loop.

       vared  Editing a variable in vared.

       CURSOR (integer)
	      The offset of the cursor, within the edit buffer.	  This	is  in
	      the  range  0  to	 $#BUFFER,  and	 is  by	 definition  equal  to
	      $#LBUFFER.  Attempts to move the cursor outside the buffer  will
	      result  in  the cursor being moved to the appropriate end of the
	      buffer.

       CUTBUFFER (scalar)
	      The last item to be cut using one of the `kill-'	commands;  the
	      string  which  the  next	yank  would insert in the line.	 Later
	      entries in the kill ring are in the array killring.   Note  that
	      the  command `zle copy-region-as-kill string' can be used to set
	      the text of the cut buffer from a shell function and  cycle  the
	      kill ring in the same way as interactively killing text.

       HISTNO (integer)
	      The current history number.  Setting this has the same effect as
	      moving up or down in the history to  the	corresponding  history
	      line.  An attempt to set it is ignored if the line is not stored
	      in the history.  Note this is not	 the  same  as	the  parameter
	      HISTCMD, which always gives the number of the history line being
	      added to the main shell's history.  HISTNO refers	 to  the  line
	      being retrieved within zle.

       KEYMAP (scalar)
	      The name of the currently selected keymap; read-only.

       KEYS (scalar)
	      The  keys	 typed	to  invoke  this  widget, as a literal string;
	      read-only.

       killring (array)
	      The array of previously killed items,  with  the	most  recently
	      killed first.  This gives the items that would be retrieved by a
	      yank-pop in the  same  order.   Note,  however,  that  the  most
	      recently killed item is in $CUTBUFFER; $killring shows the array
	      of previous entries.

	      The default size for the kill ring is eight, however the	length
	      may  be changed by normal array operations.  Any empty string in
	      the kill ring is ignored by the yank-pop command, hence the size
	      of  the  array  effectively  sets the maximum length of the kill
	      ring, while the number of non-zero  strings  gives  the  current
	      length, both as seen by the user at the command line.

       LASTSEARCH (scalar)
	      The   last  search  string  used	by  an	interactive  search  ;
	      read-only.

       LASTWIDGET (scalar)
	      The name of the last widget that was executed; read-only.

       LBUFFER (scalar)
	      The part of the buffer that lies to the left of the cursor posi‐
	      tion.   If  it  is  assigned to, only that part of the buffer is
	      replaced, and the cursor remains between the  new	 $LBUFFER  and
	      the old $RBUFFER.

       MARK (integer)
	      Like CURSOR, but for the mark.

       NUMERIC (integer)
	      The  numeric  argument.  If  no numeric argument was given, this
	      parameter is unset. When this is set inside a  widget  function,
	      builtin widgets called with the zle builtin command will use the
	      value assigned. If it is unset inside a widget function, builtin
	      widgets called behave as if no numeric argument was given.

       PENDING (integer)
	      The  number of bytes pending for input, i.e. the number of bytes
	      which have already been typed and can immediately	 be  read.  On
	      systems  where  the  shell  is not able to get this information,
	      this parameter will always have a value of zero.	Read-only.

       PREBUFFER (scalar)
	      In a multi-line input at the secondary  prompt,  this  read-only
	      parameter	 contains the contents of the lines before the one the
	      cursor is currently in.

       PREDISPLAY (scalar)
	      Text to be displayed before the start of the editable text  buf‐
	      fer.   This  does	 not  have to be a complete line; to display a
	      complete line, a newline must  be	 appended  explicitly.	   The
	      text  is reset on each new invocation (but not recursive invoca‐
	      tion) of zle.

       POSTDISPLAY (scalar)
	      Text to be displayed after the end of the editable text  buffer.
	      This  does not have to be a complete line; to display a complete
	      line, a newline must be prepended explicitly.  The text is reset
	      on each new invocation (but not recursive invocation) of zle.

       RBUFFER (scalar)
	      The  part	 of  the  buffer  that lies to the right of the cursor
	      position.	 If it is assigned to, only that part of the buffer is
	      replaced,	 and  the  cursor remains between the old $LBUFFER and
	      the new $RBUFFER.

       WIDGET (scalar)
	      The name of the widget currently being executed; read-only.

       WIDGETFUNC (scalar)
	      The name of the shell function that implements a widget  defined
	      with  either  zle -N or zle -C.  In the former case, this is the
	      second argument to the zle -N command that defined  the  widget,
	      or  the  first argument if there was no second argument.	In the
	      latter case this is the the third argument to the zle -C command
	      that defined the widget.	Read-only.

       WIDGETSTYLE (scalar)
	      Describes	 the  implementation behind the completion widget cur‐
	      rently being executed; the second argument that followed zle  -C
	      when the widget was defined.  This is the name of a builtin com‐
	      pletion widget.  For widgets defined with zle -N this is set  to
	      the empty string.	 Read-only.

   Special Widgets
       There  are  a  few user-defined widgets which are special to the shell.
       If they do not exist, no special action is taken.  The environment pro‐
       vided is identical to that for any other editing widget.

       zle-line-init
	      Executed	every  time  the  line editor is started to read a new
	      line of input.  The following example puts the line editor  into
	      vi command mode when it starts up.

		     zle-line-init() { zle -K vicmd; }
		     zle -N zle-line-init

	      (The command inside the function sets the keymap directly; it is
	      equivalent to zle vi-cmd-mode.)

       zle-keymap-select
	      Executed every time the keymap changes, i.e. the special parame‐
	      ter KEYMAP is set to a different value, while the line editor is
	      active.  Initialising the keymap when  the  line	editor	starts
	      does not cause the widget to be called.

	      The  value  $KEYMAP within the function reflects the new keymap.
	      The old keymap is passed as the sole argument.

	      This can been used for detecting switches between the vi command
	      (vicmd) and insert (usually main) keymaps.

STANDARD WIDGETS
       The  following is a list of all the standard widgets, and their default
       bindings in emacs mode,	vi  command  mode  and	vi  insert  mode  (the
       `emacs', `vicmd' and `viins' keymaps, respectively).

       Note  that cursor keys are bound to movement keys in all three keymaps;
       the shell assumes that the cursor keys send the key sequences  reported
       by  the	terminal-handling  library  (termcap  or  terminfo).   The key
       sequences shown in the list are those based on  the  VT100,  common  on
       many modern terminals, but in fact these are not necessarily bound.  In
       the case of the viins keymap,  the  initial  escape  character  of  the
       sequences  serves also to return to the vicmd keymap: whether this hap‐
       pens is determined by the KEYTIMEOUT parameter, see zshparam(1).

   Movement
       vi-backward-blank-word (unbound) (B) (unbound)
	      Move backward one word, where a word is defined as a  series  of
	      non-blank characters.

       backward-char (^B ESC-[D) (unbound) (unbound)
	      Move backward one character.

       vi-backward-char (unbound) (^H h ^?) (ESC-[D)
	      Move backward one character, without changing lines.

       backward-word (ESC-B ESC-b) (unbound) (unbound)
	      Move to the beginning of the previous word.

       emacs-backward-word
	      Move to the beginning of the previous word.

       vi-backward-word (unbound) (b) (unbound)
	      Move to the beginning of the previous word, vi-style.

       beginning-of-line (^A) (unbound) (unbound)
	      Move  to the beginning of the line.  If already at the beginning
	      of the line, move to the beginning of the previous line, if any.

       vi-beginning-of-line
	      Move to the beginning of the line, without changing lines.

       end-of-line (^E) (unbound) (unbound)
	      Move to the end of the line.  If already at the end of the line,
	      move to the end of the next line, if any.

       vi-end-of-line (unbound) ($) (unbound)
	      Move  to	the  end of the line.  If an argument is given to this
	      command, the cursor will be moved to the end of the line	(argu‐
	      ment - 1) lines down.

       vi-forward-blank-word (unbound) (W) (unbound)
	      Move  forward  one  word, where a word is defined as a series of
	      non-blank characters.

       vi-forward-blank-word-end (unbound) (E) (unbound)
	      Move to the end of the current word, or, if at the  end  of  the
	      current  word,  to  the  end  of	the next word, where a word is
	      defined as a series of non-blank characters.

       forward-char (^F ESC-[C) (unbound) (unbound)
	      Move forward one character.

       vi-forward-char (unbound) (space l) (ESC-[C)
	      Move forward one character.

       vi-find-next-char (^X^F) (f) (unbound)
	      Read a character from the keyboard, and move to the next	occur‐
	      rence of it in the line.

       vi-find-next-char-skip (unbound) (t) (unbound)
	      Read  a  character  from	the keyboard, and move to the position
	      just before the next occurrence of it in the line.

       vi-find-prev-char (unbound) (F) (unbound)
	      Read a character from the keyboard, and  move  to	 the  previous
	      occurrence of it in the line.

       vi-find-prev-char-skip (unbound) (T) (unbound)
	      Read  a  character  from	the keyboard, and move to the position
	      just after the previous occurrence of it in the line.

       vi-first-non-blank (unbound) (^) (unbound)
	      Move to the first non-blank character in the line.

       vi-forward-word (unbound) (w) (unbound)
	      Move forward one word, vi-style.

       forward-word (ESC-F ESC-f) (unbound) (unbound)
	      Move to the beginning of the next word.  The editor's idea of  a
	      word is specified with the WORDCHARS parameter.

       emacs-forward-word
	      Move to the end of the next word.

       vi-forward-word-end (unbound) (e) (unbound)
	      Move to the end of the next word.

       vi-goto-column (ESC-|) (|) (unbound)
	      Move to the column specified by the numeric argument.

       vi-goto-mark (unbound) (`) (unbound)
	      Move to the specified mark.

       vi-goto-mark-line (unbound) (') (unbound)
	      Move to beginning of the line containing the specified mark.

       vi-repeat-find (unbound) (;) (unbound)
	      Repeat the last vi-find command.

       vi-rev-repeat-find (unbound) (,) (unbound)
	      Repeat the last vi-find command in the opposite direction.

   History Control
       beginning-of-buffer-or-history (ESC-<) (unbound) (unbound)
	      Move  to	the beginning of the buffer, or if already there, move
	      to the first event in the history list.

       beginning-of-line-hist
	      Move to the beginning of the line.  If already at the  beginning
	      of the buffer, move to the previous history line.

       beginning-of-history
	      Move to the first event in the history list.

       down-line-or-history (^N ESC-[B) (j) (ESC-[B)
	      Move  down  a  line  in  the buffer, or if already at the bottom
	      line, move to the next event in the history list.

       vi-down-line-or-history (unbound) (+) (unbound)
	      Move down a line in the buffer, or  if  already  at  the	bottom
	      line,  move to the next event in the history list.  Then move to
	      the first non-blank character on the line.

       down-line-or-search
	      Move down a line in the buffer, or  if  already  at  the	bottom
	      line,  search  forward  in the history for a line beginning with
	      the first word in the buffer.

	      If called from a function by the zle command with arguments, the
	      first  argument  is  taken  as  the  string for which to search,
	      rather than the first word in the buffer.

       down-history (unbound) (^N) (unbound)
	      Move to the next event in the history list.

       history-beginning-search-backward
	      Search backward in the history for a  line  beginning  with  the
	      current  line  up	 to the cursor.	 This leaves the cursor in its
	      original position.

       end-of-buffer-or-history (ESC->) (unbound) (unbound)
	      Move to the end of the buffer, or if already there, move to  the
	      last event in the history list.

       end-of-line-hist
	      Move  to the end of the line.  If already at the end of the buf‐
	      fer, move to the next history line.

       end-of-history
	      Move to the last event in the history list.

       vi-fetch-history (unbound) (G) (unbound)
	      Fetch the history line specified by the numeric argument.	  This
	      defaults	to  the	 current history line (i.e. the one that isn't
	      history yet).

       history-incremental-search-backward (^R ^Xr) (unbound) (unbound)
	      Search backward  incrementally  for  a  specified	 string.   The
	      search  is  case-insensitive  if the search string does not have
	      uppercase letters and no numeric argument was given.  The string
	      may  begin with `^' to anchor the search to the beginning of the
	      line.

	      A restricted set	of  editing  functions	is  available  in  the
	      mini-buffer.   An	 interrupt signal, as defined by the stty set‐
	      ting, will stop the search and go back to the original line.  An
	      undefined key will have the same effect. The supported functions
	      are:	 backward-delete-char,	      vi-backward-delete-char,
	      clear-screen,    redisplay,   quoted-insert,   vi-quoted-insert,
	      accept-and-hold, accept-and-infer-next-history, accept-line  and
	      accept-line-and-down-history.

	      magic-space  just	 inserts a space.  vi-cmd-mode toggles between
	      the `main' and `vicmd' keymaps; the `main' keymap (insert	 mode)
	      will be selected initially.  history-incremental-search-backward
	      will get the next occurrence of the contents of the mini-buffer.
	      history-incremental-search-forward  inverts  the	sense  of  the
	      search.  vi-repeat-search and vi-rev-repeat-search are similarly
	      supported.   The	direction  of  the  search is indicated in the
	      mini-buffer.

	      Any multi-character string that is not bound to one of the above
	      functions	 will  beep and interrupt the search, leaving the last
	      found line in the buffer. Any single character that is not bound
	      to   one	 of   the   above   functions,	 or   self-insert   or
	      self-insert-unmeta, will have the same effect but	 the  function
	      will be executed.

	      When  called  from  a  widget  function  by the zle command, the
	      incremental search commands can take a  string  argument.	  This
	      will  be	treated	 as  a string of keys, as for arguments to the
	      bindkey command, and used as initial input for the command.  Any
	      characters  in  the  string  which are unused by the incremental
	      search will be silently ignored.	For example,

		     zle history-incremental-search-backward forceps

	      will search backwards for forceps, leaving the  minibuffer  con‐
	      taining the string `forceps'.

       history-incremental-search-forward (^S ^Xs) (unbound) (unbound)
	      Search forward incrementally for a specified string.  The search
	      is case-insensitive if the search string does not have uppercase
	      letters and no numeric argument was given.  The string may begin
	      with `^' to anchor the search to the beginning of the line.  The
	      functions	 available in the mini-buffer are the same as for his‐
	      tory-incremental-search-backward.

       history-search-backward (ESC-P ESC-p) (unbound) (unbound)
	      Search backward in the history for a  line  beginning  with  the
	      first word in the buffer.

	      If called from a function by the zle command with arguments, the
	      first argument is taken as  the  string  for  which  to  search,
	      rather than the first word in the buffer.

       vi-history-search-backward (unbound) (/) (unbound)
	      Search  backward	in  the	 history  for a specified string.  The
	      string may begin with `^' to anchor the search to the  beginning
	      of the line.

	      A	 restricted  set  of  editing  functions  is  available in the
	      mini-buffer.  An interrupt signal, as defined by the  stty  set‐
	      ting,   will  stop  the  search.	The functions available in the
	      mini-buffer  are:	 accept-line,  backward-delete-char,  vi-back‐
	      ward-delete-char,	  backward-kill-word,	vi-backward-kill-word,
	      clear-screen, redisplay, quoted-insert and vi-quoted-insert.

	      vi-cmd-mode is treated the same as accept-line, and  magic-space
	      is treated as a space.  Any other character that is not bound to
	      self-insert or self-insert-unmeta will beep and be  ignored.  If
	      the function is called from vi command mode, the bindings of the
	      current insert mode will be used.

	      If called from a function by the zle command with arguments, the
	      first  argument  is  taken  as  the  string for which to search,
	      rather than the first word in the buffer.

       history-search-forward (ESC-N ESC-n) (unbound) (unbound)
	      Search forward in the history for	 a  line  beginning  with  the
	      first word in the buffer.

	      If called from a function by the zle command with arguments, the
	      first argument is taken as  the  string  for  which  to  search,
	      rather than the first word in the buffer.

       vi-history-search-forward (unbound) (?) (unbound)
	      Search  forward  in  the	history	 for  a specified string.  The
	      string may begin with `^' to anchor the search to the  beginning
	      of  the line. The functions available in the mini-buffer are the
	      same as for vi-history-search-backward.	Argument  handling  is
	      also the same as for that command.

       infer-next-history (^X^N) (unbound) (unbound)
	      Search  in  the history list for a line matching the current one
	      and fetch the event following it.

       insert-last-word (ESC-_ ESC-.) (unbound) (unbound)
	      Insert the last word from the previous history event at the cur‐
	      sor  position.   If a positive numeric argument is given, insert
	      that word from the end of the previous history  event.   If  the
	      argument	is  zero  or  negative	insert that word from the left
	      (zero inserts the previous command word).	 Repeating  this  com‐
	      mand replaces the word just inserted with the last word from the
	      history event prior to the one just used; numeric arguments  can
	      be used in the same way to pick a word from that event.

	      When  called  from  a shell function invoked from a user-defined
	      widget, the command can take one to three arguments.  The	 first
	      argument	specifies a history offset which applies to successive
	      calls to this widget: if is -1, the default behaviour  is	 used,
	      while  if	 it  is 1, successive calls will move forwards through
	      the history.  The value 0 can be used to indicate that the  his‐
	      tory line examined by the previous execution of the command will
	      be reexamined.  Note that negative numbers  should  be  preceded
	      with a `--' argument to avoid confusing them with options.

	      If two arguments are given, the second specifies the word on the
	      command line in normal array index notation (as a	 more  natural
	      alternative to the prefix argument).  Hence 1 is the first word,
	      and -1 (the default) is the last word.

	      If a third argument is given, its value is ignored,  but	it  is
	      used  to signify that the history offset is relative to the cur‐
	      rent history line, rather than the one remembered after the pre‐
	      vious invocations of insert-last-word.

	      For example, the default behaviour of the command corresponds to

		     zle insert-last-word -- -1 -1

	      while the command

		     zle insert-last-word -- -1 1 -

	      always  copies the first word of the line in the history immedi‐
	      ately before the line being edited.  This has  the  side	effect
	      that  later  invocations	of the widget will be relative to that
	      line.

       vi-repeat-search (unbound) (n) (unbound)
	      Repeat the last vi history search.

       vi-rev-repeat-search (unbound) (N) (unbound)
	      Repeat the last vi history search, but in reverse.

       up-line-or-history (^P ESC-[A) (k) (ESC-[A)
	      Move up a line in the buffer, or if already  at  the  top	 line,
	      move to the previous event in the history list.

       vi-up-line-or-history (unbound) (-) (unbound)
	      Move  up	a  line	 in the buffer, or if already at the top line,
	      move to the previous event in the history list.	Then  move  to
	      the first non-blank character on the line.

       up-line-or-search
	      Move  up	a  line	 in the buffer, or if already at the top line,
	      search backward in the history for a  line  beginning  with  the
	      first word in the buffer.

	      If called from a function by the zle command with arguments, the
	      first argument is taken as  the  string  for  which  to  search,
	      rather than the first word in the buffer.

       up-history (unbound) (^P) (unbound)
	      Move to the previous event in the history list.

       history-beginning-search-forward
	      Search forward in the history for a line beginning with the cur‐
	      rent line up to the cursor.  This leaves the cursor in its orig‐
	      inal position.

   Modifying Text
       vi-add-eol (unbound) (A) (unbound)
	      Move to the end of the line and enter insert mode.

       vi-add-next (unbound) (a) (unbound)
	      Enter  insert  mode  after  the current cursor position, without
	      changing lines.

       backward-delete-char (^H ^?) (unbound) (unbound)
	      Delete the character behind the cursor.

       vi-backward-delete-char (unbound) (X) (^H)
	      Delete the character behind the cursor, without changing	lines.
	      If in insert mode, this won't delete past the point where insert
	      mode was last entered.

       backward-delete-word
	      Delete the word behind the cursor.

       backward-kill-line
	      Kill from the beginning of the line to the cursor position.

       backward-kill-word (^W ESC-^H ESC-^?) (unbound) (unbound)
	      Kill the word behind the cursor.

       vi-backward-kill-word (unbound) (unbound) (^W)
	      Kill the word behind the cursor, without going  past  the	 point
	      where insert mode was last entered.

       capitalize-word (ESC-C ESC-c) (unbound) (unbound)
	      Capitalize the current word and move past it.

       vi-change (unbound) (c) (unbound)
	      Read  a  movement	 command  from the keyboard, and kill from the
	      cursor position to the endpoint of  the  movement.   Then	 enter
	      insert  mode.   If  the command is vi-change, change the current
	      line.

       vi-change-eol (unbound) (C) (unbound)
	      Kill to the end of the line and enter insert mode.

       vi-change-whole-line (unbound) (S) (unbound)
	      Kill the current line and enter insert mode.

       copy-region-as-kill (ESC-W ESC-w) (unbound) (unbound)
	      Copy the area from the cursor to the mark to the kill buffer.

	      If  called  from	a  ZLE	widget	function  in  the  form	  `zle
	      copy-region-as-kill  string'  then  string  will be taken as the
	      text to copy to the kill buffer.	The cursor, the mark  and  the
	      text on the command line are not used in this case.

       copy-prev-word (ESC-^_) (unbound) (unbound)
	      Duplicate the word to the left of the cursor.

       copy-prev-shell-word
	      Like  copy-prev-word, but the word is found by using shell pars‐
	      ing, whereas copy-prev-word looks for blanks. This makes a  dif‐
	      ference when the word is quoted and contains spaces.

       vi-delete (unbound) (d) (unbound)
	      Read  a  movement	 command  from the keyboard, and kill from the
	      cursor position to the endpoint of the movement.	If the command
	      is vi-delete, kill the current line.

       delete-char
	      Delete the character under the cursor.

       vi-delete-char (unbound) (x) (unbound)
	      Delete  the  character  under the cursor, without going past the
	      end of the line.

       delete-word
	      Delete the current word.

       down-case-word (ESC-L ESC-l) (unbound) (unbound)
	      Convert the current word to all lowercase and move past it.

       kill-word (ESC-D ESC-d) (unbound) (unbound)
	      Kill the current word.

       gosmacs-transpose-chars
	      Exchange the two characters behind the cursor.

       vi-indent (unbound) (>) (unbound)
	      Indent a number of lines.

       vi-insert (unbound) (i) (unbound)
	      Enter insert mode.

       vi-insert-bol (unbound) (I) (unbound)
	      Move to the first non-blank character  on	 the  line  and	 enter
	      insert mode.

       vi-join (^X^J) (J) (unbound)
	      Join the current line with the next one.

       kill-line (^K) (unbound) (unbound)
	      Kill  from the cursor to the end of the line.  If already on the
	      end of the line, kill the newline character.

       vi-kill-line (unbound) (unbound) (^U)
	      Kill from the cursor back	 to  wherever  insert  mode  was  last
	      entered.

       vi-kill-eol (unbound) (D) (unbound)
	      Kill from the cursor to the end of the line.

       kill-region
	      Kill from the cursor to the mark.

       kill-buffer (^X^K) (unbound) (unbound)
	      Kill the entire buffer.

       kill-whole-line (^U) (unbound) (unbound)
	      Kill the current line.

       vi-match-bracket (^X^B) (%) (unbound)
	      Move to the bracket character (one of {}, () or []) that matches
	      the one under the cursor.	 If the cursor is  not	on  a  bracket
	      character,  move	forward without going past the end of the line
	      to find one, and then go to the matching bracket.

       vi-open-line-above (unbound) (O) (unbound)
	      Open a line above the cursor and enter insert mode.

       vi-open-line-below (unbound) (o) (unbound)
	      Open a line below the cursor and enter insert mode.

       vi-oper-swap-case
	      Read a movement command from the keyboard, and swap the case  of
	      all  characters  from the cursor position to the endpoint of the
	      movement.	 If the movement command  is  vi-oper-swap-case,  swap
	      the case of all characters on the current line.

       overwrite-mode (^X^O) (unbound) (unbound)
	      Toggle between overwrite mode and insert mode.

       vi-put-before (unbound) (P) (unbound)
	      Insert  the  contents  of the kill buffer before the cursor.  If
	      the kill buffer contains a sequence  of  lines  (as  opposed  to
	      characters), paste it above the current line.

       vi-put-after (unbound) (p) (unbound)
	      Insert the contents of the kill buffer after the cursor.	If the
	      kill buffer contains a sequence of lines (as opposed to  charac‐
	      ters), paste it below the current line.

       quoted-insert (^V) (unbound) (unbound)
	      Insert  the  next character typed into the buffer literally.  An
	      interrupt character will not be inserted.

       vi-quoted-insert (unbound) (unbound) (^Q ^V)
	      Display a `^' at the cursor position, and insert the next	 char‐
	      acter  typed  into the buffer literally.	An interrupt character
	      will not be inserted.

       quote-line (ESC-') (unbound) (unbound)
	      Quote the current line; that is, put  a  `''  character  at  the
	      beginning and the end, and convert all `'' characters to `'\'''.

       quote-region (ESC-") (unbound) (unbound)
	      Quote the region from the cursor to the mark.

       vi-replace (unbound) (R) (unbound)
	      Enter overwrite mode.

       vi-repeat-change (unbound) (.) (unbound)
	      Repeat  the last vi mode text modification.  If a count was used
	      with the modification, it is remembered.	If a count is given to
	      this  command,  it overrides the remembered count, and is remem‐
	      bered for future uses of this command.  The cut buffer  specifi‐
	      cation is similarly remembered.

       vi-replace-chars (unbound) (r) (unbound)
	      Replace  the  character  under  the cursor with a character read
	      from the keyboard.

       self-insert (printable characters) (unbound) (printable characters  and
       some control characters)
	      Insert a character into the buffer at the cursor position.

       self-insert-unmeta (ESC-^I ESC-^J ESC-^M) (unbound) (unbound)
	      Insert  a character into the buffer after stripping the meta bit
	      and converting ^M to ^J.

       vi-substitute (unbound) (s) (unbound)
	      Substitute the next character(s).

       vi-swap-case (unbound) (~) (unbound)
	      Swap the case of the character under the cursor  and  move  past
	      it.

       transpose-chars (^T) (unbound) (unbound)
	      Exchange	the two characters to the left of the cursor if at end
	      of line, else exchange the character under the cursor  with  the
	      character to the left.

       transpose-words (ESC-T ESC-t) (unbound) (unbound)
	      Exchange the current word with the one before it.

       vi-unindent (unbound) (<) (unbound)
	      Unindent a number of lines.

       up-case-word (ESC-U ESC-u) (unbound) (unbound)
	      Convert the current word to all caps and move past it.

       yank (^Y) (unbound) (unbound)
	      Insert the contents of the kill buffer at the cursor position.

       yank-pop (ESC-y) (unbound) (unbound)
	      Remove  the  text just yanked, rotate the kill-ring (the history
	      of previously killed text) and yank the  new  top.   Only	 works
	      following yank or yank-pop.

       vi-yank (unbound) (y) (unbound)
	      Read  a  movement command from the keyboard, and copy the region
	      from the cursor position to the endpoint of  the	movement  into
	      the  kill	 buffer.   If the command is vi-yank, copy the current
	      line.

       vi-yank-whole-line (unbound) (Y) (unbound)
	      Copy the current line into the kill buffer.

       vi-yank-eol
	      Copy the region from the cursor position to the end of the  line
	      into the kill buffer.  Arguably, this is what Y should do in vi,
	      but it isn't what it actually does.

   Arguments
       digit-argument (ESC-0..ESC-9) (1-9) (unbound)
	      Start a new numeric argument, or add to the  current  one.   See
	      also vi-digit-or-beginning-of-line.  This only works if bound to
	      a key sequence ending in a decimal digit.

	      Inside a widget function, a call to  this	 function  treats  the
	      last  key	 of  the  key  sequence which called the widget as the
	      digit.

       neg-argument (ESC--) (unbound) (unbound)
	      Changes the sign of the following argument.

       universal-argument
	      Multiply the argument of the next command by 4.	Alternatively,
	      if  this	command	 is  followed by an integer (positive or nega‐
	      tive), use that as the argument for the next command.  Thus dig‐
	      its cannot be repeated using this command.  For example, if this
	      command occurs twice, followed immediately by forward-char, move
	      forward  sixteen	spaces;	 if instead it is followed by -2, then
	      forward-char, move backward two spaces.

	      Inside a widget function, if passed an argument, i.e. `zle  uni‐
	      versal-argument num', the numerical argument will be set to num;
	      this is equivalent to `NUMERIC=num'.

       argument-base
	      Use the existing numeric argument as a numeric base, which  must
	      be   in  the  range  2  to  36  inclusive.   Subsequent  use  of
	      digit-argument and universal-argument will input a new prefix in
	      the  given  base.	 The usual hexadecimal convention is used: the
	      letter a or A corresponds to 10, and so on.  Arguments in	 bases
	      requiring	 digits	 from  10  upwards are more conveniently input
	      with universal-argument, since ESC-a etc. are not usually	 bound
	      to digit-argument.

	      The  function  can  be  used  with  a  command argument inside a
	      user-defined widget.  The following code sets the base to 16 and
	      lets  the	 user  input a hexadecimal argument until a key out of
	      the digit range is typed:

		     zle argument-base 16
		     zle universal-argument

   Completion
       accept-and-menu-complete
	      In a menu completion, insert the	current	 completion  into  the
	      buffer, and advance to the next possible completion.

       complete-word
	      Attempt completion on the current word.

       delete-char-or-list (^D) (unbound) (unbound)
	      Delete  the character under the cursor.  If the cursor is at the
	      end of the line, list possible completions for the current word.

       expand-cmd-path
	      Expand the current command to its full pathname.

       expand-or-complete (TAB) (unbound) (TAB)
	      Attempt shell expansion on the current  word.   If  that	fails,
	      attempt completion.

       expand-or-complete-prefix
	      Attempt shell expansion on the current word up to cursor.

       expand-history (ESC-space ESC-!) (unbound) (unbound)
	      Perform history expansion on the edit buffer.

       expand-word (^X*) (unbound) (unbound)
	      Attempt shell expansion on the current word.

       list-choices (ESC-^D) (^D =) (^D)
	      List possible completions for the current word.

       list-expand (^Xg ^XG) (^G) (^G)
	      List the expansion of the current word.

       magic-space
	      Perform  history	expansion  and insert a space into the buffer.
	      This is intended to be bound to space.

       menu-complete
	      Like complete-word, except that menu completion  is  used.   See
	      the MENU_COMPLETE option.

       menu-expand-or-complete
	      Like expand-or-complete, except that menu completion is used.

       reverse-menu-complete
	      Perform  menu  completion,  like menu-complete, except that if a
	      menu completion is already in progress,  move  to	 the  previous
	      completion rather than the next.

       end-of-list
	      When  a  previous	 completion displayed a list below the prompt,
	      this widget can be used to move the prompt below the list.

   Miscellaneous
       accept-and-hold (ESC-A ESC-a) (unbound) (unbound)
	      Push the contents of the buffer on the buffer stack and  execute
	      it.

       accept-and-infer-next-history
	      Execute  the  contents  of  the buffer.  Then search the history
	      list for a line matching the current one and push the event fol‐
	      lowing onto the buffer stack.

       accept-line (^J ^M) (^J ^M) (^J ^M)
	      Finish  editing  the buffer.  Normally this causes the buffer to
	      be executed as a shell command.

       accept-line-and-down-history (^O) (unbound) (unbound)
	      Execute the current line, and push the next history event on the
	      the buffer stack.

       auto-suffix-remove
	      If  the  previous	 action added a suffix (space, slash, etc.) to
	      the word on the command line, remove it.	Otherwise do  nothing.
	      Removing	the  suffix  ends  any	active menu completion or menu
	      selection.

	      This widget is intended to be called from	 user-defined  widgets
	      to enforce a desired suffix-removal behavior.

       auto-suffix-retain
	      If  the  previous	 action added a suffix (space, slash, etc.) to
	      the word on the command line, force it to be preserved.	Other‐
	      wise do nothing.	Retaining the suffix ends any active menu com‐
	      pletion or menu selection.

	      This widget is intended to be called from	 user-defined  widgets
	      to enforce a desired suffix-preservation behavior.

       beep   Beep, unless the BEEP option is unset.

       vi-cmd-mode (^X^V) (unbound) (^[)
	      Enter  command  mode;  that is, select the `vicmd' keymap.  Yes,
	      this is bound by default in emacs mode.

       vi-caps-lock-panic
	      Hang until any lowercase key is pressed.	This is for  vi	 users
	      without the mental capacity to keep track of their caps lock key
	      (like the author).

       clear-screen (^L ESC-^L) (^L) (^L)
	      Clear the screen and redraw the prompt.

       describe-key-briefly
	      Reads a key sequence, then prints the  function  bound  to  that
	      sequence.

       exchange-point-and-mark (^X^X) (unbound) (unbound)
	      Exchange the cursor position with the position of the mark.

       execute-named-cmd (ESC-x) (unbound) (unbound)
	      Read the name of an editor command and execute it.  A restricted
	      set of editing functions is available in	the  mini-buffer.   An
	      interrupt signal, as defined by the stty setting, will abort the
	      function.	 The  allowed  functions  are:	 backward-delete-char,
	      vi-backward-delete-char, clear-screen, redisplay, quoted-insert,
	      vi-quoted-insert,	  backward-kill-word,	vi-backward-kill-word,
	      kill-whole-line, vi-kill-line, backward-kill-line, list-choices,
	      delete-char-or-list, complete-word, accept-line,	expand-or-com‐
	      plete and expand-or-complete-prefix.

	      kill-region  kills the last word, and vi-cmd-mode is treated the
	      same as accept-line.  The space and tab characters, if not bound
	      to  one of these functions, will complete the name and then list
	      the possibilities if the AUTO_LIST option	 is  set.   Any	 other
	      character that is not bound to self-insert or self-insert-unmeta
	      will beep and be ignored.	 The bindings of  the  current	insert
	      mode will be used.

	      Currently this command may not be redefined or called by name.

       execute-last-named-cmd (ESC-z) (unbound) (unbound)
	      Redo the last function executed with execute-named-cmd.

	      Currently this command may not be redefined or called by name.

       get-line (ESC-G ESC-g) (unbound) (unbound)
	      Pop  the top line off the buffer stack and insert it at the cur‐
	      sor position.

       pound-insert (unbound) (#) (unbound)
	      If there is no # character at the beginning of the  buffer,  add
	      one  to the beginning of each line.  If there is one, remove a #
	      from each line that has one.  In either case, accept the current
	      line.   The  INTERACTIVE_COMMENTS option must be set for this to
	      have any usefulness.

       vi-pound-insert
	      If there is no # character at the beginning of the current line,
	      add  one.	 If there is one, remove it.  The INTERACTIVE_COMMENTS
	      option must be set for this to have any usefulness.

       push-input
	      Push the entire current  multiline  construct  onto  the	buffer
	      stack  and return to the top-level (PS1) prompt.	If the current
	      parser construct is only a single line,  this  is	 exactly  like
	      push-line.   Next	 time  the  editor starts up or is popped with
	      get-line, the construct will be popped off the top of the buffer
	      stack and loaded into the editing buffer.

       push-line (^Q ESC-Q ESC-q) (unbound) (unbound)
	      Push the current buffer onto the buffer stack and clear the buf‐
	      fer.  Next time the editor starts up, the buffer will be	popped
	      off the top of the buffer stack and loaded into the editing buf‐
	      fer.

       push-line-or-edit
	      At the top-level (PS1) prompt, equivalent to  push-line.	 At  a
	      secondary	 (PS2)	prompt, move the entire current multiline con‐
	      struct into the editor buffer.   The  latter  is	equivalent  to
	      push-input followed by get-line.

       read-command
	      Only  useful  from  a  user-defined widget.  A keystroke is read
	      just as in normal operation, but instead of  the	command	 being
	      executed	the  name  of  the  command  that would be executed is
	      stored in the shell parameter REPLY.  This can be	 used  as  the
	      argument	of  a  future zle command.  If the key sequence is not
	      bound, status 1 is returned; typically, however, REPLY is set to
	      undefined-key to indicate a useless key sequence.

       recursive-edit
	      Only  useful  from  a user-defined widget.  At this point in the
	      function, the editor regains control until one of	 the  standard
	      widgets  which  would  normally  cause zle to exit (typically an
	      accept-line caused by  hitting  the  return  key)	 is  executed.
	      Instead, control returns to the user-defined widget.  The status
	      returned is non-zero if the return was caused by an  error,  but
	      the  function  still  continues executing and hence may tidy up.
	      This makes it safe for the user-defined widget to alter the com‐
	      mand line or key bindings temporarily.

	      The following widget, caps-lock, serves as an example.
		     self-insert-ucase() {
		       LBUFFER+=${(U)KEYS[-1]}
		     }

		     integer stat

		     zle -N self-insert self-insert-ucase
		     zle -A caps-lock save-caps-lock
		     zle -A accept-line caps-lock

		     zle recursive-edit
		     stat=$?

		     zle -A .self-insert self-insert
		     zle -A save-caps-lock caps-lock
		     zle -D save-caps-lock

		     (( stat )) && zle send-break

		     return $stat
	      This  causes  typed  letters  to	be  inserted capitalised until
	      either accept-line (i.e. typically the return key) is  typed  or
	      the  caps-lock  widget is invoked again; the later is handled by
	      saving the old definition of  caps-lock  as  save-caps-lock  and
	      then  rebinding  it  to  invoke accept-line.  Note that an error
	      from the recursive edit is detected as a non-zero return	status
	      and propagated by using the send-break widget.

       redisplay (unbound) (^R) (^R)
	      Redisplays the edit buffer.

       reset-prompt (unbound) (unbound) (unbound)
	      Force the prompts on both the left and right of the screen to be
	      re-expanded, then redisplay  the	edit  buffer.	This  reflects
	      changes  both  to the prompt variables themselves and changes in
	      the expansion of the values (for example,	 changes  in  time  or
	      directory,  or  changes to the value of variables referred to by
	      the prompt).

	      Otherwise, the prompt is only expanded each time zle starts, and
	      when the display as been interrupted by output from another part
	      of the shell (such as a job notification) which causes the  com‐
	      mand line to be reprinted.

       send-break (^G ESC-^G) (unbound) (unbound)
	      Abort  the  current editor function, e.g. execute-named-command,
	      or the editor itself, e.g. if you are in vared. Otherwise	 abort
	      the parsing of the current line.

       run-help (ESC-H ESC-h) (unbound) (unbound)
	      Push  the	 buffer onto the buffer stack, and execute the command
	      `run-help cmd', where cmd is the current command.	  run-help  is
	      normally aliased to man.

       vi-set-buffer (unbound) (") (unbound)
	      Specify a buffer to be used in the following command.  There are
	      35 buffers that can be specified: the 26 `named' buffers	"a  to
	      "z  and  the  nine `queued' buffers "1 to "9.  The named buffers
	      can also be specified as "A to "Z.

	      When a buffer is specified for a cut command, the text being cut
	      replaces	the  previous  contents of the specified buffer.  If a
	      named buffer is specified using a capital, the newly cut text is
	      appended to the buffer instead of overwriting it.

	      If no buffer is specified for a cut command, "1 is used, and the
	      contents of "1 to "8 are each shifted along one buffer; the con‐
	      tents of "9 is lost.

       vi-set-mark (unbound) (m) (unbound)
	      Set the specified mark at the cursor position.

       set-mark-command (^@) (unbound) (unbound)
	      Set the mark at the cursor position.

       spell-word (ESC-$ ESC-S ESC-s) (unbound) (unbound)
	      Attempt spelling correction on the current word.

       undefined-key
	      This  command  is executed when a key sequence that is not bound
	      to any command is typed.	By default it beeps.

       undo (^_ ^Xu ^X^U) (unbound) (unbound)
	      Incrementally undo the last text modification.

       redo   Incrementally redo undone text modifications.

       vi-undo-change (unbound) (u) (unbound)
	      Undo the last text modification.	If repeated, redo the  modifi‐
	      cation.

       what-cursor-position (^X=) (unbound) (unbound)
	      Print the character under the cursor, its code as an octal, dec‐
	      imal and hexadecimal number, the current cursor position	within
	      the buffer and the column of the cursor in the current line.

       where-is
	      Read  the name of an editor command and and print the listing of
	      key sequences that invoke the specified command.

       which-command (ESC-?) (unbound) (unbound)
	      Push the buffer onto the buffer stack, and execute  the  command
	      `which-command   cmd'.   where   cmd  is	the  current  command.
	      which-command is normally aliased to whence.

       vi-digit-or-beginning-of-line (unbound) (0) (unbound)
	      If the last command executed was a digit as part of an argument,
	      continue the argument.  Otherwise, execute vi-beginning-of-line.

ZSHCOMPWID(1)							 ZSHCOMPWID(1)

NAME
       zshcompwid - zsh completion widgets

DESCRIPTION
       The shell's programmable completion mechanism can be manipulated in two
       ways; here the low-level features supporting the newer,	function-based
       mechanism  are  defined.	  A  complete  set of shell functions based on
       these features is described in zshcompsys(1), and users with no	inter‐
       est in adding to that system (or, potentially, writing their own -- see
       dictionary entry for `hubris') should skip the  current	section.   The
       older  system based on the compctl builtin command is described in zsh‐
       compctl(1).

       Completion widgets are defined by the -C option to the zle builtin com‐
       mand provided by the zsh/zle module (see zshzle(1)). For example,

	      zle -C complete expand-or-complete completer

       defines	a widget named `complete'.  The second argument is the name of
       any of the builtin  widgets  that  handle  completions:	complete-word,
       expand-or-complete,	expand-or-complete-prefix,	menu-complete,
       menu-expand-or-complete,	  reverse-menu-complete,   list-choices,    or
       delete-char-or-list.  Note that this will still work even if the widget
       in question has been re-bound.

       When this newly defined widget is bound to  a  key  using  the  bindkey
       builtin	command	 defined in the zsh/zle module (see zshzle(1)), typing
       that key will call the shell function  `completer'.  This  function  is
       responsible  for	 generating  the  possible  matches using the builtins
       described below.	 As with other ZLE widgets,  the  function  is	called
       with its standard input closed.

       Once the function returns, the completion code takes over control again
       and treats the matches in the same manner as the specified builtin wid‐
       get, in this case expand-or-complete.

SPECIAL PARAMETERS
       Inside  completion  widgets,  and  any functions called from them, some
       parameters have special meaning; outside these functions they  are  not
       special	to  the	 shell	in any way.  These parameters are used to pass
       information between the completion code and the completion widget. Some
       of  the builtin commands and the condition codes use or change the cur‐
       rent values of these parameters.	 Any existing values  will  be	hidden
       during  execution  of  completion  widgets;  except  for compstate, the
       parameters are reset on each function exit (including  nested  function
       calls  from  within  the completion widget) to the values they had when
       the function was entered.

       CURRENT
	      This is the number of the current word, i.e. the word the cursor
	      is  currently  on	 in  the words array.  Note that this value is
	      only correct if the ksharrays option is not set.

       IPREFIX
	      Initially this will be set to the empty string.  This  parameter
	      functions	 like  PREFIX; it contains a string which precedes the
	      one in PREFIX and is not considered part of the list of matches.
	      Typically,  a string is transferred from the beginning of PREFIX
	      to the end of IPREFIX, for example:

		     IPREFIX=${PREFIX%%\=*}=
		     PREFIX=${PREFIX#*=}

	      causes the part of the prefix up	to  and	 including  the	 first
	      equal  sign not to be treated as part of a matched string.  This
	      can be done automatically by the compset builtin, see below.

       ISUFFIX
	      As IPREFIX, but for a suffix that should not be considered  part
	      of  the matches; note that the ISUFFIX string follows the SUFFIX
	      string.

       PREFIX Initially this will be set to the part of the current word  from
	      the  beginning  of the word up to the position of the cursor; it
	      may be altered to give a common prefix for all matches.

       QIPREFIX
	      This parameter is read-only and contains the quoted string up to
	      the  word	 being	completed.  E.g.  when completing `"foo', this
	      parameter contains the double quote. If the -q option of compset
	      is used (see below), and the original string was `"foo bar' with
	      the cursor on the `bar', this parameter contains `"foo '.

       QISUFFIX
	      Like QIPREFIX, but containing the suffix.

       SUFFIX Initially this will be set to the part of the current word  from
	      the cursor position to the end; it may be altered to give a com‐
	      mon suffix for all matches.  It is most useful when  the	option
	      COMPLETE_IN_WORD is set, as otherwise the whole word on the com‐
	      mand line is treated as a prefix.

       compstate
	      This is an associative array with various keys and  values  that
	      the  completion  code uses to exchange information with the com‐
	      pletion widget.  The keys are:

	      all_quotes
		     The -q option of the compset builtin command (see	below)
		     allows  a quoted string to be broken into separate words;
		     if the cursor is on one of those words, that word will be
		     completed,	 possibly  invoking  `compset -q' recursively.
		     With this key it is possible to test the types of	quoted
		     strings  which  are  currently  broken into parts in this
		     fashion.  Its value contains one character for each quot‐
		     ing level.	 The characters are a single quote or a double
		     quote for strings quoted with these characters, a dollars
		     sign  for	strings quoted with $'...' and a backslash for
		     strings not starting with a quote character.   The	 first
		     character	in  the value always corresponds to the inner‐
		     most quoting level.

	      context
		     This will be set by the completion code  to  the  overall
		     context in which completion is attempted. Possible values
		     are:

		     array_value
			    when completing  inside  the  value	 of  an	 array
			    parameter assignment; in this case the words array
			    contains the words inside the parentheses.

		     brace_parameter
			    when completing the	 name  of  a  parameter	 in  a
			    parameter expansion beginning with ${.

		     assign_parameter
			    when  completing  the  name	 of  a	parameter in a
			    parameter assignment.

		     command
			    when completing for a normal  command  (either  in
			    command  position  or  for an argument of the com‐
			    mand).

		     condition
			    when completing  inside  a	`[[...]]'  conditional
			    expression;	 in this case the words array contains
			    only the words inside the conditional expression.

		     math   when completing in a mathematical environment such
			    as a `((...))' construct.

		     parameter
			    when  completing  the  name	 of  a	parameter in a
			    parameter expansion beginning with $ but not ${.

		     redirect
			    when completing after a redirection operator.

		     subscript
			    when completing inside a parameter subscript.

		     value  when completing the value of a  parameter  assign‐
			    ment.

	      exact  Controls  the behaviour when the REC_EXACT option is set.
		     It will be set to accept  if  an  exact  match  would  be
		     accepted, and will be unset otherwise.

		     If it was set when at least one match equal to the string
		     on the line was generated, the match is accepted.

	      exact_string
		     The string of an exact match if one was found,  otherwise
		     unset.

	      ignored
		     The  number  of  words  that  were	 ignored  because they
		     matched one of the patterns given with the -F  option  to
		     the compadd builtin command.

	      insert This  controls  the  manner  in which a match is inserted
		     into the command line.  On entry to the widget  function,
		     if	 it is unset the command line is not to be changed; if
		     set to unambiguous, any prefix common to all  matches  is
		     to	 be inserted; if set to automenu-unambiguous, the com‐
		     mon prefix is to be inserted and the next	invocation  of
		     the completion code may start menu completion (due to the
		     AUTO_MENU option being set); if set to menu  or  automenu
		     menu completion will be started for the matches currently
		     generated (in the latter case this	 will  happen  because
		     the  AUTO_MENU  is	 set).	The value may also contain the
		     string `tab' when the completion code would normally  not
		     really do completion, but only insert the TAB character.

		     On	 exit  it may be set to any of the values above (where
		     setting it to the empty string is the same	 as  unsetting
		     it), or to a number, in which case the match whose number
		     is given will be inserted into the command	 line.	 Nega‐
		     tive  numbers  count  backward  from the last match (with
		     `-1' selecting the last match)  and  out-of-range	values
		     are  wrapped  around, so that a value of zero selects the
		     last match and a value one more than the maximum  selects
		     the  first. Unless the value of this key ends in a space,
		     the match is inserted as in a menu completion, i.e. with‐
		     out automatically appending a space.

		     Both menu and automenu may also specify the the number of
		     the match to insert, given after a colon.	 For  example,
		     `menu:2'  says  to	 start menu completion, beginning with
		     the second match.

		     Note that a value containing the  substring  `tab'	 makes
		     the  matches  generated  be  ignored  and only the TAB be
		     inserted.

		     Finally, it may also be  set  to  all,  which  makes  all
		     matches generated be inserted into the line.

	      insert_positions
		     When  the completion system inserts an unambiguous string
		     into the line, there may be multiple places where charac‐
		     ters  are missing or where the character inserted differs
		     from at least one match.  The value of this key  contains
		     a colon separated list of all these positions, as indexes
		     into the command line.

	      last_prompt
		     If this is set to a  non-empty  string  for  every	 match
		     added,  the  completion code will move the cursor back to
		     the previous prompt after the  list  of  completions  has
		     been displayed.  Initially this is set or unset according
		     to the ALWAYS_LAST_PROMPT option.

	      list   This controls whether or how the list of matches will  be
		     displayed.	  If  it  is unset or empty they will never be
		     listed; if its value begins with list, they  will	always
		     be	 listed; if it begins with autolist or ambiguous, they
		     will be  listed  when  the	 AUTO_LIST  or	LIST_AMBIGUOUS
		     options respectively would normally cause them to be.

		     If	 the  substring force appears in the value, this makes
		     the list be shown even if there is only one  match.  Nor‐
		     mally, the list would be shown only if there are at least
		     two matches.

		     The  value	 contains  the	 substring   packed   if   the
		     LIST_PACKED option is set. If this substring is given for
		     all matches added to a group, this group  will  show  the
		     LIST_PACKED   behavior.   The   same   is	done  for  the
		     LIST_ROWS_FIRST option with the substring rows.

		     Finally, if the value contains the	 string	 explanations,
		     only  the explanation strings, if any, will be listed and
		     if it contains messages, only the	messages  (added  with
		     the -x option of compadd) will be listed.	If it contains
		     both explanations and messages both kinds of  explanation
		     strings  will be listed.  It will be set appropriately on
		     entry to a completion widget and may be changed there.

	      list_lines
		     This gives the number of lines that are needed to display
		     the full list of completions.  Note that to calculate the
		     total number of lines to display you need to add the num‐
		     ber  of  lines needed for the command line to this value,
		     this is available as the value of the BUFFERLINES special
		     parameter.

	      list_max
		     Initially this is set to the value of the LISTMAX parame‐
		     ter.  It may be set to any other value; when  the	widget
		     exits  this  value	 will  be  used in the same way as the
		     value of LISTMAX.

	      nmatches
		     The number of matches generated and accepted by the  com‐
		     pletion code so far.

	      old_insert
		     On	 entry to the widget this will be set to the number of
		     the match of an old list of completions that is currently
		     inserted  into  the  command  line.  If no match has been
		     inserted, this is unset.

		     As with old_list, the value of this key will only be used
		     if	 it is the string keep. If it was set to this value by
		     the widget and there was an old match inserted  into  the
		     command line, this match will be kept and if the value of
		     the insert key specifies that  another  match  should  be
		     inserted, this will be inserted after the old one.

	      old_list
		     This is set to yes if there is still a valid list of com‐
		     pletions from a previous completion at the time the  wid‐
		     get  is  invoked.	 This  will usually be the case if and
		     only if the previous editing operation was	 a  completion
		     widget  or	 one  of the builtin completion functions.  If
		     there is a valid list and it is also currently  shown  on
		     the screen, the value of this key is shown.

		     After the widget has exited the value of this key is only
		     used if it was set to keep.  In this case the  completion
		     code  will	 continue to use this old list.	 If the widget
		     generated new matches, they will not be used.

	      parameter
		     The name of the parameter when completing in a  subscript
		     or in the value of a parameter assignment.

	      pattern_insert
		     Normally  this  is set to menu, which specifies that menu
		     completion will be used whenever a	 set  of  matches  was
		     generated	using  pattern	matching.  If it is set to any
		     other non-empty string by the user and menu completion is
		     not  selected  by	other  option  settings, the code will
		     instead  insert  any  common  prefix  for	the  generated
		     matches as with normal completion.

	      pattern_match
		     Locally controls the behaviour given by the GLOB_COMPLETE
		     option.  Initially it is set to `*' if and	 only  if  the
		     option  is set.  The completion widget may set it to this
		     value, to an empty string (which has the same  effect  as
		     unsetting	it),  or to any other non-empty string.	 If it
		     is non-empty, unquoted metacharacters on the command line
		     will be treated as patterns; if it is `*', then addition‐
		     ally a wildcard `*' is assumed at the cursor position; if
		     it is empty or unset, metacharacters will be treated lit‐
		     erally.

		     Note that the matcher specifications given to the compadd
		     builtin  command  are  not	 used  if  this	 is  set  to a
		     non-empty string.

	      quote  When completing inside quotes, this contains  the	quota‐
		     tion  character  (i.e.  either  a	single quote, a double
		     quote, or a backtick).  Otherwise it is unset.

	      quoting
		     When completing inside single quotes, this is set to  the
		     string  single;  inside double quotes, the string double;
		     inside backticks, the string backtick.  Otherwise	it  is
		     unset.

	      redirect
		     The redirection operator when completing in a redirection
		     position, i.e. one of <, >, etc.

	      restore
		     This is set to auto before a function is  entered,	 which
		     forces  the  special  parameters  mentioned above (words,
		     CURRENT, PREFIX, IPREFIX,	SUFFIX,	 and  ISUFFIX)	to  be
		     restored  to  their  previous  values  when  the function
		     exits.   If a function unsets it or sets it to any	 other
		     string, they will not be restored.

	      to_end Specifies	the  occasions on which the cursor is moved to
		     the end of a string when a match is inserted.   On	 entry
		     to	 a widget function, it may be single if this will hap‐
		     pen when a single unambiguous match was inserted or match
		     if it will happen any time a match is inserted (for exam‐
		     ple, by menu completion; this is likely to be the	effect
		     of the ALWAYS_TO_END option).

		     On	 exit,	it may be set to single as above.  It may also
		     be set to always, or to the empty	string	or  unset;  in
		     those  cases  the	cursor will be moved to the end of the
		     string always or never respectively.  Any other string is
		     treated as match.

	      unambiguous
		     This  key is read-only and will always be set to the com‐
		     mon (unambiguous) prefix the completion code  has	gener‐
		     ated for all matches added so far.

	      unambiguous_cursor
		     This  gives the position the cursor would be placed at if
		     the common prefix in the unambiguous key  were  inserted,
		     relative  to  the	value of that key. The cursor would be
		     placed before the character whose index is given by  this
		     key.

	      unambiguous_positions
		     This contains all positions where characters in the unam‐
		     biguous  string  are  missing  or	where  the   character
		     inserted  differs	from at least one of the matches.  The
		     positions are given as indexes into the string  given  by
		     the value of the unambiguous key.

	      vared  If	 completion  is	 called while editing a line using the
		     vared builtin, the value of this key is set to  the  name
		     of the parameter given as an argument to vared.  This key
		     is only set while a vared command is active.

       words  This array contains the words present on the command  line  cur‐
	      rently being edited.

BUILTIN COMMANDS
       compadd [ -akqQfenUld12C ] [ -F array ]
       [ -P prefix ] [ -S suffix ]
       [ -p hidden-prefix ] [ -s hidden-suffix ]
       [ -i ignored-prefix ] [ -I ignored-suffix ]
       [ -W file-prefix ] [ -d array ]
       [ -J name ] [ -V name ] [ -X explanation ] [ -x message ]
       [ -r remove-chars ] [ -R remove-func ]
       [ -D array ] [ -O array ] [ -A array ]
       [ -E number ]
       [ -M match-spec ] [ -- ] [ words ... ]

	      This  builtin  command  can  be used to add matches directly and
	      control all the information the completion code stores with each
	      possible	match. The return status is zero if at least one match
	      was added and non-zero if no matches were added.

	      The completion code breaks the string  to	 complete  into	 seven
	      fields in the order:

		     <ipre><apre><hpre><word><hsuf><asuf><isuf>

	      The  first  field	 is  an	 ignored prefix taken from the command
	      line, the contents of the	 IPREFIX  parameter  plus  the	string
	      given  with  the	-i option. With the -U option, only the string
	      from the -i option is used. The field <apre> is an optional pre‐
	      fix  string  given  with	the  -P option.	 The <hpre> field is a
	      string that is considered part of the match but that should  not
	      be shown when listing completions, given with the -p option; for
	      example, functions that do filename generation might  specify  a
	      common  path  prefix  this way.  <word> is the part of the match
	      that should appear in the list of completions, i.e. one  of  the
	      words given at the end of the compadd command line. The suffixes
	      <hsuf>, <asuf> and <isuf> correspond  to	the  prefixes  <hpre>,
	      <apre>  and  <ipre>  and are given by the options -s, -S and -I,
	      respectively.

	      The supported flags are:

	      -P prefix
		     This gives a string  to  be  inserted  before  the	 given
		     words.  The string given is not considered as part of the
		     match and any shell metacharacters	 in  it	 will  not  be
		     quoted when the string is inserted.

	      -S suffix
		     Like  -P,	but  gives  a  string to be inserted after the
		     match.

	      -p hidden-prefix
		     This gives a string that should be inserted into the com‐
		     mand  line before the match but that should not appear in
		     the list of matches. Unless the -U option is given,  this
		     string  must be matched as part of the string on the com‐
		     mand line.

	      -s hidden-suffix
		     Like `-p', but gives a string to insert after the match.

	      -i ignored-prefix
		     This gives a string to insert into the command line  just
		     before  any  string  given with the `-P' option.  Without
		     `-P' the string is inserted before the string given  with
		     `-p' or directly before the match.

	      -I ignored-suffix
		     Like -i, but gives an ignored suffix.

	      -a     With this flag the words are taken as names of arrays and
		     the possible matches are their values.  If only some ele‐
		     ments  of	the arrays are needed, the words may also con‐
		     tain subscripts, as in `foo[2,-1]'.

	      -k     With this flag the words are taken as names  of  associa‐
		     tive  arrays and the possible matches are their keys.  As
		     for -a, the words may  also  contain  subscripts,	as  in
		     `foo[(R)*bar*]'.

	      -d array
		     This  adds	 per-match  display  strings. The array should
		     contain one element per word given. The  completion  code
		     will  then display the first element instead of the first
		     word, and so on. The array may be given as the name of an
		     array  parameter or directly as a space-separated list of
		     words in parentheses.

		     If there are fewer display strings than words, the	 left‐
		     over  words  will be displayed unchanged and if there are
		     more display strings than	words,	the  leftover  display
		     strings will be silently ignored.

	      -l     This  option only has an effect if used together with the
		     -d option. If it is given, the display strings are listed
		     one per line, not arrayed in columns.

	      -o     This  option only has an effect if used together with the
		     -d option.	 If it is given, the order of  the  output  is
		     determined	 by the match strings;	otherwise it is deter‐
		     mined by the display strings (i.e. the strings  given  by
		     the -d option).

	      -J name
		     Gives  the	 name of the group of matches the words should
		     be stored in.

	      -V name
		     Like -J but naming a unsorted group. These are in a  dif‐
		     ferent name space than groups created with the -J flag.

	      -1     If given together with the -V option, makes only consecu‐
		     tive duplicates in the group be removed. If combined with
		     the  -J  option,  this  has  no visible effect. Note that
		     groups with and without this flag are in  different  name
		     spaces.

	      -2     If	 given	together  with	the -J or -V option, makes all
		     duplicates be kept. Again, groups with and	 without  this
		     flag are in different name spaces.

	      -X explanation
		     The  explanation  string will be printed with the list of
		     matches, above the group currently selected.

	      -x message
		     Like -X, but the message will be printed  even  if	 there
		     are no matches in the group.

	      -q     The suffix given with -S will be automatically removed if
		     the next character typed is a blank or  does  not	insert
		     anything, or if the suffix consists of only one character
		     and the next character typed is the same character.

	      -r remove-chars
		     This is a more versatile form of the -q option.  The suf‐
		     fix  given with -S or the slash automatically added after
		     completing directories will be automatically  removed  if
		     the  next	character  typed inserts one of the characters
		     given in the remove-chars.	 This string is	 parsed	 as  a
		     characters	 class and understands the backslash sequences
		     used by the print command.	  For  example,	 `-r  "a-z\t"'
		     removes  the suffix if the next character typed inserts a
		     lowercase character or a TAB, and `-r "^0-9"' removes the
		     suffix if the next character typed inserts anything but a
		     digit. One extra backslash sequence is understood in this
		     string:  `\-' stands for all characters that insert noth‐
		     ing. Thus `-S "=" -q' is  the  same  as  `-S  "="	-r  "=
		     \t\n\-"'.

		     This  option may also be used without the -S option; then
		     any automatically added space will be removed when one of
		     the characters in the list is typed.

	      -R remove-func
		     This  is another form of the -r option. When a suffix has
		     been inserted and the completion accepted,	 the  function
		     remove-func  will	be  called  after  the	next character
		     typed.  It is passed the length of the suffix as an argu‐
		     ment  and	can  use  the  special parameters available in
		     ordinary (non-completion) zle widgets (see zshzle(1))  to
		     analyse and modify the command line.

	      -f     If	 this  flag  is	 given,	 all of the matches built from
		     words are marked as being the names of files.   They  are
		     not required to be actual filenames, but if they are, and
		     the option LIST_TYPES is set, the	characters  describing
		     the  types	 of  the files in the completion lists will be
		     shown. This also forces a slash to be added when the name
		     of a directory is completed.

	      -e     This  flag	 can  be used to tell the completion code that
		     the matches added are parameter  names  for  a  parameter
		     expansion.	  This	will  make  the	 AUTO_PARAM_SLASH  and
		     AUTO_PARAM_KEYS options be used for the matches.

	      -W file-prefix
		     This string is a pathname that will be prepended to  each
		     of	 the  matches  formed by the given words together with
		     any prefix specified by the -p option to form a  complete
		     filename  for  testing.   Hence it is only useful if com‐
		     bined with the -f flag, as the tests will	not  otherwise
		     be performed.

	      -F array
		     Specifies	an  array  containing patterns. Words matching
		     one of these patterns are ignored, i.e. not considered to
		     be possible matches.

		     The array may be the name of an array parameter or a list
		     of literal patterns enclosed in parentheses  and  quoted,
		     as	 in  `-F  "(*?.o  *?.h)"'.  If the name of an array is
		     given, the elements of the array are taken	 as  the  pat‐
		     terns.

	      -Q     This  flag instructs the completion code not to quote any
		     metacharacters in the words when inserting them into  the
		     command line.

	      -M match-spec
		     This  gives local match specifications as described below
		     in the section `Matching Control'.	 This  option  may  be
		     given  more than once. In this case all match-specs given
		     are concatenated with spaces between  them	 to  form  the
		     specification string to use.  Note that they will only be
		     used if the -U option is not given.

	      -n     Specifies that the words added are to be used as possible
		     matches, but are not to appear in the completion listing.

	      -U     If	 this  flag is given, all words given will be accepted
		     and no matching will be done by the completion code. Nor‐
		     mally  this  is  used  in	functions that do the matching
		     themselves.

	      -O array
		     If this option is given, the words are not added  to  the
		     set  of  possible completions.  Instead, matching is done
		     as usual and all of the words  given  as  arguments  that
		     match  the	 string	 on the command line will be stored in
		     the array parameter whose name is given as array.

	      -A array
		     As the -O option, except that instead  of	those  of  the
		     words which match being stored in array, the strings gen‐
		     erated internally by the completion code are stored.  For
		     example,  with a matching specification of `-M "L:|no="',
		     the string `nof' on the command line and the string `foo'
		     as	 one  of  the  words,  this  option  stores the string
		     `nofoo' in the array, whereas the -O  option  stores  the
		     `foo' originally given.

	      -D array
		     As	 with -O, the words are not added to the set of possi‐
		     ble completions.	Instead,  the  completion  code	 tests
		     whether  each  word  in turn matches what is on the line.
		     If the n'th word does not match, the n'th element of  the
		     array  is	removed.  Elements for which the corresponding
		     word is matched are retained.

	      -C     This option adds a special match  which  expands  to  all
		     other  matches  when  inserted  into the line, even those
		     that are added after this option is used.	Together  with
		     the  -d  option  it  is possible to specify a string that
		     should be displayed in the list for this  special	match.
		     If	 no string is given, it will be shown as a string con‐
		     taining the strings that would be inserted for the	 other
		     matches, truncated to the width of the screen.

	      -E     This  option  adds	 number	 empty matches after the words
		     have been added.  An empty match takes up space  in  com‐
		     pletion  listings	but will never be inserted in the line
		     and can't be selected with menu completion or menu selec‐
		     tion.   This  makes  empty	 matches only useful to format
		     completion lists and to make explanatory string be	 shown
		     in	 completion  lists  (since  empty matches can be given
		     display strings with the -d option).  And because all but
		     one  empty string would otherwise be removed, this option
		     implies the -V and -2 options (even  if  an  explicit  -J
		     option is given).

	      -
	      --     This  flag	 ends the list of flags and options. All argu‐
		     ments after it will be taken  as  the  words  to  use  as
		     matches even if they begin with hyphens.

	      Except for the -M flag, if any of these flags is given more than
	      once, the first one (and its argument) will be used.

       compset -p number
       compset -P [ number ] pattern
       compset -s number
       compset -S [ number ] pattern
       compset -n begin [ end ]
       compset -N beg-pat [ end-pat ]
       compset -q
	      This command simplifies modification of the special  parameters,
	      while its return status allows tests on them to be carried out.

	      The options are:

	      -p number
		     If	 the  contents	of the PREFIX parameter is longer than
		     number  characters,  the  first  number  characters   are
		     removed  from  it	and  appended  to  the contents of the
		     IPREFIX parameter.

	      -P [ number ] pattern
		     If the value of the PREFIX parameter begins with anything
		     that  matches the pattern, the matched portion is removed
		     from PREFIX and appended to IPREFIX.

		     Without the optional number, the longest match is	taken,
		     but  if  number  is  given,  anything up to the number'th
		     match is moved.  If the number is negative, the number'th
		     longest  match  is moved. For example, if PREFIX contains
		     the string `a=b=c', then compset -P '*\=' will  move  the
		     string  `a=b=' into the IPREFIX parameter, but compset -P
		     1 '*\=' will move only the string `a='.

	      -s number
		     As -p, but transfer the last number characters  from  the
		     value of SUFFIX to the front of the value of ISUFFIX.

	      -S [ number ] pattern
		     As	 -P, but match the last portion of SUFFIX and transfer
		     the matched portion to the front of the value of ISUFFIX.

	      -n begin [ end ]
		     If the current word position as specified by the  parame‐
		     ter  CURRENT  is greater than or equal to begin, anything
		     up to the begin'th word is removed from the  words	 array
		     and  the value of the parameter CURRENT is decremented by
		     begin.

		     If the optional end is given, the	modification  is  done
		     only  if  the  current word position is also less than or
		     equal to end. In this case, the words from	 position  end
		     onwards are also removed from the words array.

		     Both  begin  and  end  may be negative to count backwards
		     from the last element of the words array.

	      -N beg-pat [ end-pat ]
		     If one of the elements of the words array before the  one
		     at	 the index given by the value of the parameter CURRENT
		     matches the pattern  beg-pat,  all	 elements  up  to  and
		     including	the  matching  one  are removed from the words
		     array and the value of CURRENT is changed to point to the
		     same word in the changed array.

		     If	 the optional pattern end-pat is also given, and there
		     is an element in the words array matching	this  pattern,
		     the  parameters  are  modified  only if the index of this
		     word is higher than the one given by the CURRENT  parame‐
		     ter  (so  that the matching word has to be after the cur‐
		     sor). In this case,  the  words  starting	with  the  one
		     matching  end-pat	are also removed from the words array.
		     If words contains no word matching end-pat,  the  testing
		     and modification is performed as if it were not given.

	      -q     The  word	currently  being  completed is split on spaces
		     into separate words, respecting the usual	shell  quoting
		     conventions.  The resulting words are stored in the words
		     array, and CURRENT, PREFIX, SUFFIX, QIPREFIX, and	QISUF‐
		     FIX  are  modified	 to reflect the word part that is com‐
		     pleted.

	      In all the above cases the return status is  zero	 if  the  test
	      succeeded	 and  the parameters were modified and non-zero other‐
	      wise. This allows one to use this builtin in tests such as:

		     if compset -P '*\='; then ...

	      This forces anything up to and including the last equal sign  to
	      be ignored by the completion code.

       compcall [ -TD ]
	      This  allows  the	 use  of  completions defined with the compctl
	      builtin from within completion widgets.	The  list  of  matches
	      will  be	generated as if one of the non-widget completion func‐
	      tion (complete-word, etc.)  had been called,  except  that  only
	      compctls given for specific commands are used. To force the code
	      to try completions defined with the -T option of compctl	and/or
	      the  default  completion	(whether  defined by compctl -D or the
	      builtin default) in the appropriate places,  the	-T  and/or  -D
	      flags can be passed to compcall.

	      The return status can be used to test if a matching compctl def‐
	      inition was found. It is non-zero if a  compctl  was  found  and
	      zero otherwise.

	      Note that this builtin is defined by the zsh/compctl module.

CONDITION CODES
       The  following  additional condition codes for use within the [[ ... ]]
       construct are available in completion widgets.  These work on the  spe‐
       cial  parameters.   All	of  these  tests  can also be performed by the
       compset builtin, but in the case of the condition codes the contents of
       the special parameters are not modified.

       -prefix [ number ] pattern
	      true if the test for the -P option of compset would succeed.

       -suffix [ number ] pattern
	      true if the test for the -S option of compset would succeed.

       -after beg-pat
	      true  if	the  test of the -N option with only the beg-pat given
	      would succeed.

       -between beg-pat end-pat
	      true if the test for the -N option with both patterns would suc‐
	      ceed.

MATCHING CONTROL
       It  is  possible by use of the -M option of the compadd builtin command
       to specify how the characters in the string to be  completed  (referred
       to  here	 as  the  command line) map onto the characters in the list of
       matches produced by the completion code (referred to here as the	 trial
       completions). Note that this is not used if the command line contains a
       glob pattern and the GLOB_COMPLETE option is set or  the	 pattern_match
       of the compstate special association is set to a non-empty string.

       The  match-spec	given  as  the argument to the -M option (see `Builtin
       Commands' above) consists of one or more	 matching  descriptions	 sepa‐
       rated by whitespace.  Each description consists of a letter followed by
       a colon and then the patterns describing which character	 sequences  on
       the  line match which character sequences in the trial completion.  Any
       sequence of characters not handled in this fashion must match  exactly,
       as usual.

       The  forms  of  match-spec understood are as follows. In each case, the
       form with an uppercase initial character	 retains  the  string  already
       typed on the command line as the final result of completion, while with
       a lowercase initial character the string on the command line is changed
       into the corresponding part of the trial completion.

       m:lpat=tpat
       M:lpat=tpat
	      Here, lpat is a pattern that matches on the command line, corre‐
	      sponding to tpat which matches in the trial completion.

       l:lanchor|lpat=tpat
       L:lanchor|lpat=tpat
       l:lanchor||ranchor=tpat
       L:lanchor||ranchor=tpat
       b:lpat=tpat
       B:lpat=tpat
	      These letters are for patterns that are anchored by another pat‐
	      tern  on	the  left side. Matching for lpat and tpat is as for m
	      and M, but the pattern lpat matched on the command line must  be
	      preceded	by  the	 pattern lanchor.  The lanchor can be blank to
	      anchor the match to the start of the command line string; other‐
	      wise  the	 anchor can occur anywhere, but must match in both the
	      command line and trial completion strings.

	      If no lpat is given but a	 ranchor  is,  this  matches  the  gap
	      between  substrings  matched by lanchor and ranchor. Unlike lan‐
	      chor, the ranchor only  needs  to	 match	the  trial  completion
	      string.

	      The  b  and B forms are similar to l and L with an empty anchor,
	      but need to match only the beginning of the trial completion  or
	      the word on the command line, respectively.

       r:lpat|ranchor=tpat
       R:lpat|ranchor=tpat
       r:lanchor||ranchor=tpat
       R:lanchor||ranchor=tpat
       e:lpat=tpat
       E:lpat=tpat
	      As  l, L, b and B, with the difference that the command line and
	      trial completion patterns are anchored on the right side.	  Here
	      an  empty	 ranchor  and the e and E forms force the match to the
	      end of the trial completion or command line string.

       Each lpat, tpat or anchor is either an empty string or  consists	 of  a
       sequence	 of literal characters (which may be quoted with a backslash),
       question marks, character classes, and correspondence classes; ordinary
       shell patterns are not used.  Literal characters match only themselves,
       question marks match any character, and character classes are formed as
       for globbing and match any character in the given set.

       Correspondence classes are defined like character classes, but with two
       differences: they are delimited	by  a  pair  of	 braces,  and  negated
       classes	are  not  allowed,  so	the characters ! and ^ have no special
       meaning directly after the opening brace.  They indicate that  a	 range
       of characters on the line match a range of characters in the trial com‐
       pletion, but (unlike ordinary character classes)	 paired	 according  to
       the  corresponding  position  in the sequence. For example, to make any
       lowercase letter on the line match the corresponding  uppercase	letter
       in  the	trial  completion, you can use `m:{a-z}={A-Z}'.	 More than one
       pair of classes can occur, in which case the first class before	the  =
       corresponds  to	the  first  after it, and so on.  If one side has more
       such classes than the other side, the superfluous classes  behave  like
       normal  character  classes.   In anchor patterns correspondence classes
       also behave like normal character classes.

       The pattern tpat may also be one or two stars, `*' or `**'. This	 means
       that the pattern on the command line can match any number of characters
       in the trial completion. In this case the pattern must be anchored  (on
       either  side); in the case of a single star, the anchor then determines
       how much of the trial completion is to be included -- only the  charac‐
       ters  up to the next appearance of the anchor will be matched. With two
       stars, substrings matched by the anchor can be matched, too.

       Examples:

       The keys of the options association defined by the parameter module are
       the  option names in all-lowercase form, without underscores, and with‐
       out the optional no at the beginning even though	 the  builtins	setopt
       and  unsetopt  understand  option  names with uppercase letters, under‐
       scores, and the optional no.  The following alters the  matching	 rules
       so  that	 the  prefix  no and any underscore are ignored when trying to
       match the trial completions generated and uppercase letters on the line
       match the corresponding lowercase letters in the words:

	      compadd -M 'L:|[nN][oO]= M:_= M:{A-Z}={a-z}' - \
		${(k)options}

       The  first  part says that the pattern `[nN][oO]' at the beginning (the
       empty anchor before the pipe symbol) of the string on the line  matches
       the  empty  string  in the list of words generated by completion, so it
       will be ignored if present. The second part does the same for an under‐
       score anywhere in the command line string, and the third part uses cor‐
       respondence classes so that any uppercase letter on  the	 line  matches
       the  corresponding  lowercase letter in the word. The use of the upper‐
       case forms of the specification characters (L and  M)  guarantees  that
       what has already been typed on the command line (in particular the pre‐
       fix no) will not be deleted.

       Note that the use of L in the first part means  that  it	 matches  only
       when  at	 the  beginning	 of both the command line string and the trial
       completion.  I.e.,  the	string	`_NO_f'	 would	not  be	 completed  to
       `_NO_foo', nor would `NONO_f' be completed to `NONO_foo' because of the
       leading underscore or the second `NO' on the line which makes the  pat‐
       tern  fail  even	 though	 they  are otherwise ignored. To fix this, one
       would use `B:[nN][oO]=' instead of the first part. As described	above,
       this  matches  at the beginning of the trial completion, independent of
       other characters or substrings at the beginning	of  the	 command  line
       word which are ignored by the same or other match-specs.

       The second example makes completion case insensitive.  This is just the
       same as in the option example, except here we wish to retain the	 char‐
       acters in the list of completions:

	      compadd -M 'm:{a-z}={A-Z}' ...

       This  makes  lowercase  letters match their uppercase counterparts.  To
       make uppercase letters match the lowercase forms as well:

	      compadd -M 'm:{a-zA-Z}={A-Za-z}' ...

       A nice example for the use of * patterns is  partial  word  completion.
       Sometimes  you  would  like  to	make  strings like `c.s.u' complete to
       strings like `comp.source.unix', i.e. the word on the command line con‐
       sists of multiple parts, separated by a dot in this example, where each
       part should be completed separately -- note,  however,  that  the  case
       where  each  part of the word, i.e. `comp', `source' and `unix' in this
       example, is to be completed from separate sets of matches is a  differ‐
       ent  problem  to be solved by the implementation of the completion wid‐
       get.  The example can be handled by:

	      compadd -M 'r:|.=* r:|=*' \
		- comp.sources.unix comp.sources.misc ...

       The first specification says that  lpat	is  the	 empty	string,	 while
       anchor  is  a dot; tpat is *, so this can match anything except for the
       `.' from the anchor in the trial completion word.  So in	 `c.s.u',  the
       matcher	sees `c', followed by the empty string, followed by the anchor
       `.', and likewise for the second dot, and replaces  the	empty  strings
       before  the  anchors,  giving `c[omp].s[ources].u[nix]', where the last
       part of the completion is just as normal.

       With the pattern shown above, the string `c.u' could not	 be  completed
       to  `comp.sources.unix'	because	 the  single  star  means  that no dot
       (matched by the anchor) can be  skipped.	 By  using  two	 stars	as  in
       `r:|.=**',  however,  `c.u'  could be completed to `comp.sources.unix'.
       This also shows that in some cases, especially if the anchor is a  real
       pattern,	 like a character class, the form with two stars may result in
       more matches than one would like.

       The second specification is needed to make this work when the cursor is
       in  the	middle	of  the string on the command line and the option COM‐
       PLETE_IN_WORD is set. In this case the completion code  would  normally
       try  to	match  trial  completions that end with the string as typed so
       far, i.e. it will only insert new characters  at	 the  cursor  position
       rather  then at the end.	 However in our example we would like the code
       to recognise matches which contain extra characters after the string on
       the  line  (the	`nix'  in  the	example).  Hence we say that the empty
       string at the end of the string on the line matches any	characters  at
       the end of the trial completion.

       More generally, the specification

	      compadd -M 'r:|[.,_-]=* r:|=*' ...

       allows one to complete words with abbreviations before any of the char‐
       acters in the square brackets.  For example, to complete	 veryverylong‐
       file.c  rather  than veryverylongheader.h with the above in effect, you
       can just type very.c before attempting completion.

       The specifications with both a left and a right anchor  are  useful  to
       complete	 partial  words	 whose parts are not separated by some special
       character. For example, in some places strings  have  to	 be  completed
       that are formed `LikeThis' (i.e. the separate parts are determined by a
       leading uppercase letter) or maybe one has  to  complete	 strings  with
       trailing	 numbers.  Here	 one  could  use the simple form with only one
       anchor as in:

	      compadd -M 'r:|[A-Z0-9]=* r:|=*' LikeTHIS FooHoo 5foo123 5bar234

       But with this, the string `H' would neither complete to `FooHoo' nor to
       `LikeTHIS' because in each case there is an uppercase letter before the
       `H' and that is matched by the anchor. Likewise, a  `2'	would  not  be
       completed.   In	 both	cases	this   could   be   changed  by	 using
       `r:|[A-Z0-9]=**',  but  then  `H'  completes  to	 both  `LikeTHIS'  and
       `FooHoo'	 and a `2' matches the other strings because characters can be
       inserted before every uppercase letter and digit.  To  avoid  this  one
       would use:

	      compadd -M 'r:[^A-Z0-9]||[A-Z0-9]=** r:|=*' \
		  LikeTHIS FooHoo foo123 bar234

       By  using these two anchors, a `H' matches only uppercase `H's that are
       immediately preceded by something matching the left anchor `[^A-Z0-9]'.
       The  effect is, of course, that `H' matches only the string `FooHoo', a
       `2' matches only `bar234' and so on.

       When using the completion system (see zshcompsys(1)), users can	define
       match specifications that are to be used for specific contexts by using
       the matcher and matcher-list styles. The values for the latter will  be
       used everywhere.

COMPLETION WIDGET EXAMPLE
       The first step is to define the widget:

	      zle -C complete complete-word complete-files

       Then  the  widget  can be bound to a key using the bindkey builtin com‐
       mand:

	      bindkey '^X\t' complete

       After that the shell function complete-files will be invoked after typ‐
       ing  control-X  and TAB. The function should then generate the matches,
       e.g.:

	      complete-files () { compadd - * }

       This function will complete files in the current directory matching the
       current word.

ZSHCOMPSYS(1)							 ZSHCOMPSYS(1)

NAME
       zshcompsys - zsh completion system

DESCRIPTION
       This describes the shell code for the `new' completion system, referred
       to as compsys.  It is written in shell functions based on the  features
       described in zshcompwid(1).

       The features are contextual, sensitive to the point at which completion
       is started.  Many completions are already provided.  For this reason, a
       user  can perform a great many tasks without knowing any details beyond
       how to initialize the system, which is described below  in  INITIALIZA‐
       TION.

       The context that decides what completion is to be performed may be
       ·      an  argument  or option position: these describe the position on
	      the command line at which completion is requested.  For  example
	      `first  argument	to  rmdir,  the	 word  being completed names a
	      directory';

       ·      a special context, denoting an element in	 the  shell's  syntax.
	      For  example  `a	word  in  command  position' or `an array sub‐
	      script'.

       A full context specification  contains  other  elements,	 as  we	 shall
       describe.

       Besides	commands  names and contexts, the system employs two more con‐
       cepts, styles and tags.	These provide ways for the user	 to  configure
       the system's behaviour.

       Tags  play  a dual role.	 They serve as a classification system for the
       matches, typically indicating a class of object that the user may  need
       to  distinguish.	 For example, when completing arguments of the ls com‐
       mand the user may prefer to try files before directories,  so  both  of
       these are tags.	They also appear as the rightmost element in a context
       specification.

       Styles modify various operations of the completion system, such as out‐
       put formatting, but also what kinds of completers are used (and in what
       order), or which tags are examined.  Styles may	accept	arguments  and
       are  manipulated	 using	the  zstyle  command  described in see zshmod‐
       ules(1).

       In summary, tags describe what the completion objects  are,  and	 style
       how they are to be completed.  At various points of execution, the com‐
       pletion system checks what styles and/or tags are defined for the  cur‐
       rent  context, and uses that to modify its behavior.  The full descrip‐
       tion of context handling, which determines how tags and other  elements
       of the context influence the behaviour of styles, is described below in
       COMPLETION SYSTEM CONFIGURATION.

       When a completion is requested, a dispatcher function  is  called;  see
       the  description	 of  _main_complete  in	 the list of control functions
       below. This dispatcher decides which function should be called to  pro‐
       duce the completions, and calls it. The result is passed to one or more
       completers, functions that implement individual completion  strategies:
       simple  completion, error correction, completion with error correction,
       menu selection, etc.

       More generally, the shell functions contained in the completion	system
       are of two types:
       ·      those beginning `comp' are to be called directly; there are only
	      a few of these;

       ·      those beginning `_' are called  by  the  completion  code.   The
	      shell  functions	of this set, which implement completion behav‐
	      iour and may be bound to keystrokes, are referred	 to  as	 `wid‐
	      gets'.  These proliferate as new completions are required.

INITIALIZATION
       If the system was installed completely, it should be enough to call the
       shell function compinit from your initialization	 file;	see  the  next
       section.	  However,  the	 function  compinstall can be run by a user to
       configure various aspects of the completion system.

       Usually, compinstall will insert code into .zshrc, although if that  is
       not  writable  it will save it in another file and tell you that file's
       location.  Note that it is up to you to make sure that the lines	 added
       to  .zshrc are actually run; you may, for example, need to move them to
       an earlier place in the file if .zshrc usually returns early.  So  long
       as you keep them all together (including the comment lines at the start
       and finish), you can rerun compinstall and it will correctly locate and
       modify  these lines.  Note, however, that any code you add to this sec‐
       tion by hand is likely to be lost if you	 rerun	compinstall,  although
       lines using the command `zstyle' should be gracefully handled.

       The  new	 code  will  take effect next time you start the shell, or run
       .zshrc by hand; there is also an option to make them take effect	 imme‐
       diately.	  However,  if	compinstall  has removed definitions, you will
       need to restart the shell to see the changes.

       To run compinstall you will need to make sure it is in a directory men‐
       tioned in your fpath parameter, which should already be the case if zsh
       was properly configured as long as your startup files do not remove the
       appropriate  directories	 from  fpath.	Then  it  must	be  autoloaded
       (`autoload -U compinstall' is recommended).  You can abort the  instal‐
       lation any time you are being prompted for information, and your .zshrc
       will not be altered at all; changes only take place right at  the  end,
       where you are specifically asked for confirmation.

   Use of compinit
       This section describes the use of compinit to initialize completion for
       the current session when called directly; if you have  run  compinstall
       it will be called automatically from your .zshrc.

       To  initialize  the system, the function compinit should be in a direc‐
       tory mentioned  in  the	fpath  parameter,  and	should	be  autoloaded
       (`autoload  -U  compinit'  is  recommended),  and  then	run  simply as
       `compinit'.  This will define a few utility functions, arrange for  all
       the necessary shell functions to be autoloaded, and will then re-define
       all widgets that do completion to use the new system.  If you  use  the
       menu-select  widget,  which  is	part  of  the zsh/complist module, you
       should make sure that that module is loaded before the call to compinit
       so  that	 that  widget  is  also re-defined.  If completion styles (see
       below) are set up  to  perform  expansion  as  well  as	completion  by
       default,	 and the TAB key is bound to expand-or-complete, compinit will
       rebind it to complete-word; this is necessary to use the	 correct  form
       of expansion.

       Should  you need to use the original completion commands, you can still
       bind keys to the old widgets by putting a `.' in front  of  the	widget
       name, e.g. `.expand-or-complete'.

       To speed up the running of compinit, it can be made to produce a dumped
       configuration that will be read in on future invocations; this  is  the
       default,	 but can be turned off by calling compinit with the option -D.
       The dumped file is .zcompdump in the  same  directory  as  the  startup
       files  (i.e.  $ZDOTDIR  or $HOME); alternatively, an explicit file name
       can be given  by	 `compinit  -d	dumpfile'.   The  next	invocation  of
       compinit	 will  read  the dumped file instead of performing a full ini‐
       tialization.

       If the number of completion files changes, compinit will recognise this
       and produce a new dump file.  However, if the name of a function or the
       arguments in the first line of a #compdef function (as described below)
       change,	it is easiest to delete the dump file by hand so that compinit
       will re-create it the next time it is run.  The check performed to  see
       if  there are new functions can be omitted by giving the option -C.  In
       this case the dump file	will  only  be	created	 if  there  isn't  one
       already.

       The  dumping  is	 actually  done by another function, compdump, but you
       will only need to run this yourself if  you  change  the	 configuration
       (e.g.  using  compdef)  and then want to dump the new one.  The name of
       the old dumped file will be remembered for this purpose.

       If the parameter _compdir is set, compinit uses it as a directory where
       completion  functions  can be found; this is only necessary if they are
       not already in the function search path.

       For security reasons compinit also  checks  if  the  completion	system
       would  use  files not owned by root or by the current user, or files in
       directories that are world- or group-writable or that are not owned  by
       root  or	 by the current user.  If such files or directories are found,
       compinit will ask if the completion system should really be  used.   To
       avoid  these tests and make all files found be used without asking, use
       the option -u, and to make compinit silently ignore all insecure	 files
       and  directories	 use  the  option  -i.	This security check is skipped
       entirely when the -C option is given.

       The security check can be retried at any time by running	 the  function
       compaudit.   This  is  the  same check used by compinit, but when it is
       executed directly any changes to fpath are made local to	 the  function
       so they do not persist.	The directories to be checked may be passed as
       arguments; if none are given, compaudit uses fpath and _compdir to find
       completion  system  directories, adding missing ones to fpath as neces‐
       sary.  To force a check of exactly the directories currently  named  in
       fpath,  set  _compdir  to  an  empty string before calling compaudit or
       compinit.

   Autoloaded files
       The convention for autoloaded functions used in completion is that they
       start with an underscore; as already mentioned, the fpath/FPATH parame‐
       ter must contain the directory in which they are stored.	  If  zsh  was
       properly	 installed on your system, then fpath/FPATH automatically con‐
       tains the required directories for the standard functions.

       For incomplete installations, if compinit does not  find	 enough	 files
       beginning with an underscore (fewer than twenty) in the search path, it
       will try to find more by adding the directory _compdir  to  the	search
       path.  If that directory has a subdirectory named Base, all subdirecto‐
       ries will be added to the path.	Furthermore, if the subdirectory  Base
       has  a subdirectory named Core, compinit will add all subdirectories of
       the subdirectories is to the path: this allows the functions to	be  in
       the same format as in the zsh source distribution.

       When  compinit  is  run,	 it  searches  all  such  files accessible via
       fpath/FPATH and reads the first line of each of them.  This line should
       contain	one  of the tags described below.  Files whose first line does
       not start with one of these tags are not considered to be part  of  the
       completion system and will not be treated specially.

       The tags are:

       #compdef names... [ -[pP] patterns... [ -N names... ] ]
	      The  file	 will be made autoloadable and the function defined in
	      it will be called when completing names, each of which is either
	      the name of a command whose arguments are to be completed or one
	      of a number of special contexts in the form -context-  described
	      below.

	      Each  name may also be of the form `cmd=service'.	 When complet‐
	      ing the command cmd, the function typically behaves  as  if  the
	      command	(or  special  context)	service	 was  being  completed
	      instead.	This provides a way of altering the behaviour of func‐
	      tions that can perform many different completions.  It is imple‐
	      mented by setting the parameter $service when calling the	 func‐
	      tion;  the  function may choose to interpret this how it wishes,
	      and simpler functions will probably ignore it.

	      If the #compdef line contains one of the options -p or  -P,  the
	      words  following are taken to be patterns.  The function will be
	      called when completion is attempted for  a  command  or  context
	      that  matches  one  of  the patterns.  The options -p and -P are
	      used to specify patterns to be tried before or after other  com‐
	      pletions	respectively.  Hence -P may be used to specify default
	      actions.

	      The option -N is used after a list following -p or -P; it speci‐
	      fies that remaining words no longer define patterns.  It is pos‐
	      sible to toggle between the three options as many times as  nec‐
	      essary.

       #compdef -k style key-sequences...
	      This  option  creates  a widget behaving like the builtin widget
	      style and binds it to the	 given	key-sequences,	if  any.   The
	      style  must  be  one of the builtin widgets that perform comple‐
	      tion, namely complete-word, delete-char-or-list,	expand-or-com‐
	      plete,  expand-or-complete-prefix,  list-choices, menu-complete,
	      menu-expand-or-complete,	or  reverse-menu-complete.    If   the
	      zsh/complist  module  is	loaded	(see zshmodules(1)) the widget
	      menu-select is also available.

	      When one of the key-sequences is typed, the function in the file
	      will  be	invoked to generate the matches.  Note that a key will
	      not be re-bound if if it already was  (that  is,	was  bound  to
	      something other than undefined-key).  The widget created has the
	      same name as the file and can be bound to any other  keys	 using
	      bindkey as usual.

       #compdef -K widget-name style key-sequences ...
	      This  is	similar to -k except that only one key-sequences argu‐
	      ment may be given for each widget-name style pair.  However, the
	      entire  set  of three arguments may be repeated with a different
	      set of arguments.	 Note in particular that the widget-name  must
	      be  distinct  in	each  set.  If it does not begin with `_' this
	      will be added.  The widget-name should not clash with  the  name
	      of  any existing widget: names based on the name of the function
	      are most useful.	For example,

		     #compdef -K _foo_complete complete-word "^X^C" \
		       _foo_list list-choices "^X^D"

	      (all on one line) defines a widget _foo_complete for completion,
	      bound  to	 `^X^C',  and a widget _foo_list for listing, bound to
	      `^X^D'.

       #autoload [ options ]
	      Functions with the #autoload tag are marked for autoloading  but
	      are  not	otherwise treated specially.  Typically they are to be
	      called from within one of the completion functions.  Any options
	      supplied	will  be passed to the autoload builtin; a typical use
	      is +X to force the function to be loaded immediately.  Note that
	      the -U and -z flags are always added implicitly.

       The  #  is part of the tag name and no white space is allowed after it.
       The #compdef tags use the compdef function described  below;  the  main
       difference is that the name of the function is supplied implicitly.

       The special contexts for which completion functions can be defined are:

       -array-value-
	      The right hand side of an array-assignment (`foo=(...)')

       -brace-parameter-
	      The name of a parameter expansion within braces (`${...}')

       -assign-parameter-
	      The  name of a parameter in an assignment, i.e. on the left hand
	      side of an `='

       -command-
	      A word in command position

       -condition-
	      A word inside a condition (`[[...]]')

       -default-
	      Any word for which no other completion is defined

       -equal-
	      A word beginning with an equals sign

       -first-
	      This is tried before any other completion function.   The	 func‐
	      tion  called  may	 set the _compskip parameter to one of various
	      values: all: no further completion is attempted; a  string  con‐
	      taining  the substring patterns: no pattern completion functions
	      will be called; a string containing default:  the	 function  for
	      the  `-default-'	context	 will  not  be	called,	 but functions
	      defined for commands will

       -math- Inside mathematical contexts, such as `((...))'

       -parameter-
	      The name of a parameter expansion (`$...')

       -redirect-
	      The word after a redirection operator.

       -subscript-
	      The contents of a parameter subscript.

       -tilde-
	      After an initial tilde (`~'), but before the first slash in  the
	      word.

       -value-
	      On the right hand side of an assignment.

       Default	implementations	 are  supplied for each of these contexts.  In
       most cases the context -context-	 is  implemented  by  a	 corresponding
       function	 _context,  for example the context `-tilde-' and the function
       `_tilde').

       The contexts -redirect- and -value- allow extra context-specific infor‐
       mation.	(Internally, this is handled by the functions for each context
       calling the function _dispatch.)	 The extra information is added	 sepa‐
       rated by commas.

       For  the -redirect- context, the extra information is in the form `-re‐
       direct-,op,command', where op is the redirection operator  and  command
       is  the name of the command on the line.	 If there is no command on the
       line yet, the command field will be empty.

       For the -value- context, the form is `-value-,name,command', where name
       is  the	name of the parameter.	In the case of elements of an associa‐
       tive array,  for	 example  `assoc=(key  <TAB>',	name  is  expanded  to
       `name-key'.   In	 certain  special  contexts,  such as completing after
       `make CFLAGS=', the command part gives the name of  the	command,  here
       make; otherwise it is empty.

       It  is  not necessary to define fully specific completions as the func‐
       tions provided  will  try  to  generate	completions  by	 progressively
       replacing  the elements with `-default-'.  For example, when completing
       after `foo=<TAB>', _value will try the names `-value-,foo,'  (note  the
       empty	      command	       part),	       `-value-,foo,-default-'
       and`-value-,-default-,-default-', in that order, until it finds a func‐
       tion to handle the context.

       As an example:

	      compdef '_files -g "*.log"' '-redirect-,2>,-default-'

       completes  files matching `*.log' after `2> <TAB>' for any command with
       no more specific handler defined.

       Also:

	      compdef _foo -value-,-default-,-default-

       specifies that _foo provides completions for the values	of  parameters
       for  which  no special function has been defined.  This is usually han‐
       dled by the function _value itself.

       The same lookup rules are used when looking  up	styles	(as  described
       below); for example

	      zstyle ':completion:*:*:-redirect-,2>,*:*' file-patterns '*.log'

       is  another  way	 to  make  completion  after `2> <TAB>' complete files
       matching `*.log'.

   Functions
       The following function  is  defined  by	compinit  and  may  be	called
       directly.

       compdef [ -an ] function names... [ -[pP] patterns... [ -N names... ] ]
       compdef -d names...
       compdef -k [ -an ] function style key-sequences...
       compdef -K [ -an ] function name style key-sequences ...
	      The  first  form	defines the function to call for completion in
	      the given contexts as described for the #compdef tag above.

	      Alternatively, all the arguments may  have  the  form  `cmd=ser‐
	      vice'.   Here  service  should  already  have  been  defined  by
	      `cmd1=service' lines in #compdef files, as described above.  The
	      argument for cmd will be completed in the same way as service.

	      The  function  argument may alternatively be a string containing
	      any shell code.  The string will	be  executed  using  the  eval
	      builtin command to generate completions.	This provides a way of
	      avoiding having to define a new completion function.  For	 exam‐
	      ple,  to	complete files ending in `.h' as arguments to the com‐
	      mand foo:

		     compdef '_files -g "*.h"' foo

	      The option -n prevents any completions already defined  for  the
	      command or context from being overwritten.

	      The  option -d deletes any completion defined for the command or
	      contexts listed.

	      The names may also contain -p, -P and -N	options	 as  described
	      for  the #compdef tag.  The effect on the argument list is iden‐
	      tical, switching between	definitions  of	 patterns  tried  ini‐
	      tially,  patterns	 tried	finally,  and normal commands and con‐
	      texts.

	      The parameter $_compskip may be set by any function defined  for
	      a	 pattern context.  If it is set to a value containing the sub‐
	      string `patterns' none of the pattern-functions will be  called;
	      if it is set to a value containing the substring `all', no other
	      function will be called.

	      The form with -k defines a widget with  the  same	 name  as  the
	      function that will be called for each of the key-sequences; this
	      is like the #compdef -k tag.  The function should	 generate  the
	      completions  needed  and	will otherwise behave like the builtin
	      widget whose name is given as the style argument.	  The  widgets
	      usable   for   this   are:  complete-word,  delete-char-or-list,
	      expand-or-complete,   expand-or-complete-prefix,	 list-choices,
	      menu-complete,  menu-expand-or-complete,	and  reverse-menu-com‐
	      plete, as well as menu-select  if	 the  zsh/complist  module  is
	      loaded.	The  option  -n	 prevents the key being bound if it is
	      already to bound to something other than undefined-key.

	      The form with -K is similar and defines multiple	widgets	 based
	      on  the  same  function, each of which requires the set of three
	      arguments name, style and key-sequences, where  the  latter  two
	      are  as for -k and the first must be a unique widget name begin‐
	      ning with an underscore.

	      Wherever applicable, the -a option makes the function  autoload‐
	      able, equivalent to autoload -U function.

       The function compdef can be used to associate existing completion func‐
       tions with new commands.	 For example,

	      compdef _pids foo

       uses the function _pids to complete process IDs for the command foo.

       Note also the _gnu_generic function described below, which can be  used
       to complete options for commands that understand the `--help' option.

COMPLETION SYSTEM CONFIGURATION
       This section gives a short overview of how the completion system works,
       and then more detail on how users can configure how  and	 when  matches
       are generated.

   Overview
       When  completion is attempted somewhere on the command line the comple‐
       tion system first works out the context.	 This takes account of a  num‐
       ber  of things including the command word (such as `grep' or `zsh') and
       options to which the current word may be an argument (such as the  `-o'
       option to zsh which takes a shell option as an argument).

       This  context information is condensed into a string consisting of mul‐
       tiple fields separated by colons, referred to simply as	`the  context'
       in the remainder of the documentation.  This is used to look up styles,
       context-sensitive options that can be used to configure the  completion
       system.	 The  context used for lookup may vary during the same call to
       the completion system.

       The context string always consists of a fixed set of fields,  separated
       by  colons and with a leading colon before the first, in the form :com‐
       pletion:function:completer:command:argument:tag.	 These have  the  fol‐
       lowing meaning:

       ·      The literal string completion, saying that this style is used by
	      the completion system.   This  distinguishes  the	 context  from
	      those used by, for example, zle widgets and ZFTP functions.

       ·      The function, if completion is called from a named widget rather
	      than through the normal completion system.   Typically  this  is
	      blank,  but  it is set by special widgets such as predict-on and
	      the various functions in the Widget directory of	the  distribu‐
	      tion to the name of that function, often in an abbreviated form.

       ·      The completer currently active, the name of the function without
	      the leading underscore and with other underscores	 converted  to
	      hyphens.	 A `completer' is in overall control of how completion
	      is to be performed; `complete' is the simplest, but  other  com‐
	      pleters exist to perform related tasks such as correction, or to
	      modify the behaviour of a	 later	completer.   See  the  section
	      `Control Functions' below for more information.

       ·      The command or a special -context-, just at it appears following
	      the #compdef tag or the compdef function.	 Completion  functions
	      for commands that have sub-commands usually modify this field to
	      contain the name of the command followed by a minus sign and the
	      sub-command.   For  example, the completion function for the cvs
	      command sets this field to cvs-add when completing arguments  to
	      the add subcommand.

       ·      The  argument; this indicates which command line or option argu‐
	      ment we are completing.  For command  arguments  this  generally
	      takes  the  form	argument-n, where n is the number of the argu‐
	      ment, and for arguments to options the form option-opt-n where n
	      is  the  number of the argument to option opt.  However, this is
	      only the case if	the  command  line  is	parsed	with  standard
	      UNIX-style options and arguments, so many completions do not set
	      this.

       ·      The tag.	As described previously, tags are used to discriminate
	      between  the types of matches a completion function can generate
	      in a certain context.  Any completion function may use  any  tag
	      name  it	likes,	but  a	list  of the more common ones is given
	      below.

       The context is gradually put together as the  functions	are  executed,
       starting	 with  the  main  entry point, which adds :completion: and the
       function element if necessary.  The completer then adds	the  completer
       element.	  The  contextual  completion  adds  the  command and argument
       options.	 Finally, the tag is added when the types  of  completion  are
       known.  For example, the context name

	      :completion::complete:dvips:option-o-1:files

       says  that normal completion was attempted as the first argument to the
       option -o of the command dvips:

	      dvips -o ...

       and the completion function will generate filenames.

       Usually completion will be tried for all	 possible  tags	 in  an	 order
       given  by  the  completion  function.   However, this can be altered by
       using the tag-order style.  Completion is then restricted to  the  list
       of given tags in the given order.

       The  _complete_help  bindable  command  shows all the contexts and tags
       available for completion at a particular point.	This provides an  easy
       way  of	finding	 information  for  tag-order  and other styles.	 It is
       described in the section `Bindable Commands' below.

       Styles determine such things as how the matches	are  generated,	 simi‐
       larly  to  shell options but with much more control.  They can have any
       number of strings as their value.  They are  defined  with  the	zstyle
       builtin command (see zshmodules(1)).

       When  looking  up styles the completion system uses full context names,
       including the tag.  Looking up the value of a style therefore  consists
       of two things:  the context, which may be matched as a pattern, and the
       name of the style itself, which must be given exactly.

       For example, many completion functions can generate matches in a simple
       and  a  verbose	form  and  use	the verbose style to decide which form
       should be used.	To make all such functions use the verbose form, put

	      zstyle ':completion:*' verbose yes

       in a startup file (probably .zshrc).  This gives the verbose style  the
       value  yes  in  every context inside the completion system, unless that
       context has a more specific definition.	It is best to avoid giving the
       context	as  `*' in case the style has some meaning outside the comple‐
       tion system.

       Many such general purpose styles can be configured simply by using  the
       compinstall function.

       A  more specific example of the use of the verbose style is by the com‐
       pletion for the kill builtin.  If the style is set, the	builtin	 lists
       full  job  texts and process command lines; otherwise it shows the bare
       job numbers and PIDs.  To turn the style off for this use only:

	      zstyle ':completion:*:*:kill:*' verbose no

       For even more control, the style can use one  of	 the  tags  `jobs'  or
       `processes'.  To turn off verbose display only for jobs:

	      zstyle ':completion:*:*:kill:*:jobs' verbose no

       The  -e option to zstyle even allows completion function code to appear
       as the argument to a style; this requires  some	understanding  of  the
       internals  of completion functions (see see zshcompwid(1))).  For exam‐
       ple,

	      zstyle -e ':completion:*' hosts 'reply=($myhosts)'

       This forces the value of the hosts style to be read from	 the  variable
       myhosts each time a host name is needed; this is useful if the value of
       myhosts can change dynamically.	For another useful  example,  see  the
       example in the description of the file-list style below.	 This form can
       be slow and should be avoided for commonly examined styles such as menu
       and list-rows-first.

       Note  that  the	order in which styles are defined does not matter; the
       style mechanism uses the most specific possible match for a  particular
       style to determine the set of values.  More precisely, strings are pre‐
       ferred over patterns (for example, `:completion::complete:foo' is  more
       specific	 than `:completion::complete:*'), and longer patterns are pre‐
       ferred over shorter patterns.

       Style names like those of tags are arbitrary and depend on the  comple‐
       tion  function.	 However,  the following two sections list some of the
       most common tags and styles.

   Standard Tags
       Some of the following are only used when looking up  particular	styles
       and do not refer to a type of match.

       accounts
	      used to look up the users-hosts style

       all-expansions
	      used by the _expand completer when adding the single string con‐
	      taining all possible expansions

       all-files
	      for the names of all files (as distinct from a  particular  sub‐
	      set, see the globbed-files tag).

       arguments
	      for arguments to a command

       arrays for names of array parameters

       association-keys
	      for  keys	 of  associative arrays; used when completing inside a
	      subscript to a parameter of this type

       bookmarks
	      when completing bookmarks (e.g. for URLs and the	zftp  function
	      suite)

       builtins
	      for names of builtin commands

       characters
	      for  single  characters  in  arguments of commands such as stty.
	      Also used when completing character  classes  after  an  opening
	      bracket

       colormapids
	      for X colormap ids

       colors for color names

       commands
	      for  names  of external commands.	 Also used by complex commands
	      such as cvs when completing names subcommands.

       contexts
	      for contexts in arguments to the zstyle builtin command

       corrections
	      used by the _approximate and _correct  completers	 for  possible
	      corrections

       cursors
	      for cursor names used by X programs

       default
	      used  in	some  contexts to provide a way of supplying a default
	      when more specific tags are also valid.  Note that this  tag  is
	      used when only the function field of the context name is set

       descriptions
	      used  when  looking up the value of the format style to generate
	      descriptions for types of matches

       devices
	      for names of device special files

       directories
	      for names of directories

       directory-stack
	      for entries in the directory stack

       displays
	      for X display names

       domains
	      for network domains

       expansions
	      used by the _expand completer for individual words  (as  opposed
	      to  the complete set of expansions) resulting from the expansion
	      of a word on the command line

       extensions
	      for X server extensions

       file-descriptors
	      for numbers of open file descriptors

       files  the generic file-matching tag used by functions completing file‐
	      names

       fonts  for X font names

       fstypes
	      for file system types (e.g. for the mount command)

       functions
	      names of functions -- normally shell functions, although certain
	      commands may understand other kinds of function

       globbed-files
	      for filenames when the name has been generated by pattern match‐
	      ing

       groups for names of user groups

       history-words
	      for words from the history

       hosts  for hostnames

       indexes
	      for array indexes

       jobs   for jobs (as listed by the `jobs' builtin)

       interfaces
	      for network interfaces

       keymaps
	      for names of zsh keymaps

       keysyms
	      for names of X keysyms

       libraries
	      for names of system libraries

       limits for system limits

       local-directories
	      for  names of directories that are subdirectories of the current
	      working directory when completing arguments of  cd  and  related
	      builtin commands (compare path-directories)

       manuals
	      for names of manual pages

       mailboxes
	      for e-mail folders

       maps   for map names (e.g. NIS maps)

       messages
	      used to look up the format style for messages

       modifiers
	      for names of X modifiers

       modules
	      for modules (e.g. zsh modules)

       my-accounts
	      used to look up the users-hosts style

       named-directories
	      for  named  directories  (you  wouldn't have guessed that, would
	      you?)

       names  for all kinds of names

       newsgroups
	      for USENET groups

       nicknames
	      for nicknames of NIS maps

       options
	      for command options

       original
	      used by the _approximate, _correct and _expand  completers  when
	      offering the original string as a match

       other-accounts
	      used to look up the users-hosts style

       packages
	      for packages (e.g. rpm or installed Debian packages)

       parameters
	      for names of parameters

       path-directories
	      for  names  of  directories  found by searching the cdpath array
	      when completing arguments of cd  and  related  builtin  commands
	      (compare local-directories)

       paths  used  to	look  up  the values of the expand, ambiguous and spe‐
	      cial-dirs styles

       pods   for perl pods (documentation files)

       ports  for communication ports

       prefixes
	      for prefixes (like those of a URL)

       printers
	      for print queue names

       processes
	      for process identifiers

       processes-names
	      used to look up the command style when generating the  names  of
	      processes for killall

       sequences
	      for sequences (e.g. mh sequences)

       sessions
	      for sessions in the zftp function suite

       signals
	      for signal names

       strings
	      for  strings  (e.g.  the	replacement strings for the cd builtin
	      command)

       styles for styles used by the zstyle builtin command

       suffixes
	      for filename extensions

       tags   for tags (e.g. rpm tags)

       targets
	      for makefile targets

       time-zones
	      for time zones (e.g. when setting the TZ parameter)

       types  for types of whatever (e.g. address types for the xhost command)

       urls   used to look up the urls and local styles when completing URLs

       users  for usernames

       values for one of a set of values in certain lists

       variant
	      used by _pick_variant to look up the command to run when	deter‐
	      mining what program is installed for a particular command name.

       visuals
	      for X visuals

       warnings
	      used to look up the format style for warnings

       widgets
	      for zsh widget names

       windows
	      for IDs of X windows

       zsh-options
	      for shell options

   Standard Styles
       Note  that the values of several of these styles represent boolean val‐
       ues.  Any of the strings `true', `on', `yes', and `1' can be  used  for
       the  value  `true' and any of the strings `false', `off', `no', and `0'
       for the value `false'.  The behavior for any other value	 is  undefined
       except  where  explicitly  mentioned.   The default value may be either
       true or false if the style is not set.

       Some of these styles are tested first for  every	 possible  tag	corre‐
       sponding to a type of match, and if no style was found, for the default
       tag.  The most notable styles of this type are  menu,  list-colors  and
       styles	controlling   completion   listing  such  as  list-packed  and
       last-prompt).  When tested for the default tag, only the function field
       of  the	context will be set so that a style using the default tag will
       normally be defined along the lines of:

	      zstyle ':completion:*:default' menu ...

       accept-exact
	      This is tested for the default tag in addition to the tags valid
	      for  the current context.	 If it is set to `true' and any of the
	      trial matches is the same as the string  on  the	command	 line,
	      this match will immediately be accepted (even if it would other‐
	      wise be considered ambiguous).

	      When completing pathnames (where the tag used is	`paths')  this
	      style accepts any number of patterns as the value in addition to
	      the boolean values.  Pathnames matching one  of  these  patterns
	      will  be	accepted immediately even if the command line contains
	      some more partially typed pathname components and these match no
	      file under the directory accepted.

	      This  style  is  also used by the _expand completer to decide if
	      words beginning with a tilde or parameter	 expansion  should  be
	      expanded.	  For example, if there are parameters foo and foobar,
	      the string `$foo' will only be expanded if accept-exact  is  set
	      to  `true';  otherwise  the completion system will be allowed to
	      complete $foo to $foobar. If the style  is  set  to  `continue',
	      _expand  will  add  the  expansion as a match and the completion
	      system will also be allowed to continue.

       add-space
	      This style is used by the _expand completer.  If it is true (the
	      default),	 a  space  will	 be inserted after all words resulting
	      from the expansion, or a slash in the case of  directory	names.
	      If  the  value is `file', the completer will only add a space to
	      names of existing files.	Either a boolean  true	or  the	 value
	      `file' may be combined with `subst', in which case the completer
	      will not add a space to words generated from the expansion of  a
	      substitution of the form `$(...)' or `${...}'.

	      The  _prefix completer uses this style as a simple boolean value
	      to decide if a space should be inserted before the suffix.

       ambiguous
	      This applies when completing non-final  components  of  filename
	      paths,  in  other	 words	those with a trailing slash.  If it is
	      set, the cursor is left after  the  first	 ambiguous  component,
	      even  if	menu completion is in use.  The style is always tested
	      with the paths tag.

       assign-list
	      When completing after an equals sign that is being treated as an
	      assignment,  the	completion  system normally completes only one
	      filename.	 In some cases the value  may be a list	 of  filenames
	      separated	 by colons, as with PATH and similar parameters.  This
	      style can be set to a list of patterns  matching	the  names  of
	      such parameters.

	      The  default  is	to  complete  lists  when the word on the line
	      already contains a colon.

       auto-description
	      If set, this style's value will be used as the  description  for
	      options  that are not described by the completion functions, but
	      that have exactly one argument.  The sequence `%d' in the	 value
	      will  be replaced by the description for this argument.  Depend‐
	      ing on personal preferences, it may be useful to set this	 style
	      to  something  like  `specify: %d'.  Note that this may not work
	      for some commands.

       avoid-completer
	      This is used by the _all_matches	completer  to  decide  if  the
	      string  consisting  of  all  matches should be added to the list
	      currently being generated.  Its value is a list of names of com‐
	      pleters.	If any of these is the name of the completer that gen‐
	      erated the matches in this completion, the string	 will  not  be
	      added.

	      The  default value for this style is `_expand _old_list _correct
	      _approximate', i.e. it  contains	the  completers	 for  which  a
	      string with all matches will almost never be wanted.

       cache-path
	      This  style  defines  the	 path where any cache files containing
	      dumped completion data  are  stored.   It	 defaults  to  `$ZDOT‐
	      DIR/.zcompcache',	 or  `$HOME/.zcompcache'  if  $ZDOTDIR	is not
	      defined.	The completion cache  will  not	 be  used  unless  the
	      use-cache style is set.

       cache-policy
	      This  style  defines the function that will be used to determine
	      whether a cache  needs  rebuilding.   See	 the  section  on  the
	      _cache_invalid function below.

       call-command
	      This style is used in the function for commands such as make and
	      ant where calling the command directly to generate matches  suf‐
	      fers  problems such as being slow or, as in the case of make can
	      potentially causes actions in the makefile to be executed. If it
	      is  set to `true' the command is called to generate matches. The
	      default value of this style is `false'.

       command
	      In many places, completion functions need to call external  com‐
	      mands  to	 generate  the list of completions.  This style can be
	      used to override the command that is called in some such	cases.
	      The  elements of the value are joined with spaces to form a com‐
	      mand line to execute.  The value can also start with  a  hyphen,
	      in  which	 case the usual command will be added to the end; this
	      is most useful for putting `builtin' or `command'	 in  front  to
	      make  sure  the  appropriate version of a command is called, for
	      example to avoid calling a shell function with the same name  as
	      an external command.

	      As an example, the completion function for process IDs uses this
	      style with the processes tag to generate the IDs to complete and
	      the  list	 of  processes	to  display  (if  the verbose style is
	      `true').	The list produced by the command should look like  the
	      output  of the ps command.  The first line is not displayed, but
	      is searched for the string `PID' (or `pid') to find the position
	      of the process IDs in the following lines.  If the line does not
	      contain `PID', the first numbers in each of the other lines  are
	      taken as the process IDs to complete.

	      Note  that  the  completion  function  generally has to call the
	      specified command for each attempt to  generate  the  completion
	      list.   Hence care should be taken to specify only commands that
	      take a short time to run, and in particular to  avoid  any  that
	      may never terminate.

       command-path
	      This  is	a  list	 of directories to search for commands to com‐
	      plete.  The default for this style is the value of  the  special
	      parameter path.

       commands
	      This  is	used  by  the function completing sub-commands for the
	      system initialisation scripts (residing in /etc/init.d or	 some‐
	      where  not too far away from that).  Its values give the default
	      commands to complete for those commands for which the completion
	      function isn't able to find them out automatically.  The default
	      for this style are the two strings `start' and `stop'.

       complete
	      This is used by the _expand_alias function  when	invoked	 as  a
	      bindable	command.  If it set to `true' and the word on the com‐
	      mand line is not the name of an alias, matching alias names will
	      be completed.

       complete-options
	      This  is	used  by  the  completer for cd, chdir and pushd.  For
	      these commands a - is used to introduce a directory stack	 entry
	      and  completion  of  these  is  far  more common than completing
	      options.	Hence unless the value of this style is	 true  options
	      will  not be completed, even after an initial -.	If it is true,
	      options will be completed after an initial - unless there	 is  a
	      preceeding -- on the command line.

       completer
	      The  strings  given as the value of this style provide the names
	      of the completer functions to use. The available completer func‐
	      tions are described in the section `Control Functions' below.

	      Each  string may be either the name of a completer function or a
	      string of the form `function:name'.  In the first case the  com‐
	      pleter  field  of	 the context will contain the name of the com‐
	      pleter without the leading underscore and with all other	under‐
	      scores  replaced by hyphens.  In the second case the function is
	      the name of the completer to call, but the context will  contain
	      the user-defined name in the completer field of the context.  If
	      the name starts with a hyphen, the string for the	 context  will
	      be build from the name of the completer function as in the first
	      case with the name appended to it.  For example:

		     zstyle ':completion:*' completer _complete _complete:-foo

	      Here, completion will call the _complete completer  twice,  once
	      using  `complete' and once using `complete-foo' in the completer
	      field of the context.  Normally, using the same  completer  more
	      than  once  only makes sense when used with the `functions:name'
	      form, because otherwise the context name will be the same in all
	      calls to the completer; possible exceptions to this rule are the
	      _ignored and _prefix completers.

	      The default value for this style is `_complete  _ignored':  only
	      completion  will be done, first using the ignored-patterns style
	      and the $fignore array and then without ignoring matches.

       condition
	      This style is used by the _list completer function to decide  if
	      insertion	 of  matches  should  be  delayed unconditionally. The
	      default is `true'.

       delimiters
	      This style is used when adding a delimiter for use with  history
	      modifiers	 or glob qualifiers that have delimited arguments.  It
	      is an array of preferred delimiters to add.  Non-special charac‐
	      ters are preferred as the completion system may otherwise become
	      confused.	 The default list is :, +, /, -, %.  The list  may  be
	      empty to force a delimiter to be typed.

       disabled
	      If  this is set to `true', the _expand_alias completer and bind‐
	      able command will try to	expand	disabled  aliases,  too.   The
	      default is `false'.

       domains
	      A	 list  of names of network domains for completion.  If this is
	      not  set,	 domain	 names	 will	be   taken   from   the	  file
	      /etc/resolv.conf.

       expand This  style is used when completing strings consisting of multi‐
	      ple parts, such as path names.

	      If one of its values is the string `prefix', the partially typed
	      word  from  the line will be expanded as far as possible even if
	      trailing parts cannot be completed.

	      If one of its values is the string `suffix', matching names  for
	      components  after	 the  first  ambiguous one will also be added.
	      This means that the resulting string is the longest  unambiguous
	      string  possible.	 However, menu completion can be used to cycle
	      through all matches.

       fake   This style may be set for any completion context.	 It  specifies
	      additional  strings  that	 will always be completed in that con‐
	      text.  The form of each string is `value:description'; the colon
	      and  description may be omitted, but any literal colons in value
	      must be quoted with a backslash.	Any  description  provided  is
	      shown alongside the value in completion listings.

	      It  is  important to use a sufficiently restrictive context when
	      specifying fake strings.	Note that the  styles  fake-files  and
	      fake-parameters  provide	additional  features  when  completing
	      files or parameters.

       fake-always
	      This works  identically  to  the	fake  style  except  that  the
	      ignored-patterns style is not applied to it.  This makes it pos‐
	      sible to override a set of matches  completely  by  setting  the
	      ignored patterns to `*'.

	      The  following  shows  a way of supplementing any tag with arbi‐
	      trary data, but having it behave for  display  purposes  like  a
	      separate	tag.   In  this	 example  we  use  the features of the
	      tag-order style to divide the  named-directories	tag  into  two
	      when  performing completion with the standard completer complete
	      for arguments of cd.  The tag  named-directories-normal  behaves
	      as  normal,  but the tag named-directories-mine contains a fixed
	      set of directories.  This has the effect	of  adding  the	 match
	      group `extra directories' with the given completions.

		     zstyle ':completion::complete:cd:*' tag-order \
		       'named-directories:-mine:extra\ directories
		       named-directories:-normal:named\ directories *'
		     zstyle ':completion::complete:cd:*:named-directories-mine' \
		       fake-always mydir1 mydir2
		     zstyle ':completion::complete:cd:*:named-directories-mine' \
		       ignored-patterns '*'

       fake-files
	      This style is used when completing files and looked up without a
	      tag.  Its values are of the form `dir:names...'.	This will  add
	      the names (strings separated by spaces) as possible matches when
	      completing in the directory dir, even if no  such	 files	really
	      exist.   The  dir may be a pattern; pattern characters or colons
	      in dir should be quote with a backslash to be treated literally.

	      This can be useful on systems that support  special  filesystems
	      whose  top-level	pathnames  can not be listed or generated with
	      glob patterns.  It can also be used for  directories  for	 which
	      one does not have read permission.

	      The  pattern  form can be used to add a certain `magic' entry to
	      all directories on a particular filing system.

       fake-parameters
	      This is used by the completion  function	for  parameter	names.
	      Its values are names of parameters that might not yet be set but
	      should be completed nonetheless.	Each name may also be followed
	      by  a  colon  and	 a string specifying the type of the parameter
	      (like `scalar', `array' or `integer').  If the  type  is	given,
	      the  name	 will only be completed if parameters of that type are
	      required in the particular context.  Names for which no type  is
	      specified will always be completed.

       file-list
	      This  style  controls whether files completed using the standard
	      builtin mechanism are to be listed with a long list  similar  to
	      ls  -l.	Note  that this feature uses the shell module zsh/stat
	      for file information; this loads the  builtin  stat  which  will
	      replace any external stat executable.  To avoid this the follow‐
	      ing code can be included in an initialization file:

		     zmodload -i zsh/stat
		     disable stat

	      The style may either be set to a true value (or `all'),  or  one
	      of  the  values `insert' or `list', indicating that files are to
	      be listed in long format in all circumstances, or when  attempt‐
	      ing  to  insert  a file name, or when listing file names without
	      attempting to insert one.

	      More generally, the value may be an array of any	of  the	 above
	      values, optionally followed by =num.  If num is present it gives
	      the maximum number of matches for which long listing style  will
	      be used.	For example,

		     zstyle ':completion:*' file-list list=20 insert=10

	      specifies	 that  long  format will be used when listing up to 20
	      files or inserting a file with up	 to  10	 matches  (assuming  a
	      listing  is to be shown at all, for example on an ambiguous com‐
	      pletion), else short format will be used.

		     zstyle -e ':completion:*' file-list '(( ${+NUMERIC} )) && reply=(true)'

	      specifies that long format will be used any time a numeric argu‐
	      ment is supplied, else short format.

       file-patterns
	      This  is used by the standard function for completing filenames,
	      _files.  If the style is unset up to  three  tags	 are  offered,
	      `globbed-files',`directories'  and `all-files', depending on the
	      types of files  expected by the caller of _files.	 The first two
	      (`globbed-files'	 and   `directories')	are  normally  offered
	      together to make it easier to complete files in sub-directories.

	      The file-patterns style provides	alternatives  to  the  default
	      tags, which are not used.	 Its value consists of elements of the
	      form `pattern:tag'; each string may contain any number  of  such
	      specifications separated by spaces.

	      The  pattern  is	a pattern that is to be used to generate file‐
	      names.  Any occurrence of the sequence `%p' is replaced  by  any
	      pattern(s) passed by the function calling _files.	 Colons in the
	      pattern must be preceded by a backslash  to  make	 them  distin‐
	      guishable	 from the colon before the tag.	 If more than one pat‐
	      tern is needed, the patterns can be given inside	braces,	 sepa‐
	      rated by commas.

	      The  tags	 of all strings in the value will be offered by _files
	      and used when looking up other styles.  Any  tags	 in  the  same
	      word  will  be  offered at the same time and before later words.
	      If no `:tag' is given the `files' tag will be used.

	      The tag may also be followed by an optional second colon	and  a
	      description, which will be used for the `%d' in the value of the
	      format style (if that is set) instead of the default description
	      supplied	by  the completion function.  If the description given
	      here contains itself a `%d', that is replaced with the  descrip‐
	      tion supplied by the completion function.

	      For example, to make the rm command first complete only names of
	      object files and then the names of all  files  if	 there	is  no
	      matching object file:

		     zstyle ':completion:*:*:rm:*' file-patterns \
			 '*.o:object-files' '%p:all-files'

	      To alter the default behaviour of file completion -- offer files
	      matching a pattern and directories on the	 first	attempt,  then
	      all  files -- to offer only matching files on the first attempt,
	      then directories, and finally all files:

		     zstyle ':completion:*' file-patterns \
			 '%p:globbed-files' '*(-/):directories' '*:all-files'

	      This works even  where  there  is	 no  special  pattern:	_files
	      matches  all  files  using the pattern `*' at the first step and
	      stops when it sees this pattern.	Note also it will never try  a
	      pattern more than once for a single completion attempt.

	      During  the execution of completion functions, the EXTENDED_GLOB
	      option is in effect, so the characters `#',  `~'	and  `^'  have
	      special meanings in the patterns.

       file-sort
	      The  standard filename completion function uses this style with‐
	      out a tag to determine  in  which	 order	the  names  should  be
	      listed;  menu  completion	 will  cycle  through them in the same
	      order.  The possible values are: `size' to sort by the  size  of
	      the  file;  `links'  to sort by the number of links to the file;
	      `modification' (or `time' or `date') to sort by the last modifi‐
	      cation  time;  `access'  to  sort	 by  the last access time; and
	      `inode' (or `change') to sort by the last inode change time.  If
	      the  style is set to any other value, or is unset, files will be
	      sorted alphabetically by name.  If the value contains the string
	      `reverse', sorting is done in the opposite order.

       filter This is used by the LDAP plugin for e-mail address completion to
	      specify the attributes to match against when filtering  entries.
	      So  for  example,	 if the style is set to `sn', matching is done
	      against surnames.	 Standard LDAP filtering  is  used  so	normal
	      completion  matching is bypassed.	 If this style is not set, the
	      LDAP plugin is skipped.  You may also need to  set  the  command
	      style to specify how to connect to your LDAP server.

       force-list
	      This forces a list of completions to be shown at any point where
	      listing is done, even in cases where the list would  usually  be
	      suppressed.   For	 example,  normally  the list is only shown if
	      there are at least two different matches.	 By setting this style
	      to  `always',  the  list	will always be shown, even if there is
	      only a single match that	will  immediately  be  accepted.   The
	      style  may  also be set to a number.  In this case the list will
	      be shown if there are at least that many matches, even  if  they
	      would all insert the same string.

	      This style is tested for the default tag as well as for each tag
	      valid for the current completion.	  Hence	 the  listing  can  be
	      forced only for certain types of match.

       format If  this is set for the descriptions tag, its value is used as a
	      string to	 display  above	 matches  in  completion  lists.   The
	      sequence	`%d'  in  this	string	will  be replaced with a short
	      description of what these matches are.   This  string  may  also
	      contain  the  sequences  to  specify  output attributes, such as
	      `%B', `%S' and `%{...%}'.

	      The style is tested with each tag valid for the current  comple‐
	      tion  before  it is tested for the descriptions tag.  Hence dif‐
	      ferent format strings can be  defined  for  different  types  of
	      match.

	      Note  also  that	some  completer	 functions  define  additional
	      `%'-sequences.  These are described for the completer  functions
	      that make use of them.

	      Some  completion	functions  display  messages  that may be cus‐
	      tomised by setting this style for the messages tag.   Here,  the
	      `%d'  is	replaced  with a message given by the completion func‐
	      tion.

	      Finally, the format string is looked up with the	warnings  tag,
	      for use when no matches could be generated at all.  In this case
	      the `%d' is replaced with the descriptions for the matches  that
	      were  expected  separated	 by  spaces.   The  sequence  `%D'  is
	      replaced with the same descriptions separated by newlines.

	      It is possible to use printf-style field width  specifiers  with
	      `%d' and similar escape sequences.  This is handled by the zfor‐
	      mat builtin command  from	 the  zsh/zutil	 module,  see  zshmod‐
	      ules(1).

       glob   This  is	used by the _expand completer.	If it is set to `true'
	      (the default), globbing will be attempted on the words resulting
	      from  a previous substitution (see the substitute style) or else
	      the original string from the line.

       global If this is set to `true' (the default), the  _expand_alias  com‐
	      pleter and bindable command will try to expand global aliases.

       group-name
	      The  completion  system  can  group  different types of matches,
	      which appear in separate lists.  This style can be used to  give
	      the  names  of groups for particular tags.  For example, in com‐
	      mand position the completion system generates names  of  builtin
	      and  external  commands,	names  of aliases, shell functions and
	      parameters and reserved words as possible completions.  To  have
	      the external commands and shell functions listed separately:

		     zstyle ':completion:*:*:-command-:*:commands' group-name commands
		     zstyle ':completion:*:*:-command-:*:functions' group-name functions

	      As  a consequence, any match with the same tag will be displayed
	      in the same group.

	      If the name given is the empty string the name of	 the  tag  for
	      the  matches will be used as the name of the group.  So, to have
	      all different types of matches  displayed	 separately,  one  can
	      just set:

		     zstyle ':completion:*' group-name ''

	      All  matches for which no group name is defined will be put in a
	      group named -default-.

       group-order
	      This style is additional to the group-name style to specify  the
	      order  for  display of the groups defined by that style (compare
	      tag-order, which determines which completions  appear  at	 all).
	      The  groups named are shown in the given order; any other groups
	      are shown in the order defined by the completion function.

	      For example, to have names of builtin commands, shell  functions
	      and  external  commands  appear in that order when completing in
	      command position:

		     zstyle ':completion:*:*:-command-:*' group-order \
			    builtins functions commands

       groups A list of names of UNIX groups.  If this is not set, group names
	      are taken from the YP database or the file `/etc/group'.

       hidden If  this	is set to true, matches for the given context will not
	      be listed, although any description for the matches set with the
	      format style will be shown.  If it is set to `all', not even the
	      description will be displayed.

	      Note that the matches will still be completed; they are just not
	      shown in the list.  To avoid having matches considered as possi‐
	      ble completions at all, the tag-order style can be  modified  as
	      described below.

       hosts  A	 list  of names of hosts that should be completed.  If this is
	      not set, hostnames are taken from the file `/etc/hosts'.

       hosts-ports
	      This style is used by commands that need or accept hostnames and
	      network  ports.	The strings in the value should be of the form
	      `host:port'.  Valid ports are  determined	 by  the  presence  of
	      hostnames; multiple ports for the same host may appear.

       ignore-line
	      This  is	tested	for each tag valid for the current completion.
	      If it is set to `true', none of the words that  are  already  on
	      the  line	 will be considered as possible completions.  If it is
	      set to `current', the word the cursor is on will not be  consid‐
	      ered  as	a  possible  completion.  The value `current-shown' is
	      similar but only applies if the list of completions is currently
	      shown  on	 the screen.  Finally, if the style is set to `other',
	      no word apart from the current one will be considered as a  pos‐
	      sible completion.

	      The  values  `current'  and  `current-shown'  are a bit like the
	      opposite of the accept-exact style:  only strings	 with  missing
	      characters will be completed.

	      Note  that you almost certainly don't want to set this to `true'
	      or `other' for a general context such as `:completion:*'.	  This
	      is because it would disallow completion of, for example, options
	      multiple times even if  the  command  in	question  accepts  the
	      option more than once.

       ignore-parents
	      The  style  is  tested  without a tag by the function completing
	      pathnames in order to determine whether to ignore the  names  of
	      directories  already  mentioned in the current word, or the name
	      of the current working directory.	 The value must include one or
	      both of the following strings:

	      parent The name of any directory whose path is already contained
		     in the word on the line is ignored.   For	example,  when
		     completing	 after	foo/../, the directory foo will not be
		     considered a valid completion.

	      pwd    The name of the current working  directory	 will  not  be
		     completed;	 hence, for example, completion after ../ will
		     not use the name of the current directory.

	      In addition, the value may include one or both of:

	      ..     Ignore the specified directories only when	 the  word  on
		     the line contains the substring `../'.

	      directory
		     Ignore  the  specified  directories  only	when  names of
		     directories are completed, not when completing  names  of
		     files.

	      Excluded	values	act  in	 a  similar  fashion  to values of the
	      ignored-patterns style, so they can be restored to consideration
	      by the _ignored completer.

       extra-verbose
	      If  set, the completion listing is more verbose at the cost of a
	      probable decrease in completion speed.   Completion  performance
	      will suffer if this style is set to `true'.

       ignored-patterns
	      A	 list  of  patterns;  any trial completion matching one of the
	      patterns will be excluded from consideration.  The _ignored com‐
	      pleter  can  appear  in  the  list  of completers to restore the
	      ignored matches.	This is a more	configurable  version  of  the
	      shell parameter $fignore.

	      Note  that  the EXTENDED_GLOB option is set during the execution
	      of completion functions, so the characters `#', `~' and `^' have
	      special meanings in the patterns.

       insert This  style  is  used  by	 the  _all_matches completer to decide
	      whether to  insert  the  list  of	 all  matches  unconditionally
	      instead of adding the list as another match.

       insert-ids
	      When  completing	process	 IDs,  for example as arguments to the
	      kill and wait builtins the name of a command may be converted to
	      the  appropriate	process ID.  A problem arises when the process
	      name typed is not unique.	 By default (or if this style  is  set
	      explicitly  to `menu') the name will be converted immediately to
	      a set of possible IDs, and menu completion will  be  started  to
	      cycle through them.

	      If the value of the style is `single', the shell will wait until
	      the user has typed enough to make the command unique before con‐
	      verting the name to an ID; attempts at completion will be unsuc‐
	      cessful until that point.	 If the value  is  any	other  string,
	      menu  completion	will  be  started when the string typed by the
	      user is longer than the common prefix to the corresponding IDs.

       insert-tab
	      If this is set to `true', the completion system  will  insert  a
	      TAB  character  (assuming	 that  was  used  to start completion)
	      instead of performing completion	when  there  is	 no  non-blank
	      character	 to  the left of the cursor.  If it is set to `false',
	      completion will be done even there.

	      The value may also contain the substrings	 `pending'  or	`pend‐
	      ing=val'.	  In  this  case, the typed character will be inserted
	      instead of staring completion when there	is  unprocessed	 input
	      pending.	 If  a	val  is	 given, completion will not be done if
	      there are at least that many characters  of  unprocessed	input.
	      This  is	often  useful when pasting characters into a terminal.
	      Note however, that it relies on the $PENDING  special  parameter
	      from  the zsh/zle module being set properly which is not guaran‐
	      teed on all platforms.

	      The default value of this style is `true' except for  completion
	      within vared builtin command where it is `false'.

       insert-unambiguous
	      This  is	used by the _match and _approximate completers.	 These
	      completers are often used with menu completion  since  the  word
	      typed may bear little resemblance to the final completion.  How‐
	      ever, if this style is `true', the  completer  will  start  menu
	      completion  only	if it could find no unambiguous initial string
	      at least as long as the original string typed by the user.

	      In the case of the _approximate completer, the  completer	 field
	      in  the context will already have been set to one of correct-num
	      or approximate-num, where num is the number of errors that  were
	      accepted.

	      In  the  case of the _match completer, the style may also be set
	      to the string `pattern'.	Then the pattern on the line  is  left
	      unchanged if it does not match unambiguously.

       keep-prefix
	      This  style  is used by the _expand completer.  If it is `true',
	      the completer will try to keep a prefix containing  a  tilde  or
	      parameter	 expansion.   Hence,  for  example,  the string `~/f*'
	      would be expanded to `~/foo' instead  of	`/home/user/foo'.   If
	      the  style  is  set  to `changed' (the default), the prefix will
	      only be left unchanged if there were other changes  between  the
	      expanded words and the original word from the command line.  Any
	      other value forces the prefix to be expanded unconditionally.

	      The behaviour of expand when this style  is  true	 is  to	 cause
	      _expand  to  give	 up  when a single expansion with the restored
	      prefix is the same as the original;  hence  any  remaining  com‐
	      pleters may be called.

       last-prompt
	      This  is	a more flexible form of the ALWAYS_LAST_PROMPT option.
	      If it is true, the completion system will try to return the cur‐
	      sor  to  the previous command line after displaying a completion
	      list.  It is tested for all tags valid for the  current  comple‐
	      tion,  then  the	default tag.  The cursor will be moved back to
	      the previous line if this style  is  `true'  for	all  types  of
	      match.   Note  that unlike the ALWAYS_LAST_PROMPT option this is
	      independent of the numeric prefix argument.

       known-hosts-files
	      This style should contain a list of files	 to  search  for  host
	      names  and (if the use-ip style is set) IP addresses in a format
	      compatible with ssh known_hosts files.  If it is	not  set,  the
	      files /etc/ssh/ssh_known_hosts and ~/.ssh/known_hosts are used.

       list   This  style  is used by the _history_complete_word bindable com‐
	      mand.  If it is set to `true' it has no effect.  If it is set to
	      `false'  matches will not be listed.  This overrides the setting
	      of the options  controlling  listing  behaviour,	in  particular
	      AUTO_LIST.   The	context	 always	 starts with `:completion:his‐
	      tory-words'.

       list-colors
	      If the zsh/complist module is loaded, this style can be used  to
	      set  color  specifications.   This mechanism replaces the use of
	      the ZLS_COLORS and ZLS_COLOURS parameters described in the  sec‐
	      tion  `The zsh/complist Module' in zshmodules(1), but the syntax
	      is the same.

	      If this style is set for the default tag,	 the  strings  in  the
	      value  are  taken	 as  specifications that are to be used every‐
	      where.  If it is set for other tags, the specifications are used
	      only  for matches of the type described by the tag.  For this to
	      work best, the group-name style must be set to an empty string.

	      In addition to setting styles for specific tags, it is also pos‐
	      sible  to use group names specified explicitly by the group-name
	      tag together with the `(group)' syntax allowed by the ZLS_COLORS
	      and ZLS_COLOURS parameters and simply using the default tag.

	      It  is  possible	to use any color specifications already set up
	      for the GNU version of the ls command:

		     zstyle ':completion:*:default' list-colors ${(s.:.)LS_COLORS}

	      The default colors are the same as for the GNU  ls  command  and
	      can  be  obtained	 by setting the style to an empty string (i.e.
	      '').

       list-grouped
	      If this style is `true' (the  default),  the  completion	system
	      will  try	 to  make  certain completion listings more compact by
	      grouping matches.	 For example, options for commands  that  have
	      the  same	 description  (shown  when the verbose style is set to
	      `true') will appear as a single entry.  However, menu  selection
	      can be used to cycle through all the matches.

       list-packed
	      This is tested for each tag valid in the current context as well
	      as the default tag.  If it is set to `true',  the	 corresponding
	      matches  appear  in  listings  as if the LIST_PACKED option were
	      set.  If it is set to `false', they are listed normally.

       list-prompt
	      If this style is set for the default tag, completion lists  that
	      don't  fit on the screen can be scrolled (see the description of
	      the zsh/complist module in zshmodules(1)).  The  value,  if  not
	      the  empty  string,  will be displayed after every screenful and
	      the shell will prompt for a key press; if the style  is  set  to
	      the empty string, a default prompt will be used.

	      The  value may contain the escape sequences: `%l' or `%L', which
	      will be replaced by the number of the last  line	displayed  and
	      the total number of lines; `%m' or `%M', the number of the  last
	      match shown and the total number of matches; and `%p' and	 `%P',
	      `Top'  when  at  the beginning of the list, `Bottom' when at the
	      end and the position shown as a percentage of the	 total	length
	      otherwise.  In each case the form with the uppercase letter will
	      be replaced by a string of fixed width,  padded  to  the	 right
	      with  spaces,  while  the	 lowercase  form will be replaced by a
	      variable width string.  As in other prompt strings,  the	escape
	      sequences	 `%S',	`%s',  `%B', `%b', `%U', `%u' for entering and
	      leaving the display modes standout, bold and underline are  also
	      available,  as  is  the  form  `%{...%}'	for  enclosing	escape
	      sequences which display with zero width.

	      After deleting this prompt the  variable	LISTPROMPT  should  be
	      unset for the the removal to take effect.

       list-rows-first
	      This  style  is  tested in the same way as the list-packed style
	      and determines whether matches are to be listed in a  rows-first
	      fashion as if the LIST_ROWS_FIRST option were set.

       list-suffixes
	      This style is used by the function that completes filenames.  If
	      it is true, and completion is attempted on a  string  containing
	      multiple partially typed pathname components, all ambiguous com‐
	      ponents will be shown.  Otherwise, completion stops at the first
	      ambiguous component.

       list-separator
	      The  value  of this style is used in completion listing to sepa‐
	      rate the string to complete from	a  description	when  possible
	      (e.g.  when  completing  options).   It  defaults	 to  `--' (two
	      hyphens).

       local  This is for use with functions that complete URLs for which  the
	      corresponding  files are available directly from the filing sys‐
	      tem.  Its value should consist of three strings: a hostname, the
	      path  to the default web pages for the server, and the directory
	      name used by a user placing web pages within their home area.

	      For example:

		     zstyle ':completion:*' local toast \
			 /var/http/public/toast public_html

	      Completion after `http://toast/stuff/' will look	for  files  in
	      the  directory  /var/http/public/toast/stuff,   while completion
	      after `http://toast/~yousir/' will look for files in the	direc‐
	      tory ~yousir/public_html.

       mail-directory
	      If  set,	zsh will assume that mailbox files can be found in the
	      directory specified.  It defaults to `~/Mail'.

       match-original
	      This is used by the _match completer.  If it  is	set  to	 only,
	      _match  will  try to generate matches without inserting a `*' at
	      the cursor position.  If set to any other	 non-empty  value,  it
	      will first try to generate matches without inserting the `*' and
	      if that yields no matches,  it  will  try	 again	with  the  `*'
	      inserted.	  If  it is unset or set to the empty string, matching
	      will only be performed with the `*' inserted.

       matcher
	      This style is tested separately for each tag valid in  the  cur‐
	      rent  context.   Its  value is added to any match specifications
	      given by the matcher-list style.	 It  should  be	 in  the  form
	      described in the section `Matching Control' in zshcompwid(1).

       matcher-list
	      This style can be set to a list of match specifications that are
	      to be applied everywhere. Match specifications are described  in
	      the section `Matching Control' in zshcompwid(1).	The completion
	      system will try  them  one  after	 another  for  each  completer
	      selected.	  For  example, to try first simple completion and, if
	      that generates no matches, case-insensitive completion:

		     zstyle ':completion:*' matcher-list '' 'm:{a-zA-Z}={A-Za-z}'

	      By default each specification replaces the  previous  one;  how‐
	      ever,  if a specification is prefixed with +, it is added to the
	      existing list.  Hence it is possible to create increasingly gen‐
	      eral specifications without repetition:

		     zstyle ':completion:*' matcher-list '' '+m{a-Z}={A-Z}' '+m{A-Z}={a-z}'

	      It is possible to create match specifications valid for particu‐
	      lar completers by using the third field  of  the	context.   For
	      example,	to  use	 the completers _complete and _prefix but only
	      allow case-insensitive completion with _complete:

		     zstyle ':completion:*' completer _complete _prefix
		     zstyle ':completion:*:complete:*' matcher-list \
			    '' 'm:{a-zA-Z}={A-Za-z}'

	      User-defined names, as explained for the	completer  style,  are
	      available.   This	 makes	it  possible to try the same completer
	      more than once with different match  specifications  each	 time.
	      For example, to try normal completion without a match specifica‐
	      tion, then normal	 completion  with  case-insensitive  matching,
	      then correction, and finally partial-word completion:

		     zstyle ':completion:*' completer _complete _correct _complete:foo
		     zstyle ':completion:*:complete:*' matcher-list \
			 '' 'm:{a-zA-Z}={A-Za-z}'
		     zstyle ':completion:*:foo:*' matcher-list \
			 'm:{a-zA-Z}={A-Za-z} r:|[-_./]=* r:|=*'

	      If  the  style is unset in any context no match specification is
	      applied.	Note also that some completers such  as	 _correct  and
	      _approximate  do not use the match specifications at all, though
	      these  completers	 will  only  ever  called  once	 even  if  the
	      matcher-list contains more than one element.

	      Where  multiple  specifications are useful, note that the entire
	      completion is done for each element of matcher-list,  which  can
	      quickly  reduce  the  shell's  performance.   As a rough rule of
	      thumb, one to three strings will	give  acceptable  performance.
	      On  the other hand, putting multiple space-separated values into
	      the same string does not have an appreciable impact  on  perfor‐
	      mance.

	      If  there	 is  no current matcher or it is empty, and the option
	      NO_CASE_GLOB is in effect, the matching for files	 is  performed
	      case-insensitively  in  any  case.   However,  any  matcher must
	      explicitly  specify  case-insensitive  matching	if   that   is
	      required.

       max-errors
	      This  is	used  by the _approximate and _correct completer func‐
	      tions to determine the maximum number of errors to  allow.   The
	      completer will try to generate completions by first allowing one
	      error, then two errors, and so  on,  until  either  a  match  or
	      matches were found or the maximum number of errors given by this
	      style has been reached.

	      If the value for this style contains the string  `numeric',  the
	      completer function will take any numeric argument as the maximum
	      number of errors allowed. For example, with

		     zstyle ':completion:*:approximate:::' max-errors 2 numeric

	      two errors are allowed if no numeric argument is given, but with
	      a	 numeric argument of six (as in `ESC-6 TAB'), up to six errors
	      are accepted.  Hence with a value of `0 numeric', no  correcting
	      completion will be attempted unless a numeric argument is given.

	      If  the  value  contains the string `not-numeric', the completer
	      will not try to generate	corrected  completions	when  given  a
	      numeric  argument,  so  in  this case the number given should be
	      greater than zero.  For example, `2 not-numeric' specifies  that
	      correcting completion with two errors will usually be performed,
	      but if a numeric argument is given, correcting  completion  will
	      not be performed.

	      The default value for this style is `2 numeric'.

       max-matches-width
	      This  style is used to determine the trade off between the width
	      of the display used for matches and the  width  used  for	 their
	      descriptions  when  the  verbose	style is in effect.  The value
	      gives the number of display columns to reserve for the  matches.
	      The default is half the width of the screen.

	      This  has	 the  most  impact  when several matches have the same
	      description and so will be  grouped  together.   Increasing  the
	      style will allow more matches to be grouped together; decreasing
	      it will allow more of the description to be visible.

       menu   If this is true in the context of any of the  tags  defined  for
	      the  current completion menu completion will be used.  The value
	      for a specific tag  will	take  precedence  over	that  for  the
	      `default' tag.

	      If none of the values found in this way is true but at least one
	      is set to `auto', the shell behaves as if the  AUTO_MENU	option
	      is set.

	      If one of the values is explicitly set to false, menu completion
	      will be explicitly  turned  off,	overriding  the	 MENU_COMPLETE
	      option and other settings.

	      In the form `yes=num', where `yes' may be any of the true values
	      (`yes', `true', `on' and `1'), menu completion will be turned on
	      if there are at least num matches.  In the form `yes=long', menu
	      completion will be turned on if the list does  not  fit  on  the
	      screen.	This  does  not activate menu completion if the widget
	      normally only lists completions,	but  menu  completion  can  be
	      activated	 in  that  case	 with the value `yes=long-list' (Typi‐
	      cally, the value `select=long-list' described later is more use‐
	      ful as it provides control over scrolling.)

	      Similarly,  with any of the `false' values (as in `no=10'), menu
	      completion will not be used if there are num or more matches.

	      The value of this widget also controls menu selection, as imple‐
	      mented  by  the  zsh/complist  module.  The following values may
	      appear either alongside or instead of the values above.

	      If the value contains the string `select', menu  selection  will
	      be started unconditionally.

	      In the form `select=num', menu selection will only be started if
	      there are at least num matches.  If the values for more than one
	      tag provide a number, the smallest number is taken.

	      Menu  selection can be turned off explicitly by defining a value
	      containing the string`no-select'.

	      It is also possible to start menu selection only if the list  of
	      matches	does  not  fit	on  the	 screen	 by  using  the	 value
	      `select=long'.  To start menu selection even if the current wid‐
	      get only performs listing, use the value `select=long-list'.

	      To  turn on menu completion or menu selection when a there are a
	      certain number of matches or the list of matches does not fit on
	      the  screen,  both  of  `yes=' and `select=' may be given twice,
	      once with a number and once with `long' or `long-list'.

	      Finally, it is possible to activate two special  modes  of  menu
	      selection.   The word `interactive' in the value causes interac‐
	      tive mode to be  entered	immediately  when  menu	 selection  is
	      started;	see the description of the zsh/complist module in zsh‐
	      modules(1).RE for a description of interactive mode.   Including
	      the  string  `search' does the same for incremental search mode.
	      To  select  backward  incremental	 search,  include  the	string
	      `search-backward'.  )

	      muttrc If	 set,  gives  the  location  of the mutt configuration
		     file.  It defaults to `~/.muttrc'.

	      numbers
		     This is used with the jobs tag.  If  it  is  `true',  the
		     shell  will  complete job numbers instead of the shortest
		     unambiguous prefix of the job command text.  If the value
		     is	 a  number, job numbers will only be used if that many
		     words from the job descriptions are required  to  resolve
		     ambiguities.   For	 example, if the value is `1', strings
		     will only be used if all jobs differ in the first word on
		     their command lines.

	      old-list
		     This  is used by the _oldlist completer.  If it is set to
		     `always', then standard  widgets  which  perform  listing
		     will  retain  the	current	 list of matches, however they
		     were generated; this can be turned	 off  explicitly  with
		     the  value	 `never',  giving  the	behaviour  without the
		     _oldlist completer.  If the style is unset, or any	 other
		     value, then the existing list of completions is displayed
		     if it is not already; otherwise, the standard  completion
		     list  is  generated;  this	 is  the  default behaviour of
		     _oldlist.	However, if there is  an  old  list  and  this
		     style  contains  the  name of the completer function that
		     generated the list, then the old list will be  used  even
		     if	 it  was generated by a widget which does not do list‐
		     ing.

		     For example, suppose  you	type  ^Xc  to  use  the	 _cor‐
		     rect_word	widget,	 which generates a list of corrections
		     for the word under the cursor.  Usually, typing ^D	 would
		     generate  a  standard list of completions for the word on
		     the command line, and show that.  With _oldlist, it  will
		     instead show the list of corrections already generated.

		     As	 another  example  consider the _match completer: with
		     the insert-unambiguous style set  to  `true'  it  inserts
		     only  a  common prefix string, if there is any.  However,
		     this may remove parts of the original  pattern,  so  that
		     further completion could produce more matches than on the
		     first attempt.  By using the _oldlist completer and  set‐
		     ting  this style to _match, the list of matches generated
		     on the first attempt will be used again.

	      old-matches
		     This is used by the _all_matches completer to  decide  if
		     an	 old  list  of	matches	 should be used if one exists.
		     This is selected by one of the `true' values  or  by  the
		     string `only'.  If the value is `only', _all_matches will
		     only use an old list and won't have  any  effect  on  the
		     list of matches currently being generated.

		     If	 this  style is set it is generally unwise to call the
		     _all_matches completer unconditionally.  One possible use
		     is	 for  either  this  style or the completer style to be
		     defined with the -e option to zstyle to  make  the	 style
		     conditional.

	      old-menu
		     This  is used by the _oldlist completer.  It controls how
		     menu completion behaves when  a  completion  has  already
		     been  inserted  and  the user types a standard completion
		     key such as TAB.  The default behaviour  of  _oldlist  is
		     that  menu	 completion always continues with the existing
		     list of completions.  If this style is  set  to  `false',
		     however,  a new completion is started if the old list was
		     generated by a different completion command; this is  the
		     behaviour without the _oldlist completer.

		     For  example,  suppose you type ^Xc to generate a list of
		     corrections, and menu completion is started in one of the
		     usual  ways.   Usually,  or with this style set to false,
		     typing TAB at this point would start trying  to  complete
		     the  line	as  it now appears.  With _oldlist, it instead
		     continues to cycle through the list of corrections.

	      original
		     This is used by the _approximate and _correct  completers
		     to	 decide	 if  the  original string should be added as a
		     possible completion.  Normally,  this  is	done  only  if
		     there  are at least two possible corrections, but if this
		     style is set to `true', it is always  added.   Note  that
		     the  style	 will  be examined with the completer field in
		     the context name set to correct-num  or  approximate-num,
		     where num is the number of errors that were accepted.

	      packageset
		     This  style  is  used  when  completing  arguments of the
		     Debian `dpkg' program.  It contains an override  for  the
		     default package set for a given context.  For example,

			    zstyle ':completion:*:complete:dpkg:option--status-1:*' \
					   packageset avail

		     causes  available	packages,  rather  than only installed
		     packages, to be completed for `dpkg --status'.

	      path   The function that completes color names uses  this	 style
		     with the colors tag.  The value should be the pathname of
		     a file containing color names in the  format  of  an  X11
		     rgb.txt  file.   If the style is not set but this file is
		     found in one of various standard  locations  it  will  be
		     used as the default.

	      pine-directory
		     If	 set,  specifies the directory containing PINE mailbox
		     files.  There is no default, since recursively  searching
		     this directory is inconvenient for anyone who doesn't use
		     PINE.

	      ports  A list of Internet service names (network ports) to  com‐
		     plete.   If this is not set, service names are taken from
		     the file `/etc/services'.

	      prefix-hidden
		     This is used for certain completions which share a common
		     prefix,   for  example  command  options  beginning  with
		     dashes.  If it is `true', the prefix will not be shown in
		     the list of matches.

		     The default value for this style is `false'.

	      prefix-needed
		     This,  too, is used for matches with a common prefix.  If
		     it is set to `true' this common prefix must be  typed  by
		     the user to generate the matches.	In the case of command
		     options, this means that the initial `-',	`+',  or  `--'
		     must be typed explicitly before option names will be com‐
		     pleted.

		     The default value for this style is `true'.

	      preserve-prefix
		     This style is used when completing path names.  Its value
		     should  be	 a  pattern  matching an initial prefix of the
		     word to complete that should be left unchanged under  all
		     circumstances.   For  example,  on some Unices an initial
		     `//' (double slash) has a special meaning;	 setting  this
		     style  to	the  string `//' will preserve it.  As another
		     example, setting this style to `?:/' under	 Cygwin	 would
		     allow completion after `a:/...' and so on.

	      range  This  is  used  by	 the  _history completer and the _his‐
		     tory_complete_word bindable command to decide which words
		     should be completed.

		     If	 it  is a singe number, only the last N words from the
		     history will be completed.

		     If it is a range of the form `max:slice', the last	 slice
		     words  will be completed; then if that yields no matches,
		     the slice words before those will be  tried  and  so  on.
		     This  process  stops  either  when at least one match was
		     been found, or max words have been tried.

		     The default is to complete all words from the history  at
		     once.

	      regular
		     This  style  is  used  by the _expand_alias completer and
		     bindable command.	If set to `true' (the default),	 regu‐
		     lar  aliases  will	 be expanded but only in command posi‐
		     tion.  If it is set  to  `false',	regular	 aliases  will
		     never  be	expanded.    If it is set to `always', regular
		     aliases will be expanded even if not in command position.

	      rehash If this is set when  completing  external	commands,  the
		     internal list (hash) of commands will be updated for each
		     search by issuing the rehash command.  There is  a	 speed
		     penalty  for  this	 which is only likely to be noticeable
		     when directories in the path have slow file access.

	      remote-access
		     If set to false, certain commands will be prevented  from
		     making  Internet  connections to retrieve remote informa‐
		     tion.  This includes the completion for the CVS command.

		     It is not always possible to know if connections  are  in
		     fact  to a remote site, so some may be prevented unneces‐
		     sarily.

	      remove-all-dups
		     The _history_complete_word bindable command and the _his‐
		     tory  completer  use  this	 to  decide  if	 all duplicate
		     matches should be removed, rather than  just  consecutive
		     duplicates.

	      select-prompt
		     If	 this  is  set	for the default tag, its value will be
		     displayed during  menu  selection	(see  the  menu	 style
		     above)  when  the	completion  list  does	not fit on the
		     screen  as	 a  whole.   The  same	escapes	 as  for   the
		     list-prompt style are understood, except that the numbers
		     refer to the match or line the mark  is  on.   A  default
		     prompt is used when the value is the empty string.

	      select-scroll
		     This  style  is tested for the default tag and determines
		     how a completion list is scrolled during a menu selection
		     (see  the menu style above) when the completion list does
		     not fit on the screen as a whole.	If the	value  is  `0'
		     (zero), the list is scrolled by half-screenfuls; if it is
		     a positive integer, the list is  scrolled	by  the	 given
		     number  of lines; if it is a negative number, the list is
		     scrolled by a screenful minus the absolute value  of  the
		     given  number of lines.  The default is to scroll by sin‐
		     gle lines.

	      separate-sections
		     This style is used with the manuals tag  when  completing
		     names of manual pages.  If it is `true', entries for dif‐
		     ferent sections are added separately using tag  names  of
		     the form `manual.X', where X is the section number.  When
		     the group-name style is also in effect, pages  from  dif‐
		     ferent  sections  will  appear separately.	 This style is
		     also used similarly with the words style when  completing
		     words  for the dict command. It allows words from differ‐
		     ent dictionary databases to  be  added  separately.   The
		     default for this style is `false'.

	      show-completer
		     Tested whenever a new completer is tried.	If it is true,
		     the completion system outputs a progress message  in  the
		     listing  area showing what completer is being tried.  The
		     message will be overwritten by any	 output	 when  comple‐
		     tions  are	 found and is removed after completion is fin‐
		     ished.

	      single-ignored
		     This is used by the _ignored completer when there is only
		     one match.	 If its value is `show', the single match will
		     be displayed but not inserted.  If the value  is  `menu',
		     then  the	single	match and the original string are both
		     added as matches and menu completion is  started,	making
		     it easy to select either of them.

	      sort   Many  completion  widgets call _description at some point
		     which decides whether the matches	are  added  sorted  or
		     unsorted  (often  indirectly  via _wanted or _requested).
		     This style can be set explicitly to one of the usual true
		     or false values as an override.  If it is not set for the
		     context, the standard behaviour of the calling widget  is
		     used.

		     The  style	 is  tested  first  against  the  full context
		     including the tag, and if that fails to produce  a	 value
		     against the context without the tag.

		     If	  the  calling	widget	explicitly  requests  unsorted
		     matches, this is usually honoured.	 However, the  default
		     (unsorted)	 behaviour  of completion for the command his‐
		     tory may be overridden by setting the style to true.

		     In the _expand completer, if it is	 set  to  `true',  the
		     expansions generated will always be sorted.  If it is set
		     to `menu', then the expansions are only sorted when  they
		     are  offered as single strings but not in the string con‐
		     taining all possible expansions.

	      special-dirs
		     Normally, the completion code will not produce the direc‐
		     tory names `.' and `..' as possible completions.  If this
		     style is set to `true', it will add both `.' and `..'  as
		     possible  completions;  if	 it  is set to `..', only `..'
		     will be added.

		     The following example sets special-dirs to `..' when  the
		     current  prefix  is  empty,  is a single `.', or consists
		     only of a path beginning with `../'.  Otherwise the value
		     is `false'.

			    zstyle -e ':completion:*' special-dirs \
			       '[[ $PREFIX = (../)#(|.|..) ]] && reply=(..)'

	      squeeze-slashes
		     If	 set to `true', sequences of slashes in filename paths
		     (for example in `foo//bar') will be treated as  a	single
		     slash.   This is the usual behaviour of UNIX paths.  How‐
		     ever, by default the file completion function behaves  as
		     if there were a `*' between the slashes.

	      stop   If	 set  to  `true',  the _history_complete_word bindable
		     command will stop once when reaching the beginning or end
		     of	 the  history.	 Invoking  _history_complete_word will
		     then wrap around to the opposite end of the history.   If
		     this style is set to `false' (the default), _history_com‐
		     plete_word will loop immediately as in a menu completion.

	      strip-comments
		     If set to `true', this style causes non-essential comment
		     text to be removed from completion matches.  Currently it
		     is only used when completing e-mail  addresses  where  it
		     removes any display name from the addresses, cutting them
		     down to plain user@host form.

	      subst-globs-only
		     This is used by the _expand completer.  If it is  set  to
		     `true',  the  expansion  will only be used if it resulted
		     from globbing; hence, if expansions resulted from the use
		     of	 the  substitute style described below, but these were
		     not further changed by globbing, the expansions  will  be
		     rejected.

		     The default for this style is `false'.

	      substitute
		     This boolean style controls whether the _expand completer
		     will first try to expand all substitutions in the	string
		     (such as `$(...)' and `${...}').

		     The default is `true'.

	      suffix This  is used by the _expand completer if the word starts
		     with a tilde or contains a parameter expansion.  If it is
		     set  to  `true',  the  word  will	only be expanded if it
		     doesn't have a suffix,  i.e.  if  it  is  something  like
		     `~foo'  or	 `$foo'	 rather	 than  `~foo/'	or `$foo/bar',
		     unless that suffix itself	contains  characters  eligible
		     for expansion.  The default for this style is `true'.

	      tag-order
		     This provides a mechanism for sorting how the tags avail‐
		     able in a particular context will be used.

		     The values for the	 style	are  sets  of  space-separated
		     lists  of	tags.  The tags in each value will be tried at
		     the same time; if no match is found, the  next  value  is
		     used.   (See  the file-patterns style for an exception to
		     this behavior.)

		     For example:

			    zstyle ':completion:*:complete:-command-:*' tag-order \
				'commands functions'

		     specifies	that  completion  in  command  position	 first
		     offers  external commands and shell functions.  Remaining
		     tags will be tried if no completions are found.

		     In addition to tag names, each string in  the  value  may
		     take one of the following forms:

		     -	    If	any value consists of only a hyphen, then only
			    the tags specified in the other values are	gener‐
			    ated.   Normally  all tags not explicitly selected
			    are tried last if the specified tags fail to  gen‐
			    erate any matches.	This means that a single value
			    consisting only of a single hyphen turns off  com‐
			    pletion.

		     ! tags...
			    A  string starting with an exclamation mark speci‐
			    fies names of tags that are not to be  used.   The
			    effect  is	the same as if all other possible tags
			    for the context had been listed.

		     tag:label ...
			    Here, tag is one of the standard tags and label is
			    an	arbitrary name.	 Matches are generated as nor‐
			    mal but the name label is used in contexts instead
			    of tag.  This is not useful in words starting with
			    !.

			    If the label starts with  a	 hyphen,  the  tag  is
			    prepended  to  the label to form the name used for
			    lookup.  This can be used to make  the  completion
			    system try a certain tag more than once, supplying
			    different style settings  for  each	 attempt;  see
			    below for an example.

		     tag:label:description
			    As	before,	 but description will replace the `%d'
			    in the value of the format style  instead  of  the
			    default  description  supplied  by	the completion
			    function.	Spaces	in  the	 description  must  be
			    quoted  with  a  backslash.	  A  `%d' appearing in
			    description is replaced with the description given
			    by the completion function.

		     In	 any  of  the  forms above the tag may be a pattern or
		     several patterns in the form `{pat1,pat2...}'.   In  this
		     case  all matching tags will be used except for any given
		     explicitly in the same string.

		     One use of these features is to try  one  tag  more  than
		     once,  setting  other styles differently on each attempt,
		     but still to use all the other  tags  without  having  to
		     repeat  them  all.	  For  example,	 to make completion of
		     function names in command position ignore all the comple‐
		     tion functions starting with an underscore the first time
		     completion is tried:

			    zstyle ':completion:*:*:-command-:*' tag-order \
				'functions:-non-comp *' functions
			    zstyle ':completion:*:functions-non-comp' ignored-patterns '_*'

		     On the first attempt, all tags will be  offered  but  the
		     functions	tag  will  be  replaced by functions-non-comp.
		     The ignored-patterns style is set for this tag to exclude
		     functions	starting  with an underscore.  If there are no
		     matches, the second value of the tag-order style is  used
		     which  completes  functions  using	 the default tag, this
		     time presumably including all function names.

		     The matches for one  tag  can  be	split  into  different
		     groups.  For example:

			    zstyle ':completion:*' tag-order \
				'options:-long:long\ options
				 options:-short:short\ options
				 options:-single-letter:single\ letter\ options'

			    zstyle ':completion:*:options-long' ignored-patterns '[-+](|-|[^-]*)'
			    zstyle ':completion:*:options-short' ignored-patterns '--*' '[-+]?'
			    zstyle ':completion:*:options-single-letter' ignored-patterns '???*'

		     With  the	group-names  style set, options beginning with
		     `--', options beginning with a single `-' or `+' but con‐
		     taining  multiple	characters,  and single-letter options
		     will be  displayed	 in  separate  groups  with  different
		     descriptions.

		     Another use of patterns is to try multiple match specifi‐
		     cations one after another.	 The matcher-list style offers
		     something	similar,  but  it  is tested very early in the
		     completion system and hence can't be set for single  com‐
		     mands nor for more specific contexts.  Here is how to try
		     normal completion without any match specification and, if
		     that  generates  no matches, try again with case-insensi‐
		     tive matching, restricting the effect to arguments of the
		     command foo:

			    zstyle ':completion:*:*:foo:*' tag-order '*' '*:-case'
			    zstyle ':completion:*-case' matcher 'm:{a-z}={A-Z}'

		     First, all the tags offered when completing after foo are
		     tried using the normal tag name.  If  that	 generates  no
		     matches,  the  second  value  of tag-order is used, which
		     tries all tags again except that this time each has -case
		     appended  to  its	name for lookup of styles.  Hence this
		     time the value for the matcher style from the second call
		     to	 zstyle	 in  the  example  is  used to make completion
		     case-insensitive.

		     It is possible to use the -e option of the zstyle builtin
		     command  to  specify conditions for the use of particular
		     tags.  For example:

			    zstyle -e '*:-command-:*' tag-order '
				if [[ -n $PREFIX$SUFFIX ]]; then
				  reply=( )
				else
				  reply=( - )
				fi'

		     Completion in command position will be attempted only  if
		     the  string  typed	 so  far is not empty.	This is tested
		     using the PREFIX special parameter; see zshcompwid for  a
		     description  of  parameters which are special inside com‐
		     pletion widgets.  Setting reply to an  empty  array  pro‐
		     vides  the	 default behaviour of trying all tags at once;
		     setting it to an array containing only a hyphen  disables
		     the use of all tags and hence of all completions.

		     If no tag-order style has been defined for a context, the
		     strings  `(|*-)argument-*	 (|*-)option-*	 values'   and
		     `options'	plus  all tags offered by the completion func‐
		     tion will be used to provide a sensible default  behavior
		     that  causes  arguments (whether normal command arguments
		     or arguments of options) to be  completed	before	option
		     names for most commands.

	      urls   This  is used together with the the urls tag by functions
		     completing URLs.

		     If the value consists of more than one string, or if  the
		     only  string  does	 not  name  a  file  or directory, the
		     strings are used as the URLs to complete.

		     If the value contains only one string which is  the  name
		     of a normal file the URLs are taken from that file (where
		     the URLs may be separated by white space or newlines).

		     Finally, if the only string in the value names  a	direc‐
		     tory,  the	 directory  hierarchy rooted at this directory
		     gives the completions.  The top level directory should be
		     the file access method, such as `http', `ftp', `bookmark'
		     and so on.	 In many cases the next level  of  directories
		     will  be a filename.  The directory hierarchy can descend
		     as deep as necessary.

		     For example,

			    zstyle ':completion:*' urls ~/.urls
			    mkdir -p ~/.urls/ftp/ftp.zsh.org/pub/development

		     allows completion	of  all	 the  components  of  the  URL
		     ftp://ftp.zsh.org/pub/development after suitable commands
		     such as `netscape' or `lynx'.  Note, however, that access
		     methods  and  files  are  completed separately, so if the
		     hosts style is set hosts can be completed without	refer‐
		     ence to the urls style.

		     See the description in the function _urls itself for more
		     information (e.g. `more $^fpath/_urls(N)').

	      use-cache
		     If this is set, the completion caching layer is activated
		     for  any  completions which use it (via the _store_cache,
		     _retrieve_cache,  and  _cache_invalid  functions).	   The
		     directory	containing the cache files can be changed with
		     the cache-path style.

	      use-compctl
		     If this style is set to a string not equal to  false,  0,
		     no, and off, the completion system may use any completion
		     specifications defined with the compctl builtin  command.
		     If	 the style is unset, this is done only if the zsh/com‐
		     pctl module is loaded.  The string may also  contain  the
		     substring	`first'	 to use completions defined with `com‐
		     pctl -T', and the substring `default' to use the  comple‐
		     tion defined with `compctl -D'.

		     Note  that this is only intended to smooth the transition
		     from compctl to the new completion system and may	disap‐
		     pear in the future.

		     Note  also that the definitions from compctl will only be
		     used if there is no specific completion function for  the
		     command in question.  For example, if there is a function
		     _foo to complete arguments to the	command	 foo,  compctl
		     will never be invoked for foo.  However, the compctl ver‐
		     sion will be tried if foo only uses default completion.

	      use-ip By default, the function _hosts that completes host names
		     strips IP addresses from entries read from host databases
		     such as NIS and ssh files.	 If this style	is  true,  the
		     corresponding  IP	addresses  can	be  completed as well.
		     This style is not use in  any  context  where  the	 hosts
		     style  is	set; note also it must be set before the cache
		     of host names is generated (typically the	first  comple‐
		     tion attempt).

	      use-perl
		     Various  parts  of the function system use awk to extract
		     words from files or command output	 as  this  universally
		     available.	  However, many versions of awk have arbitrary
		     limits on the size of input.  If this style is set,  perl
		     will  be  used instead.  This is almost always preferable
		     if perl is available on your system.

		     Currently this is only used in  completions  for  `make',
		     but  it  may  be extended depending on authorial frustra‐
		     tion.

	      users  This may be set to a list of usernames to	be  completed.
		     If	 it  is not set all usernames will be completed.  Note
		     that if it is set only that list of users	will  be  com‐
		     pleted;  this  is	because	 on  some systems querying all
		     users can take a prohibitive amount of time.

	      users-hosts
		     The  values  of  this  style  should  be  of   the	  form
		     `user@host'  or `user:host'. It is used for commands that
		     need pairs of user- and hostnames.	 These	commands  will
		     complete  usernames  from	this  style  (only),  and will
		     restrict subsequent hostname completion to	 hosts	paired
		     with that user in one of the values of the style.

		     It is possible to group values for sets of commands which
		     allow a remote login, such as rlogin and  ssh,  by	 using
		     the  my-accounts tag.  Similarly, values for sets of com‐
		     mands which usually refer to the accounts of  other  peo‐
		     ple, such as talk and finger, can be grouped by using the
		     other-accounts tag.  More ambivalent commands may use the
		     accounts tag.

	      users-hosts-ports
		     Like  users-hosts	but  used for commands like telnet and
		     containing strings of the form `user@host:port'.

	      verbose
		     If set, as it is by default, the  completion  listing  is
		     more  verbose.  In particular many commands show descrip‐
		     tions for options if this style is `true'.

	      word   This is used by the _list completer, which	 prevents  the
		     insertion	 of  completions  until	 a  second  completion
		     attempt when the line has not changed.  The normal way of
		     finding  out  if  the  line has changed is to compare its
		     entire contents between the two occasions.	 If this style
		     is	 true, the comparison is instead performed only on the
		     current  word.   Hence  if	 completion  is	 performed  on
		     another  word with the same contents, completion will not
		     be delayed.

CONTROL FUNCTIONS
       The initialization script compinit redefines all the widgets which per‐
       form  completion	 to  call the supplied widget function _main_complete.
       This function acts as a wrapper calling the so-called `completer' func‐
       tions  that  generate  matches.	If _main_complete is called with argu‐
       ments, these are taken as the names of completer functions to be called
       in the order given.  If no arguments are given, the set of functions to
       try is taken from the completer style.  For example, to use normal com‐
       pletion and correction if that doesn't generate any matches:

	      zstyle ':completion:*' completer _complete _correct

       after  calling compinit. The default value for this style is `_complete
       _ignored', i.e. normally only ordinary completion is tried, first  with
       the  effect  of	the  ignored-patterns  style and then without it.  The
       _main_complete function uses the return status of the  completer	 func‐
       tions  to  decide  if other completers should be called.	 If the return
       status is zero, no other completers are tried  and  the	_main_complete
       function returns.

       If  the	first argument to _main_complete is a single hyphen, the argu‐
       ments will not be taken as names of completers.	 Instead,  the	second
       argument	 gives a name to use in the completer field of the context and
       the other arguments give a command name and arguments to call to gener‐
       ate the matches.

       The  following  completer  functions are contained in the distribution,
       although users may write their own.  Note that in contexts the  leading
       underscore  is  stripped,  for example basic completion is performed in
       the context `:completion::complete:...'.

       _all_matches
	      This completer can be used to add a  string  consisting  of  all
	      other matches.  As it influences later completers it must appear
	      as the first completer in the list.  The list of all matches  is
	      affected by the avoid-completer and old-matches styles described
	      above.

	      It may be useful to use the _generic function described below to
	      bind _all_matches to its own keystroke, for example:

		     zle -C all-matches complete-word _generic
		     bindkey '^Xa' all-matches
		     zstyle ':completion:all-matches:*' old-matches only
		     zstyle ':completion:all-matches::::' completer _all_matches

	      Note  that  this does not generate completions by itself:	 first
	      use any of the standard ways of generating  a  list  of  comple‐
	      tions, then use ^Xa to show all matches.	It is possible instead
	      to add a standard completer to the list  and  request  that  the
	      list of all matches should be directly inserted:

		     zstyle ':completion:all-matches::::' completer _all_matches _complete
		     zstyle ':completion:all-matches:*' insert true

	      In this case the old-matches style should not be set.

       _approximate
	      This  is similar to the basic _complete completer but allows the
	      completions to  undergo  corrections.   The  maximum  number  of
	      errors  can  be  specified  by  the  max-errors  style;  see the
	      description of approximate matching in zshexpn(1) for how errors
	      are  counted.   Normally this completer will only be tried after
	      the normal _complete completer:

		     zstyle ':completion:*' completer _complete _approximate

	      This will give correcting completion if and only if normal  com‐
	      pletion  yields no possible completions.	When corrected comple‐
	      tions are found, the completer will normally start menu  comple‐
	      tion allowing you to cycle through these strings.

	      This  completer uses the tags corrections and original when gen‐
	      erating the possible corrections and the original	 string.   The
	      format style for the former may contain the additional sequences
	      `%e' and `%o' which will be replaced by  the  number  of	errors
	      accepted	to  generate  the corrections and the original string,
	      respectively.

	      The completer  progressively  increases  the  number  of	errors
	      allowed up to the limit by the max-errors style, hence if a com‐
	      pletion is found with one error, no completions with two	errors
	      will be shown, and so on.	 It modifies the completer name in the
	      context to indicate the number of errors	being  tried:  on  the
	      first  try  the completer field contains `approximate-1', on the
	      second try `approximate-2', and so on.

	      When _approximate is called from another function, the number of
	      errors to accept may be passed with the -a option.  The argument
	      is in the same format  as	 the  max-errors  style,  all  in  one
	      string.

	      Note  that  this completer (and the _correct completer mentioned
	      below) can be quite expensive to call, especially when  a	 large
	      number  of  errors are allowed.  One way to avoid this is to set
	      up the completer style using the -e option  to  zstyle  so  that
	      some  completers	are  only  used when completion is attempted a
	      second time on the same string, e.g.:

		     zstyle -e ':completion:*' completer '
		       if [[ $_last_try != "$HISTNO$BUFFER$CURSOR" ]]; then
			 _last_try="$HISTNO$BUFFER$CURSOR"
			 reply=(_complete _match _prefix)
		       else
			 reply=(_ignored _correct _approximate)
		       fi'

	      This uses the HISTNO parameter and the BUFFER and CURSOR special
	      parameters  that are available inside zle and completion widgets
	      to find out if the command line hasn't changed  since  the  last
	      time completion was tried.  Only then are the _ignored, _correct
	      and _approximate completers called.

       _complete
	      This completer generates all  possible  completions  in  a  con‐
	      text-sensitive  manner, i.e. using the settings defined with the
	      compdef function explained above and the current settings of all
	      special parameters.  This gives the normal completion behaviour.

	      To  complete  arguments  of commands, _complete uses the utility
	      function _normal, which is in turn responsible for  finding  the
	      particular function; it is described below.  Various contexts of
	      the form -context- are handled specifically. These are all  men‐
	      tioned above as possible arguments to the #compdef tag.

	      Before  trying  to find a function for a specific context, _com‐
	      plete checks if the  parameter  `compcontext'  is	 set.  Setting
	      `compcontext'  allows  the  usual	 completion  dispatching to be
	      overridden which is useful in places such	 as  a	function  that
	      uses vared for input. If it is set to an array, the elements are
	      taken to be the possible matches which will be  completed	 using
	      the tag `values' and the description `value'. If it is set to an
	      associative array, the keys are used as the possible completions
	      and  the	values (if non-empty) are used as descriptions for the
	      matches.	If `compcontext' is set to a string containing colons,
	      it  should  be of the form `tag:descr:action'.  In this case the
	      tag and descr give the tag and description to use and the action
	      indicates	 what should be completed in one of the forms accepted
	      by the _arguments utility function described below.

	      Finally, if `compcontext' is set to a string without colons, the
	      value  is	 taken as the name of the context to use and the func‐
	      tion defined for that context will be called.  For this purpose,
	      there  is	 a special context named -command-line- that completes
	      whole command lines (commands and their arguments).  This is not
	      used  by the completion system itself but is nonetheless handled
	      when explicitly called.

       _correct
	      Generate corrections, but not completions, for the current word;
	      this is similar to _approximate but will not allow any number of
	      extra characters at the cursor  as  that	completer  does.   The
	      effect  is  similar to spell-checking.  It is based on _approxi‐
	      mate, but the completer field in the context name is correct.

	      For example, with:

		     zstyle ':completion:::::' completer _complete _correct _approximate
		     zstyle ':completion:*:correct:::' max-errors 2 not-numeric
		     zstyle ':completion:*:approximate:::' max-errors 3 numeric

	      correction will accept up to two errors.	If a numeric  argument
	      is  given, correction will not be performed, but correcting com‐
	      pletion will be, and will accept as many errors as given by  the
	      numeric  argument.  Without a numeric argument, first correction
	      and then correcting completion will be tried, with the first one
	      accepting two errors and the second one accepting three errors.

	      When  _correct  is called as a function, the number of errors to
	      accept may be given following the -a option.  The argument is in
	      the same form a values to the accept style, all in one string.

	      This  completer  function	 is  intended  to  be used without the
	      _approximate completer or, as in the example,  just  before  it.
	      Using  it	 after	the  _approximate  completer  is useless since
	      _approximate will at least generate the corrected strings gener‐
	      ated by the _correct completer -- and probably more.

       _expand
	      This  completer function does not really perform completion, but
	      instead checks if the word on the command line is	 eligible  for
	      expansion	 and,  if  it is, gives detailed control over how this
	      expansion is done.  For this to happen,  the  completion	system
	      needs  to	 be invoked with complete-word, not expand-or-complete
	      (the default binding for TAB), as otherwise the string  will  be
	      expanded by the shell's internal mechanism before the completion
	      system is started.  Note also this completer  should  be	called
	      before the _complete completer function.

	      The  tags used when generating expansions are all-expansions for
	      the string containing all possible expansions,  expansions  when
	      adding  the  possible  expansions as single matches and original
	      when adding the original string from the	line.	The  order  in
	      which  these strings are generated, if at all, can be controlled
	      by the group-order and tag-order styles, as usual.

	      The format string for all-expansions and for expansions may con‐
	      tain  the	 sequence  `%o' which will be replaced by the original
	      string from the line.

	      The kind of expansion to be tried is controlled by  the  substi‐
	      tute, glob and subst-globs-only styles.

	      It is also possible to call _expand as a function, in which case
	      the different modes may be selected with options: -s for substi‐
	      tute, -g for glob and -o for subst-globs-only.

       _expand_alias
	      If  the word the cursor is on is an alias, it is expanded and no
	      other completers are called.  The types of aliases which are  to
	      be  expanded  can	 be controlled with the styles regular, global
	      and disabled.

	      This function is also a bindable command, see the section `Bind‐
	      able Commands' below.

       _history
	      Complete	words  from  the  shell's command  history.  This com‐
	      pleter can be controlled by the remove-all-dups, and sort styles
	      as for the _history_complete_word bindable command, see the sec‐
	      tion `Bindable Commands' below and the section `Completion  Sys‐
	      tem Configuration' above.

       _ignored
	      The  ignored-patterns  style  can	 be  set to a list of patterns
	      which are compared against possible completions;	matching  ones
	      are  removed.   With  this  completer those matches can be rein‐
	      stated, as if no ignored-patterns style were set.	 The completer
	      actually generates its own list of matches; which completers are
	      invoked is determined in the same way as for  the	 _prefix  com‐
	      pleter.  The single-ignored style is also available as described
	      above.

       _list  This completer allows the insertion of  matches  to  be  delayed
	      until  completion is attempted a second time without the word on
	      the line being changed.  On the first attempt, only the list  of
	      matches  will  be shown.	It is affected by the styles condition
	      and word, see  the  section  `Completion	System	Configuration'
	      above.

       _match This  completer  is intended to be used after the _complete com‐
	      pleter.  It behaves similarly but the string on the command line
	      may be a pattern to match against trial completions.  This gives
	      the effect of the GLOB_COMPLETE option.

	      Normally completion will be performed by taking the pattern from
	      the  line,  inserting a `*' at the cursor position and comparing
	      the resulting pattern with the possible  completions  generated.
	      This  can	 be  modified  with the match-original style described
	      above.

	      The generated matches will  be  offered  in  a  menu  completion
	      unless  the  insert-unambiguous  style is set to `true'; see the
	      description above for other options for this style.

	      Note that matcher specifications defined globally or used by the
	      completion  functions (the styles matcher-list and matcher) will
	      not be used.

       _menu  This completer was written as simple example  function  to  show
	      how  menu	 completion  can be enabled in shell code. However, it
	      has the notable effect of disabling menu selection which can  be
	      useful  with  _generic  based  widgets. It should be used as the
	      first completer in the list.  Note that this is  independent  of
	      the  setting  of the MENU_COMPLETE option and does not work with
	      the other menu completion widgets such as reverse-menu-complete,
	      or accept-and-menu-complete.

       _oldlist
	      This  completer  controls	 how  the  standard completion widgets
	      behave when there is an existing list of completions  which  may
	      have  been  generated  by	 a  special  completion	 (i.e. a sepa‐
	      rately-bound completion command).	 It allows the	ordinary  com‐
	      pletion  keys  to	 continue  to use the list of completions thus
	      generated, instead of producing a new list of  ordinary  contex‐
	      tual  completions.   It  should appear in the list of completers
	      before any of the widgets which generate matches.	 It  uses  two
	      styles:  old-list and old-menu, see the section `Completion Sys‐
	      tem Configuration' above.

       _prefix
	      This completer can be used to try	 completion  with  the	suffix
	      (everything after the cursor) ignored.  In other words, the suf‐
	      fix will not be considered to be part of the word	 to  complete.
	      The effect is similar to the expand-or-complete-prefix command.

	      The completer style is used to decide which other completers are
	      to be called to generate matches.	 If this style is  unset,  the
	      list  of	completers  set	 for  the  current  context is used --
	      except, of course, the _prefix completer	itself.	  Furthermore,
	      if  this	completer  appears  more than once in the list of com‐
	      pleters only those completers not	 already  tried	 by  the  last
	      invocation of _prefix will be called.

	      For example, consider this global completer style:

		     zstyle ':completion:*' completer \
			 _complete _prefix _correct _prefix:foo

	      Here, the _prefix completer tries normal completion but ignoring
	      the suffix.  If that doesn't generate any matches,  and  neither
	      does  the	 call to the _correct completer after it, _prefix will
	      be called a second time and, now only trying correction with the
	      suffix  ignored.	On the second invocation the completer part of
	      the context appears as `foo'.

	      To use _prefix as the last resort and try only normal completion
	      when it is invoked:

		     zstyle ':completion:*' completer _complete ... _prefix
		     zstyle ':completion::prefix:*' completer _complete

	      The  add-space  style is also respected.	If it is set to `true'
	      then _prefix will insert a space between the  matches  generated
	      (if any) and the suffix.

	      Note  that this completer is only useful if the COMPLETE_IN_WORD
	      option is set; otherwise, the cursor will be moved to the end of
	      the  current word before the completion code is called and hence
	      there will be no suffix.

       bashcompinit
	      This function provides compatibility  with  bash's  programmable
	      completion system.  When run it will define the functions, comp‐
	      gen and complete which correspond to the bash builtins with  the
	      same names.  It will then be possible to use completion specifi‐
	      cations and functions written for bash.

BINDABLE COMMANDS
       In addition to the context-dependent completions	 provided,  which  are
       expected to work in an intuitively obvious way, there are a few widgets
       implementing special behaviour which can be bound separately  to	 keys.
       The following is a list of these and their default bindings.

       _bash_completions
	      This  function  is  used by two widgets, _bash_complete-word and
	      _bash_list-choices.  It exists  to  provide  compatibility  with
	      completion  bindings in bash.  The last character of the binding
	      determines what is completed: `!', command names; `$',  environ‐
	      ment  variables;	`@',  host  names;  `/',  file names; `~' user
	      names.  In bash, the binding preceded by `\e' gives  completion,
	      and  preceded  by `^X' lists options.  As some of these bindings
	      clash with standard zsh bindings, only `\e~' and `^X~' are bound
	      by  default.   To add the rest, the following should be added to
	      .zshrc after compinit has been run:

		     for key in '!' '$' '@' '/' '~'; do
		       bindkey "\e$key" _bash_complete-word
		       bindkey "^X$key" _bash_list-choices
		     done

	      This includes the bindings for `~' in  case  they	 were  already
	      bound  to	 something else; the completion code does not override
	      user bindings.

       _correct_filename (^XC)
	      Correct the filename path at the cursor position.	 Allows up  to
	      six  errors in the name.	Can also be called with an argument to
	      correct a filename path, independently of zle; the correction is
	      printed on standard output.

       _correct_word (^Xc)
	      Performs correction of the current argument using the usual con‐
	      textual completions as possible choices. This stores the	string
	      `correct-word'  in  the  function	 field of the context name and
	      then calls the _correct completer.

       _expand_alias (^Xa)
	      This function can be used as a completer and as a bindable  com‐
	      mand.   It  expands the word the cursor is on if it is an alias.
	      The types of alias expanded can be controlled  with  the	styles
	      regular, global and disabled.

	      When  used as a bindable command there is one additional feature
	      that can be selected by setting the complete  style  to  `true'.
	      In  this	case,  if  the	word  is  not  the  name  of an alias,
	      _expand_alias tries to complete the word to a  full  alias  name
	      without  expanding  it.  It leaves the cursor directly after the
	      completed word so that invoking  _expand_alias  once  more  will
	      expand the now-complete alias name.

       _expand_word (^Xe)
	      Performs expansion on the current word:  equivalent to the stan‐
	      dard expand-word	command,  but  using  the  _expand  completer.
	      Before  calling  it, the function field of the context is set to
	      `expand-word'.

       _generic
	      This function is not defined  as	a  widget  and	not  bound  by
	      default.	 However,  it  can be used to define a widget and will
	      then store the name of the widget in the function field  of  the
	      context and call the completion system.  This allows custom com‐
	      pletion widgets with their own  set  of  style  settings	to  be
	      defined  easily.	 For example, to define a widget that performs
	      normal completion and starts menu selection:

		     zle -C foo complete-word _generic
		     bindkey '...' foo
		     zstyle ':completion:foo:*' menu yes select=1

	      Note in particular that the completer style may be set  for  the
	      context in order to change the set of functions used to generate
	      possible matches.	 If _generic is called with  arguments,	 those
	      are  passed  through to _main_complete as the list of completers
	      in place of those defined by the completer style.

       _history_complete_word (\e/)
	      Complete words from the shell's command history. This  uses  the
	      list, remove-all-dups, sort, and stop styles.

       _most_recent_file (^Xm)
	      Complete	the  name  of the most recently modified file matching
	      the pattern on the command line (which may be blank).  If	 given
	      a	 numeric  argument  N, complete the Nth most recently modified
	      file.  Note the completion, if any, is always unique.

       _next_tags (^Xn)
	      This command alters the set of matches used to that for the next
	      tag,  or	set of tags, either as given by the tag-order style or
	      as set by default; these matches would otherwise not  be	avail‐
	      able.   Successive  invocations of the command cycle through all
	      possible sets of tags.

       _read_comp (^X^R)
	      Prompt the user for a string, and use that to perform completion
	      on  the  current	word.	There  are  two	 possibilities for the
	      string.  First, it can be a set  of  words  beginning  `_',  for
	      example  `_files	-/', in which case the function with any argu‐
	      ments will be called to generate the  completions.   Unambiguous
	      parts of the function name will be completed automatically (nor‐
	      mal completion is not available at this point) until a space  is
	      typed.

	      Second, any other string will be passed as a set of arguments to
	      compadd and should hence be an expression specifying what should
	      be completed.

	      A	 very  restricted  set	of  editing commands is available when
	      reading the string:  `DEL' and `^H' delete the  last  character;
	      `^U'  deletes  the  line,	 and `^C' and `^G' abort the function,
	      while `RET' accepts the completion.  Note	 the  string  is  used
	      verbatim	as  a  command	line,  so  arguments must be quoted in
	      accordance with standard shell rules.

	      Once a string has been read, the next call  to  _read_comp  will
	      use  the existing string instead of reading a new one.  To force
	      a new string to be read, call _read_comp with  a	numeric	 argu‐
	      ment.

       _complete_debug (^X?)
	      This widget performs ordinary completion, but captures in a tem‐
	      porary file a trace of the shell commands executed by  the  com‐
	      pletion  system.	 Each completion attempt gets its own file.  A
	      command to view each of these files is pushed  onto  the	editor
	      buffer stack.

       _complete_help (^Xh)
	      This  widget  displays  information about the context names, the
	      tags, and the completion functions used when completing  at  the
	      current  cursor position. If given a numeric argument other than
	      1 (as in `ESC-2 ^Xh'), then the styles used and the contexts for
	      which they are used will be shown, too.

	      Note  that  the  information  about styles may be incomplete; it
	      depends on the information available from the  completion	 func‐
	      tions  called,  which  in	 turn  is determined by the user's own
	      styles and other settings.

       _complete_help_generic
	      Unlike other commands listed here, this must  be	created	 as  a
	      normal ZLE widget rather than a completion widget (i.e. with zle
	      -N).  It is used for generating help with a widget bound to  the
	      _generic widget that is described above.

	      If  this widget is created using the name of the function, as it
	      is by default, then when executed it will read a	key  sequence.
	      This  is expected to be bound to a call to a completion function
	      that uses the _generic widget.  That widget  will	 be  executed,
	      and  information	provided  in  the  same	 format that the _com‐
	      plete_help widget displays for contextual completion.

	      If the widget's name contains debug, for example if it  is  cre‐
	      ated as `zle -N _complete_debug_generic _complete_help_generic',
	      it will read and execute the keystring for a generic  widget  as
	      before, but then generate debugging information as done by _com‐
	      plete_debug for contextual completion.

	      If the widget's  name  contains  noread,	it  will  not  read  a
	      keystring	 but  instead  arrange	that the next use of a generic
	      widget run in the same shell will have the effect	 as  described
	      above.

	      The    widget    works	by   setting   the   shell   parameter
	      ZSH_TRACE_GENERIC_WIDGET which is read by	 _generic.   Unsetting
	      the parameter cancels any pending effect of the noread form.

	      For example, after executing the following:

		     zle -N _complete_debug_generic _complete_help_generic
		     bindkey '^x:' _complete_debug_generic

	      typing `C-x :' followed by the key sequence for a generic widget
	      will cause trace output for that widget to be saved to a file.

       _complete_tag (^Xt)
	      This widget completes symbol tags created by the etags or	 ctags
	      programmes (note there is no connection with the completion sys‐
	      tem's tags) stored in a file TAGS, in the format used by	etags,
	      or  tags,	 in the format created by ctags.  It will look back up
	      the path hierarchy for the first occurrence of either  file;  if
	      both  exist,  the	 file  TAGS is preferred.  You can specify the
	      full path to a TAGS or tags file by setting the parameter $TAGS‐
	      FILE  or	$tagsfile  respectively.  The corresponding completion
	      tags used are etags and vtags, after emacs and vi respectively.

UTILITY FUNCTIONS
       Descriptions follow for utility functions that may be useful when writ‐
       ing  completion	functions.   If functions are installed in subdirecto‐
       ries, most of these reside in the Base subdirectory.  Like the  example
       functions  for commands in the distribution, the utility functions gen‐
       erating matches all follow the convention of returning status  zero  if
       they  generated	completions  and  non-zero  if no matching completions
       could be added.

       Two more features are offered  by  the  _main_complete  function.   The
       arrays  compprefuncs  and  comppostfuncs may contain names of functions
       that are to be called immediately before or after completion  has  been
       tried.	A function will only be called once unless it explicitly rein‐
       serts itself into the array.

       _all_labels [ -x ] [ -12VJ ] tag name descr [ command args ... ]
	      This is a	 convenient  interface	to  the	 _next_label  function
	      below,  implementing  the loop shown in the _next_label example.
	      The command  and	its  arguments	are  called  to	 generate  the
	      matches.	The options stored in the parameter name will automat‐
	      ically be inserted into the args passed to  the  command.	  Nor‐
	      mally,  they  are	 put directly after the command, but if one of
	      the args is a single hyphen, they are inserted  directly	before
	      that.   If  the  hyphen is the last argument, it will be removed
	      from the argument list  before  the  command  is	called.	  This
	      allows  _all_labels  to  be  used	 in almost all cases where the
	      matches can be generated by a single call to the compadd builtin
	      command or by a call to one of the utility functions.

	      For example:

		     local expl
		     ...
		     if _requested foo; then
		       ...
		       _all_labels foo expl '...' compadd ... - $matches
		     fi

	      Will complete the strings from the matches parameter, using com‐
	      padd with additional options which  will	take  precedence  over
	      those generated by _all_labels.

       _alternative [ -C name ] spec ...
	      This  function is useful in simple cases where multiple tags are
	      available.  Essentially  it  implements  a  loop	like  the  one
	      described for the _tags function below.

	      The  tags to use and the action to perform if a tag is requested
	      are  described  using  the  specs	 which	are   of   the	 form:
	      `tag:descr:action'.  The tags are offered using _tags and if the
	      tag is requested, the action is executed with the given descrip‐
	      tion  descr.   The  actions are those accepted by the _arguments
	      function (described below), excluding the `->state'  and	`=...'
	      forms.

	      For example, the action may be a simple function call:

		     _alternative \
			 'users:user:_users' \
			 'hosts:host:_hosts'

	      offers usernames and hostnames as possible matches, generated by
	      the _users and _hosts functions respectively.

	      Like _arguments, this functions uses _all_labels to execute  the
	      actions,	which  will  loop over all sets of tags.  Special han‐
	      dling is only required if there is an additional valid tag,  for
	      example inside a function called from _alternative.

	      Like  _tags  this function supports the -C option to give a dif‐
	      ferent name for the argument context field.

       _arguments [ -nswWACRS ] [ -O name ] [ -M matchspec ] [ : ] spec ...
	      This function can be used to give a complete  specification  for
	      completion  for  a  command whose arguments follow standard UNIX
	      option and argument conventions.	The  following	forms  specify
	      individual  sets	of  options and arguments; to avoid ambiguity,
	      these may be separated from the options to _arguments itself  by
	      a	 single	 colon.	 Options to _arguments itself must be in sepa‐
	      rate words, i.e. -s -w, not -sw.

	      With the option -n, _arguments sets the parameter NORMARG to the
	      position	of the first normal argument in the $words array, i.e.
	      the position after the end of the options.  If that argument has
	      not  been	 reached,  NORMARG  is	set  to -1.  The caller should
	      declare `integer NORMARG' if the -n option is passed;  otherwise
	      the parameter is not used.

	      n:message:action
	      n::message:action
		     This  describes  the  n'th	 normal argument.  The message
		     will be printed  above  the  matches  generated  and  the
		     action  indicates	what can be completed in this position
		     (see below).  If there are two colons before the  message
		     the  argument  is optional.  If the message contains only
		     white space, nothing will be printed  above  the  matches
		     unless the action adds an explanation string itself.

	      :message:action
	      ::message:action
		     Similar, but describes the next argument, whatever number
		     that happens to be.  If all arguments  are	 specified  in
		     this  form	 in the correct order the numbers are unneces‐
		     sary.

	      *:message:action
	      *::message:action
	      *:::message:action
		     This describes how arguments  (usually  non-option	 argu‐
		     ments,  those  not	 beginning with - or +) are to be com‐
		     pleted when neither of the first two forms was  provided.
		     Any number of arguments can be completed in this fashion.

		     With  two	colons	before	the message, the words special
		     array and the CURRENT special parameter are  modified  to
		     refer  only  to  the  normal arguments when the action is
		     executed or evaluated.  With three colons before the mes‐
		     sage  they are modified to refer only to the normal argu‐
		     ments covered by this description.

	      optspec
	      optspec:...
		     This describes an option.	The colon  indicates  handling
		     for  one  or  more	 arguments to the option; if it is not
		     present, the option is assumed to take no arguments.

		     By default, options are multi-character name, one `-word'
		     per  option.   With -s, options may be single characters,
		     with more than one option per word, although words start‐
		     ing  with two hyphens, such as `--prefix', are still con‐
		     sidered complete option  names.   This  is	 suitable  for
		     standard GNU options.

		     The  combination  of  -s  with  -w	 allows	 single-letter
		     options to be combined in a single word even  if  one  or
		     more  of  the options take arguments.  For example, if -a
		     takes an argument, with no -s `-ab' is  considered	 as  a
		     single  (unhandled) option; with -s -ab is an option with
		     the argument `b'; with both -s and -w,  -ab  may  be  the
		     option -a and the option -b with arguments still to come.

		     The option -W takes this a stage further:	it is possible
		     to complete single-letter options even after an  argument
		     that occurs in the same word.  However, it depends on the
		     action performed whether options will really be completed
		     at	 this point.  For more control, use a utility function
		     like _guard as part of the action.

		     The following forms are available for  the	 initial  opt‐
		     spec, whether or not the option has arguments.

		     *optspec
			    Here  optspec is one of the remaining forms below.
			    This  indicates  the  following  optspec  may   be
			    repeated.	Otherwise  if the corresponding option
			    is already present on the command line to the left
			    of the cursor it will not be offered again.

		     -optname
		     +optname
			    In	the  simplest  form  the  optspec  is just the
			    option name beginning with a minus or a plus sign,
			    such as `-foo'.  The first argument for the option
			    (if any) must follow as a separate	word  directly
			    after the option.

			    Either  of `-+optname' and `+-optname' can be used
			    to specify that -optname  and  +optname  are  both
			    valid.

			    In all the remaining forms, the leading `-' may be
			    replaced by or paired with `+' in this way.

		     -optname-
			    The	 first	argument  of  the  option  must	  come
			    directly  after  the option name in the same word.
			    For example, `-foo-:...' specifies that  the  com‐
			    pleted   option   and   argument  will  look  like
			    `-fooarg'.

		     -optname+
			    The first argument may  appear  immediately	 after
			    optname in the same word, or may appear as a sepa‐
			    rate  word	after  the   option.	For   example,
			    `-foo+:...'	 specifies  that  the completed option
			    and argument will look like	 either	 `-fooarg'  or
			    `-foo arg'.

		     -optname=
			    The	 argument  may	appear as the next word, or in
			    same word as the option name provided that	it  is
			    separated  from  it by an equals sign, for example
			    `-foo=arg' or `-foo arg'.

		     -optname=-
			    The argument to the option must  appear  after  an
			    equals sign in the same word, and may not be given
			    in the next argument.

		     optspec[explanation]
			    An explanation string may be appended  to  any  of
			    the	 preceding forms of optspec by enclosing it in
			    brackets, as in `-q[query operation]'.

			    The verbose style is used to  decide  whether  the
			    explanation	 strings are displayed with the option
			    in a completion listing.

			    If no bracketed explanation string	is  given  but
			    the	 auto-description  style  is  set and only one
			    argument is described for this optspec, the	 value
			    of	the style is displayed, with any appearance of
			    the sequence `%d' in it replaced by the message of
			    the	 first	optarg	that  follows the optspec; see
			    below.

	      It is possible for options with a literal `+' or `=' to  appear,
	      but that character must be quoted, for example `-\+'.

	      Each  optarg following an optspec must take one of the following
	      forms:

	      :message:action
	      ::message:action
		     An argument to the option; message and action are treated
		     as	 for ordinary arguments.  In the first form, the argu‐
		     ment is mandatory, and in the second form it is optional.

		     This group may be repeated for options which take	multi‐
		     ple  arguments.   In  other words, :message1:action1:mes‐
		     sage2:action2 specifies that the option takes  two	 argu‐
		     ments.

	      :*pattern:message:action
	      :*pattern::message:action
	      :*pattern:::message:action
		     This  describes multiple arguments.  Only the last optarg
		     for an option taking multiple arguments may be  given  in
		     this  form.  If the pattern is empty (i.e., :*:), all the
		     remaining words on	 the  line  are	 to  be	 completed  as
		     described	by  the action; otherwise, all the words up to
		     and including a word matching the pattern are to be  com‐
		     pleted using the action.

		     Multiple  colons are treated as for the `*:...' forms for
		     ordinary arguments:  when the message is preceded by  two
		     colons,  the  words special array and the CURRENT special
		     parameter are modified during the execution or evaluation
		     of	 the  action  to  refer	 only  to  the words after the
		     option.  When preceded by three colons, they are modified
		     to refer only to the words covered by this description.

       Any literal colon in an optname, message, or action must be preceded by
       a backslash, `\:'.

       Each of the forms above may be preceded by a  list  in  parentheses  of
       option  names and argument numbers.  If the given option is on the com‐
       mand line, the options and arguments indicated in parentheses will  not
       be  offered.   For  example,  `(-two  -three  1)-one:...' completes the
       option `-one'; if this appears on the command line,  the	 options  -two
       and  -three and the first ordinary argument will not be completed after
       it.  `(-foo):...' specifies an ordinary argument completion; -foo  will
       not be completed if that argument is already present.

       Other items may appear in the list of excluded options to indicate var‐
       ious other items that should not be applied when the current specifica‐
       tion is matched: a single star (*) for the rest arguments (i.e. a spec‐
       ification  of  the  form	 `*:...');  a  colon  (:)   for	  all	normal
       (non-option-)  arguments;  and a hyphen (-) for all options.  For exam‐
       ple, if `(*)' appears before an option and the option  appears  on  the
       command line, the list of remaining arguments (those shown in the above
       table beginning with `*:') will not be completed.

       To aid in reuse of specifications, it is possible to precede any of the
       forms  above  with  `!';	 then  the  form  will no longer be completed,
       although if the option or argument appears on  the  command  line  they
       will be skipped as normal.  The main use for this is when the arguments
       are given by an array, and _arguments is	 called	 repeatedly  for  more
       specific	 contexts:  on	the first call `_arguments $global_options' is
       used, and on subsequent calls `_arguments !$^global_options'.

       In each of the forms above the action determines how completions should
       be generated.  Except for the `->string' form below, the action will be
       executed by calling the _all_labels function to process all tag labels.
       No special handling of tags is needed unless a function call introduces
       a new one.

       The forms for action are as follows.

	 (single unquoted space)
	      This is useful where an argument is required but it is not  pos‐
	      sible or desirable to generate matches for it.  The message will
	      be displayed but no completions listed.  Note that even in  this
	      case  the colon at the end of the message is needed; it may only
	      be omitted when neither a message nor an action is given.

       (item1 item2 ...)
	      One of a list of possible matches, for example:

		     :foo:(foo bar baz)

       ((item1\:desc1 ...))
	      Similar to the above, but with descriptions  for	each  possible
	      match.  Note the backslash before the colon.  For example,

		     :foo:((a\:bar b\:baz))

	      The  matches  will be listed together with their descriptions if
	      the description style is set with the values tag in the context.

       ->string
	      In this form, _arguments processes the arguments and options and
	      then returns control to the calling function with parameters set
	      to indicate the state of processing; the calling	function  then
	      makes  its  own  arrangements  for  generating completions.  For
	      example, functions that implement a state machine can  use  this
	      type of action.

	      Where  _arguments	 encounters  a	`->string',  it will strip all
	      leading and trailing whitespace from string and  set  the	 array
	      state  to	 the  set of all stringss for which an action is to be
	      performed.

	      By default and in common with all other well behaved  completion
	      functions,  _arguments returns status zero if it was able to add
	      matches and non-zero otherwise. However, if  the	-R  option  is
	      given,  _arguments  will instead return a status of 300 to indi‐
	      cate that $state is to be handled.

	      In addition to $state, _arguments also sets the  global  parame‐
	      ters  `context',	`line'	and `opt_args' as described below, and
	      does not reset any changes made to the special  parameters  such
	      as PREFIX and words.  This gives the calling function the choice
	      of resetting these parameters or propagating changes in them.

	      A function calling _arguments with at least one action  contain‐
	      ing a `->string' therefore must declare appropriate local param‐
	      eters:

		     local context state line
		     typeset -A opt_args

	      to avoid _arguments from altering the global environment.

       {eval-string}
	      A string in braces  is  evaluated	 as  shell  code  to  generate
	      matches.	If the eval-string itself does not begin with an open‐
	      ing parenthesis or brace it is split into separate words	before
	      execution.

       = action
	      If  the  action  starts  with `= ' (an equals sign followed by a
	      space), _arguments will insert  the  contents  of	 the  argument
	      field  of	 the  current  context as the new first element in the
	      words special array and increment the value of the CURRENT  spe‐
	      cial  parameter.	 This has the effect of inserting a dummy word
	      onto the completion command line while not changing the point at
	      which completion is taking place.

	      This is most useful with one of the specifiers that restrict the
	      words on the command line on which the action is to operate (the
	      two-  and	 three-colon forms above).  One particular use is when
	      an action itself causes _arguments on a restricted range; it  is
	      necessary	 to  use  this	trick to insert an appropriate command
	      name into the range for the second call to _arguments to be able
	      to parse the line.

	word...
       word...
	      This  covers  all	 forms	other than those above.	 If the action
	      starts with a space, the remaining list of words will be invoked
	      unchanged.

	      Otherwise	 it  will  be  invoked	with some extra strings placed
	      after the first word; these are to be passed down as options  to
	      the  compadd  builtin.   They ensure that the state specified by
	      _arguments, in particular the descriptions of options and	 argu‐
	      ments,  is  correctly  passed  to the completion command.	 These
	      additional arguments are taken from the array parameter  `expl';
	      this will be set up before executing the action and hence may be
	      referred to inside it, typically in an  expansion	 of  the  form
	      `$expl[@]' which preserves empty elements of the array.

       During  the  performance	 of the action the array `line' will be set to
       the command name and normal arguments from the command line,  i.e.  the
       words  from the command line excluding all options and their arguments.
       Options are stored in the  associative  array  `opt_args'  with	option
       names as keys and their arguments as the values.	 For options that have
       more than one argument these are given  as  one	string,	 separated  by
       colons.	 All  colons in the original arguments are preceded with back‐
       slashes.

       The parameter `context' is set when returning to the  calling  function
       to  perform an action of the form `->string'.  It is set to an array of
       elements corresponding to the elements of $state.  Each	element	 is  a
       suitable name for the argument field of the context: either a string of
       the form `option-opt-n' for the n'th argument of the option -opt, or  a
       string  of  the	form  `argument-n'  for the n'th argument.  For `rest'
       arguments, that is those in the list at the end not  handled  by	 posi‐
       tion,  n	 is the string `rest'.	For example, when completing the argu‐
       ment of the -o option, the name is `option-o-1', while for  the	second
       normal (non-option-) argument it is `argument-2'.

       Furthermore,  during  the  evaluation of the action the context name in
       the curcontext parameter is altered to append the same string  that  is
       stored in the context parameter.

       It  is  possible to specify multiple sets of options and arguments with
       the sets separated by single hyphens.  The  specifications  before  the
       first  hyphen (if any) are shared by all the remaining sets.  The first
       word in every other set provides a name for the set which may appear in
       exclusion  lists	 in  specifications, either alone or before one of the
       possible values described above.	 In  the  second  case	a  `-'	should
       appear between this name and the remainder.

       For example:

	      _arguments \
		  -a \
		- set1 \
		  -c \
		- set2 \
		  -d \
		  ':arg:(x2 y2)'

       This defines two sets.  When the command line contains the option `-c',
       the `-d' option and the argument will not be considered	possible  com‐
       pletions.   When	 it contains `-d' or an argument, the option `-c' will
       not be considered.  However, after `-a' both sets will still be consid‐
       ered valid.

       If the name given for one of the mutually exclusive sets is of the form
       `(name)' then only one value from each set will ever be completed; more
       formally, all specifications are mutually exclusive to all other speci‐
       fications in the same set.  This is useful for defining	multiple  sets
       of  options  which  are mutually exclusive and in which the options are
       aliases for each other.	For example:

	      _arguments \
		  -a -b \
		- '(compress)' \
		  {-c,--compress}'[compress]' \
		- '(uncompress)' \
		  {-d,--decompress}'[decompress]'

       As the completion code has to parse the	command	 line  separately  for
       each  set  this	form  of argument is slow and should only be used when
       necessary.  A useful alternative is often an option specification  with
       rest-arguments  (as  in `-foo:*:...'); here the option -foo swallows up
       all remaining arguments as described by the optarg definitions.

       The options -S and -A are available to simplify the specifications  for
       commands with standard option parsing.  With -S, no option will be com‐
       pleted after a `--' appearing on its own on  the	 line;	this  argument
       will otherwise be ignored; hence in the line

	      foobar -a -- -b

       the  `-a'  is  considered an option but the `-b' is considered an argu‐
       ment, while the `--' is considered to be neither.

       With -A, no options will be completed after the first non-option	 argu‐
       ment  on	 the  line.  The -A must be followed by a pattern matching all
       strings which are not to be taken as arguments.	For example,  to  make
       _arguments stop completing options after the first normal argument, but
       ignoring all strings starting with  a  hyphen  even  if	they  are  not
       described by one of the optspecs, the form is `-A "-*"'.

       The option `-O name' specifies the name of an array whose elements will
       be passed as arguments to functions called  to  execute	actions.   For
       example,	 this can be used to pass the same set of options for the com‐
       padd builtin to all actions.

       The option `-M spec' sets a match specification to  use	to  completion
       option  names  and  values.   It	 must appear before the first argument
       specification.  The default is `r:|[_-]=* r:|=*': this  allows  partial
       word  completion after `_' and `-', for example `-f-b' can be completed
       to `-foo-bar'.

       The option -C tells _arguments to modify the curcontext	parameter  for
       an  action  of the form `->state'.  This is the standard parameter used
       to keep track of the current context.  Here it  (and  not  the  context
       array)  should  be  made local to the calling function to avoid passing
       back the modified value and should be initialised to the current	 value
       at the start of the function:

	      local curcontext="$curcontext"

       This is useful where it is not possible for multiple states to be valid
       together.

       The option `--' allows _arguments to work out the names of long options
       that  support  the  `--help'  option which is standard in many GNU com‐
       mands.  The command word is called with the argument `--help'  and  the
       output examined for option names.  Clearly, it can be dangerous to pass
       this to commands which may not support this option as the behaviour  of
       the command is unspecified.

       In addition to options, `_arguments --' will try to deduce the types of
       arguments available for options when the form `--opt=val' is valid.  It
       is  also	 possible  to  provide hints by examining the help text of the
       command and adding specifiers  of  the  form  `pattern:message:action';
       note  that  normal  _arguments specifiers are not used.	The pattern is
       matched against the help text for an option, and if it matches the mes‐
       sage  and  action are used as for other argument specifiers.  For exam‐
       ple:

	      _arguments -- '*\*:toggle:(yes no)' \
			    '*=FILE*:file:_files' \
			    '*=DIR*:directory:_files -/' \
			    '*=PATH*:directory:_files -/'

       Here, `yes' and `no' will be completed as the argument of options whose
       description  ends  in  a star; file names will be completed for options
       that contain the substring `=FILE' in the description; and  directories
       will  be	 completed  for	 options  whose description contains `=DIR' or
       `=PATH'.	 The last three are in fact the default and  so	 need  not  be
       given  explicitly, although it is possible to override the use of these
       patterns.  A typical help text which uses this feature is:

		-C, --directory=DIR	     change to directory DIR

       so that the above specifications will cause directories to be completed
       after `--directory', though not after `-C'.

       Note  also that _arguments tries to find out automatically if the argu‐
       ment for an option is optional.	This can be  specified	explicitly  by
       doubling the colon before the message.

       If  the	pattern	 ends in `(-)', this will removed from the pattern and
       the action will be used only directly after the `=', not	 in  the  next
       word.  This is the behaviour of a normal specification defined with the
       form `=-'.

       The `_arguments --' can be followed by the option `-i patterns' to give
       patterns	 for  options which are not to be completed.  The patterns can
       be given as the name of an array parameter or  as  a  literal  list  in
       parentheses.  For example,

	      _arguments -- -i \
		  "(--(en|dis)able-FEATURE*)"

       will  cause  completion	to  ignore  the options `--enable-FEATURE' and
       `--disable-FEATURE' (this example is useful with GNU configure).

       The `_arguments --' form can also be followed by the option  `-s	 pair'
       to  describe  option  aliases.	Each  pair consists of a pattern and a
       replacement.  For example, some configure-scripts describe options only
       as  `--enable-foo',  but also accept `--disable-foo'.  To allow comple‐
       tion of the second form:

	      _arguments -- -s "(#--enable- --disable-)"

       Here is a more general example of the use of _arguments:

	      _arguments '-l+:left border:' \
			 '-format:paper size:(letter A4)' \
			 '*-copy:output file:_files::resolution:(300 600)' \
			 ':postscript file:_files -g \*.\(ps\|eps\)' \
			 '*:page number:'

       This describes three options: `-l', `-format', and `-copy'.  The	 first
       takes  one  argument described as `left border' for which no completion
       will be offered because of the empty action.   Its  argument  may  come
       directly	 after	the  `-l'  or  it may be given as the next word on the
       line.

       The `-format' option takes one argument in the next word, described  as
       `paper  size' for which only the strings `letter' and `A4' will be com‐
       pleted.

       The `-copy' option may appear more than once on the  command  line  and
       takes two arguments.  The first is mandatory and will be completed as a
       filename.  The second is optional (because of the second	 colon	before
       the  description	 `resolution')	and will be completed from the strings
       `300' and `600'.

       The last two descriptions say what should be  completed	as  arguments.
       The first describes the first argument as a `postscript file' and makes
       files ending in `ps' or `eps' be completed.  The last description gives
       all  other  arguments the description `page numbers' but does not offer
       completions.

       _cache_invalid cache_identifier
	      This function returns status zero if the completions cache  cor‐
	      responding  to  the given cache identifier needs rebuilding.  It
	      determines this by looking up the	 cache-policy  style  for  the
	      current  context.	  This should provide a function name which is
	      run with the full path to the relevant cache file	 as  the  only
	      argument.

	      Example:

		     _example_caching_policy () {
			 # rebuild if cache is more than a week old
			 oldp=( "$1"(Nmw+1) )
			 (( $#oldp ))
		     }

       _call_function return name [ args ... ]
	      If a function name exists, it is called with the arguments args.
	      The return argument gives the name of a parameter in  which  the
	      return  status  from  the function name; if return is empty or a
	      single hyphen it is ignored.

	      The return status of _call_function itself is zero if the	 func‐
	      tion name exists and was called and non-zero otherwise.

       _call_program tag string ...
	      This  function provides a mechanism for the user to override the
	      use of an external command.  It looks up the command style  with
	      the supplied tag.	 If the style is set, its value is used as the
	      command to execute.  The strings from the call to _call_program,
	      or  from	the style if set, are concatenated with spaces between
	      them and the resulting string is evaluated.  The	return	status
	      is the return status of the command called.

       _combination [ -s pattern ] tag style spec ... field opts ...
	      This  function  is used to complete combinations of values,  for
	      example pairs of hostnames and usernames.	  The  style  argument
	      gives  the  style	 which defines the pairs; it is looked up in a
	      context with the tag specified.

	      The style name consists of field names separated by hyphens, for
	      example  `users-hosts-ports'.   For  each	 field	for a value is
	      already known, a spec of the form `field=pattern' is given.  For
	      example,	if the command line so far specifies a user `pws', the
	      argument `users=pws' should appear.

	      The next argument with no equals sign is taken as	 the  name  of
	      the  field for which completions should be generated (presumably
	      not one of the fields for which the value is known).

	      The matches generated will be taken from the value of the style.
	      These should contain the possible values for the combinations in
	      the appropriate  order  (users,  hosts,  ports  in  the  example
	      above).	The  different	fields	the  values  for the different
	      fields are separated by colons.  This can be  altered  with  the
	      option  -s to _combination which specifies a pattern.  Typically
	      this is a character class, as for example	 `-s  "[:@]"'  in  the
	      case  of the users-hosts style.	 Each `field=pattern' specifi‐
	      cation restricts the completions which apply to elements of  the
	      style with appropriately matching fields.

	      If no style with the given name is defined for the given tag, or
	      if none of the strings in style's value match,  but  a  function
	      name of the required field preceded by an underscore is defined,
	      that function will be called to generate the matches.  For exam‐
	      ple,  if there is no `users-hosts-ports' or no matching hostname
	      when a host is required, the function  `_hosts'  will  automati‐
	      cally be called.

	      If  the  same  name is used for more than one field, in both the
	      `field=pattern' and the argument that  gives  the	 name  of  the
	      field  to	 be  completed, the number of the field (starting with
	      one) may be given after the fieldname, separated from  it	 by  a
	      colon.

	      All  arguments  after the required field name are passed to com‐
	      padd when generating matches from the style  value,  or  to  the
	      functions for the fields if they are called.

       _describe [ -oO | -t tag ] descr name1 [ name2 ] opts ... -- ...
	      This  function associates completions with descriptions.	Multi‐
	      ple groups separated by -- can  be  supplied,  potentially  with
	      different completion options opts.

	      The  descr  is taken as a string to display above the matches if
	      the format style for the descriptions tag is set.	 This is  fol‐
	      lowed  by one or two names of arrays followed by options to pass
	      to compadd.  The first array contains the	 possible  completions
	      with  their  descriptions	 in the form `completion:description'.
	      If a second array is given, it should have the  same  number  of
	      elements	as  the first; in this case the corresponding elements
	      are added as possible  completions  instead  of  the  completion
	      strings  from  the first array.  The completion list will retain
	      the descriptions from the first array.  Finally, a set  of  com‐
	      pletion options can appear.

	      If  the  option  `-o'  appears  before  the  first argument, the
	      matches added will be treated as names of command options	 (N.B.
	      not  shell  options),  typically following a `-', `--' or `+' on
	      the command line.	 In this case _describe uses  the  prefix-hid‐
	      den, prefix-needed and verbose styles to find out if the strings
	      should be added as completions and if the descriptions should be
	      shown.   Without the `-o' option, only the verbose style is used
	      to decide how descriptions are shown.  If `-O' is	 used  instead
	      of  `-O',	 command  options are completed as above but _describe
	      will not handle the prefix-needed style.

	      With the -t option a tag can be specified.  The default is `val‐
	      ues' or, if the -o option is given, `options'.

	      If  selected  by	the  list-grouped style, strings with the same
	      description will appear together in the list.

	      _describe uses the _all_labels function to generate the matches,
	      so it does not need to appear inside a loop over tag labels.

       _description [ -x ] [ -12VJ ] tag name descr [ spec ... ]
	      This function is not to be confused with the previous one; it is
	      used as a helper function for creating options to	 compadd.   It
	      is  buried  inside many of the higher level completion functions
	      and so often does not need to be called directly.

	      The styles listed below are tested in the current context	 using
	      the  given  tag.	The resulting options for compadd are put into
	      the array named name (this is  traditionally  `expl',  but  this
	      convention  is  not  enforced).	The description for the corre‐
	      sponding set of matches is passed to the function in descr.

	      The styles tested are: format, hidden, matcher, ignored-patterns
	      and  group-name.	The format style is first tested for the given
	      tag and then for the descriptions tag if	no  value  was	found,
	      while  the  remainder  are  only tested for the tag given as the
	      first argument.  The function also calls _setup which tests some
	      more styles.

	      The  string  returned by the format style (if any) will be modi‐
	      fied so that the sequence `%d' is replaced by the descr given as
	      the  third argument without any leading or trailing white space.
	      If, after removing the white  space,  the	 descr	is  the	 empty
	      string,  the  format  style will not be used and the options put
	      into the name array will not contain an explanation string to be
	      displayed above the matches.

	      If  _description	is  called with more than three arguments, the
	      additional specs should be of the form `char:str'.  These supply
	      escape sequence replacements for the format style: every appear‐
	      ance of `%char' will be replaced by string.

	      If the -x option is given, the description  will	be  passed  to
	      compadd  using  the  -x  option instead of the default -X.  This
	      means that the description will be displayed even if  there  are
	      no corresponding matches.

	      The  options  placed  in	the  array  name  take	account of the
	      group-name style, so matches are	placed	in  a  separate	 group
	      where necessary.	The group normally has its elements sorted (by
	      passing the option -J to compadd), but  if  an  option  starting
	      with  `-V',  `-J', `-1', or `-2' is passed to _description, that
	      option will be included in the array.  Hence it is possible  for
	      the  completion  group to be unsorted by giving the option `-V',
	      `-1V', or `-2V'.

	      In most cases, the function will be used like this:

		     local expl
		     _description files expl file
		     compadd "$expl[@]" - "$files[@]"

	      Note the use of the parameter expl, the hyphen, and the list  of
	      matches.	Almost all calls to compadd within the completion sys‐
	      tem use a	 similar  format;  this	 ensures  that	user-specified
	      styles are correctly passed down to the builtins which implement
	      the internals of completion.

       _dispatch context string ...
	      This sets the current context to context and looks  for  comple‐
	      tion  functions  to  handle  this context by hunting through the
	      list of command names or special contexts	 (as  described	 above
	      for compdef) given as string ....	 The first completion function
	      to be defined for one of the contexts in the  list  is  used  to
	      generate	matches.   Typically,  the last string is -default- to
	      cause the function for default completion to be used as a	 fall‐
	      back.

	      The  function  sets  the	parameter $service to the string being
	      tried, and sets the context/command field (the  fourth)  of  the
	      $curcontext  parameter  to  the context given as the first argu‐
	      ment.

       _files The function _files calls _path_files with all the arguments  it
	      was  passed  except for -g and -/.  The use of these two options
	      depends on the setting of the  file-patterns style.

	      This function  accepts  the  full	 set  of  options  allowed  by
	      _path_files, described below.

       _gnu_generic
	      This function is a simple wrapper around the _arguments function
	      described above.	It can be used to determine automatically  the
	      long  options  understood	 by  commands that produce a list when
	      passed the option `--help'.  It is intended  to  be  used	 as  a
	      top-level completion function in its own right.  For example, to
	      enable option completion for the commands foo and bar, use

		     compdef _gnu_generic foo bar

	      after the call to compinit.

	      The completion system as supplied is conservative in its use  of
	      this  function,  since  it  is  important to be sure the command
	      understands the option `--help'.

       _guard [ options ] pattern descr
	      This function is intended to be used in the action for the spec‐
	      ifications  passed  to  _arguments  and  similar	functions.  It
	      returns immediately with a non-zero return status if the	string
	      to  be  completed	 does  not  match the pattern.	If the pattern
	      matches, the descr is displayed; the function then returns  sta‐
	      tus  zero	 if the word to complete is not empty, non-zero other‐
	      wise.

	      The pattern may be preceded by any of the options understood  by
	      compadd  that  are passed down from _description, namely -M, -J,
	      -V, -1, -2, -n, -F  and  -X.   All  of  these  options  will  be
	      ignored.	 This  fits  in conveniently with the argument-passing
	      conventions of actions for _arguments.

	      As an example, consider a command	 taking	 the  options  -n  and
	      -none,  where -n must be followed by a numeric value in the same
	      word.  By using:

		     _arguments '-n-: :_guard "[0-9]#" "numeric value"' '-none'

	      _arguments can be made to	 both  display	the  message  `numeric
	      value'  and  complete  options  after `-n<TAB>'.	If the `-n' is
	      already followed by one or more digits (the  pattern  passed  to
	      _guard)  only the message will be displayed; if the `-n' is fol‐
	      lowed by another character, only options are completed.

       _message [ -r12 ] [ -VJ group ] descr
       _message -e [ tag ] descr
	      The descr is used in the same way as the third argument  to  the
	      _description  function,  except  that  the resulting string will
	      always be shown whether or not matches were generated.  This  is
	      useful  for displaying a help message in places where no comple‐
	      tions can be generated.

	      The format style is examined with the messages  tag  to  find  a
	      message;	the usual tag, descriptions, is used only if the style
	      is not set with the former.

	      If the -r option is given, no style is used; the descr is	 taken
	      literally	 as  the  string to display.  This is most useful when
	      the descr comes from a pre-processed argument list which already
	      contains an expanded description.

	      The  -12VJ options and the group are passed to compadd and hence
	      determine the group the message string is added to.

	      The second form gives a description for completions with the tag
	      tag  to be shown even if there are no matches for that tag.  The
	      tag can be omitted and if so the tag is taken from the parameter
	      $curtag;	this  is maintained by the completion system and so is
	      usually correct.

       _multi_parts sep array
	      The argument sep is a separator character.   The	array  may  be
	      either  the name of an array parameter or a literal array in the
	      form `(foo bar)', a parenthesised list  of  words	 separated  by
	      whitespace.   The	 possible completions are the strings from the
	      array.  However, each chunk delimited by sep will	 be  completed
	      separately.  For example, the _tar function uses `_multi_parts /
	      patharray' to complete partial file paths from the  given	 array
	      of complete file paths.

	      The  -i option causes _multi_parts to insert a unique match even
	      if that requires multiple separators to be  inserted.   This  is
	      not  usually  the expected behaviour with filenames, but certain
	      other types of completion, for example those with a fixed set of
	      possibilities, may be more suited to this form.

	      Like  other  utility  functions, this function accepts the `-V',
	      `-J', `-1', `-2', `-n', `-f',  `-X',  `-M',  `-P',  `-S',	 `-r',
	      `-R', and `-q' options and passes them to the compadd builtin.

       _next_label [ -x ] [ -12VJ ] tag name descr [ options ... ]
	      This  function  is used to implement the loop over different tag
	      labels for a particular tag as described above for the tag-order
	      style.   On each call it checks to see if there are any more tag
	      labels; if there is it returns status zero, otherwise  non-zero.
	      As  this	function  requires  a  current	tag to be set, it must
	      always follow a call to _tags or _requested.

	      The -x12VJ options and the first three arguments are  passed  to
	      the  _description	 function.   Where appropriate the tag will be
	      replaced by a tag label in this call.  Any description given  in
	      the  tag-order  style  is	 preferred  to	the  descr  passed  to
	      _next_label.

	      The options given after the descr are set in the parameter given
	      by name, and hence are to be passed to compadd or whatever func‐
	      tion is called to add the matches.

	      Here is a typical use of this function for  the  tag  foo.   The
	      call to _requested determines if tag foo is required at all; the
	      loop over _next_label handles any labels defined for the tag  in
	      the tag-order style.

		     local expl ret=1
		     ...
		     if _requested foo; then
		       ...
		       while _next_label foo expl '...'; do
			 compadd "$expl[@]" ... && ret=0
		       done
		       ...
		     fi
		     return ret

       _normal
	      This  is	the standard function called to handle completion out‐
	      side any special -context-.  It is called both to	 complete  the
	      command  word and also the arguments for a command.  In the sec‐
	      ond case, _normal looks for a special completion for  that  com‐
	      mand,  and  if  there  is	 none  it  uses the completion for the
	      -default- context.

	      A second use is to reexamine the command line specified  by  the
	      $words  array  and  the $CURRENT parameter after those have been
	      modified.	 For example, the  function  _precommand,  which  com‐
	      pletes  after  pre-command specifiers such as nohup, removes the
	      first word from the words array, decrements the CURRENT  parame‐
	      ter,  then  calls	 _normal again.	 The effect is that `nohup cmd
	      ...' is treated in the same way as `cmd ...'.

	      If the command name matches one of the patterns given by one  of
	      the  options  -p	or -P to compdef, the corresponding completion
	      function is called and then the parameter _compskip is  checked.
	      If  it  is set completion is terminated at that point even if no
	      matches have been found.	This is the  same  effect  as  in  the
	      -first- context.

       _options
	      This  can	 be  used  to complete the names of shell options.  It
	      provides a matcher specification that ignores  a	leading	 `no',
	      ignores underscores and allows upper-case letters to match their
	      lower-case  counterparts	 (for	example,   `glob',   `noglob',
	      `NO_GLOB'	 are  all completed).  Any arguments are propagated to
	      the compadd builtin.

       _options_set and _options_unset
	      These functions complete only set or  unset  options,  with  the
	      same matching specification used in the _options function.

	      Note  that  you  need to uncomment a few lines in the _main_com‐
	      plete function for these functions to work properly.  The	 lines
	      in  question  are	 used  to  store the option settings in effect
	      before the completion widget locally sets the options it	needs.
	      Hence  these  functions are not generally used by the completion
	      system.

       _parameters
	      This is used to complete the names of shell parameters.

	      The option `-g pattern'  limits  the  completion	to  parameters
	      whose type matches the pattern.  The type of a parameter is that
	      shown by `print ${(t)param}', hence judicious use of `*' in pat‐
	      tern is probably necessary.

	      All other arguments are passed to the compadd builtin.

       _path_files
	      This  function  is used throughout the completion system to com‐
	      plete filenames.	It allows completion of	 partial  paths.   For
	      example,	 the   string	`/u/i/s/sig'   may   be	 completed  to
	      `/usr/include/sys/signal.h'.

	      The options accepted by both _path_files and _files are:

	      -f     Complete all filenames.  This is the default.

	      -/     Specifies that only directories should be completed.

	      -g pattern
		     Specifies that only files matching the pattern should  be
		     completed.

	      -W paths
		     Specifies	path  prefixes that are to be prepended to the
		     string from the command line to  generate	the  filenames
		     but  that should not be inserted as completions nor shown
		     in completion listings.  Here, paths may be the  name  of
		     an	 array	parameter, a literal list of paths enclosed in
		     parentheses or an absolute pathname.

	      -F ignored-files
		     This behaves as for the corresponding option to the  com‐
		     padd  builtin.   It gives direct control over which file‐
		     names should be ignored.  If the option is	 not  present,
		     the ignored-patterns style is used.

	      Both  _path_files	 and  _files also accept the following options
	      which are passed to compadd: `-J', `-V', `-1', `-2', `-n', `-X',
	      `-M', `-P', `-S', `-q', `-r', and `-R'.

	      Finally,	the  _path_files  function   uses  the	styles expand,
	      ambiguous, special-dirs, list-suffixes and  file-sort  described
	      above.

       _pick_variant [ -c command ] [ -r name ] label=pattern ... label [ args
       ... ]
	      This function is used to resolve situations where a single  com‐
	      mand  name  requires  more  than	one  type  of handling, either
	      because it has more than one variant or because there is a  name
	      clash between two different commands.

	      The  command to run is taken from the first element of the array
	      words unless this is overridden by the option -c.	 This  command
	      is  run  and  its	 output is compared with a series of patterns.
	      Arguments to be passed to the command can be  specified  at  the
	      end after all the other arguments.  The patterns to try in order
	      are given by the arguments label=pattern; if the output of `com‐
	      mand  args  ...' contains pattern, then label is selected as the
	      label for the command variant.  If none of the  patterns	match,
	      the final command label is selected and status 1 is returned.

	      If  the  `-r  name'  is given, the label picked is stored in the
	      parameter named name.

	      The results are also  cached  in	the  _cmd_variant  associative
	      array indexed by the name of the command run.

       _regex_arguments name spec ...
	      This function generates a completion function name which matches
	      the specifications spec ..., a set  of  regular  expressions  as
	      described	 below.	  After running _regex_arguments, the function
	      name should be called as a normal completion function.  The pat‐
	      tern  to	be matched is given by the contents of the words array
	      up to the current cursor	position  joined  together  with  null
	      characters; no quotation is applied.

	      The  arguments  are grouped as sets of alternatives separated by
	      `|', which are tried one after  the  other  until	 one  matches.
	      Each  alternative consists of a one or more specifications which
	      are tried	 left  to  right,  with	 each  pattern	matched	 being
	      stripped	in  turn from the command line being tested, until all
	      of the group succeeds or until one fails; in  the	 latter	 case,
	      the  next	 alternative is tried.	This structure can be repeated
	      to arbitrary depth by using parentheses; matching proceeds  from
	      inside to outside.

	      A	 special  procedure  is	 applied  if  no test succeeds but the
	      remaining command line string contains no null character (imply‐
	      ing  the	remaining word is the one for which completions are to
	      be generated).  The  completion  target  is  restricted  to  the
	      remaining	 word  and  any actions for the corresponding patterns
	      are executed.  In this case, nothing is stripped from  the  com‐
	      mand line string.	 The order of evaluation of the actions can be
	      determined by the tag-order style; the various formats supported
	      by  _alternative	can  be used in action.	 The descr is used for
	      setting up the array parameter expl.

	      Specification arguments take one of following  forms,  in	 which
	      metacharacters such as `(', `)', `#' and `|' should be quoted.

	      /pattern/ [%lookahead%] [-guard] [:tag:descr:action]
		     This is a single primitive component.  The function tests
		     whether  the  combined  pattern  `(#b)((#B)pattern)looka‐
		     head*'  matches  the command line string.	If so, `guard'
		     is evaluated and its return status is examined to	deter‐
		     mine  if the test has succeeded.  The pattern string `[]'
		     is guaranteed never  to  match.   The  lookahead  is  not
		     stripped from the command line before the next pattern is
		     examined.

		     The argument starting with : is used in the  same	manner
		     as an argument to _alternative.

		     A	component is used as follows: pattern is tested to see
		     if the component already exists on the command line.   If
		     it	 does,	any  following	specifications are examined to
		     find something to complete.  If a	component  is  reached
		     but  no  such pattern exists yet on the command line, the
		     string containing the action is used to generate  matches
		     to insert at that point.

	      /pattern/+ [%lookahead%] [-guard] [:tag:descr:action]
		     This  is  similar to `/pattern/ ...' but the left part of
		     the command line string (i.e. the part already matched by
		     previous patterns) is also considered part of the comple‐
		     tion target.

	      /pattern/- [%lookahead%] [-guard] [:tag:descr:action]
		     This is similar to `/pattern/ ...' but the actions of the
		     current  and previously matched patterns are ignored even
		     if the following `pattern' matches the empty string.

	      ( spec )
		     Parentheses may be used to groups specs; note each paren‐
		     thesis is a single argument to _regex_arguments.

	      spec # This allows any number of repetitions of spec.

	      spec spec
		     The  two  specs  are to be matched one after the other as
		     described above.

	      spec | spec
		     Either of the two specs can be matched.

	      The function _regex_words can be used as a  helper  function  to
	      generate	matches	 for  a set of alternative words possibly with
	      their own arguments as a command line argument.

	      Examples:

		     _regex_arguments _tst /$'[^\0]#\0'/ \
		     /$'[^\0]#\0'/ :'compadd aaa'

	      This generates a function _tst that completes aaa	 as  its  only
	      argument.	  The  tag  and	 description  for the action have been
	      omitted for brevity (this works but is not recommended in normal
	      use).   The  first  component matches the command word, which is
	      arbitrary; the second matches  any argument.  As the argument is
	      also  arbitrary, any following component would not depend on aaa
	      being present.

		     _regex_arguments _tst /$'[^\0]#\0'/ \
		     /$'aaa\0'/ :'compadd aaa'

	      This is a more typical use; it is	 similar,  but	any  following
	      patterns	would only match if aaa was present as the first argu‐
	      ment.

		     _regex_arguments _tst /$'[^\0]#\0'/ \( \
		     /$'aaa\0'/ :'compadd aaa' \
		     /$'bbb\0'/ :'compadd bbb' \) \#

	      In this example, an indefinite number of command	arguments  may
	      be completed.  Odd arguments are completed as aaa and even argu‐
	      ments as bbb.  Completion fails unless the set of	 aaa  and  bbb
	      arguments before the current one is matched correctly.

		     _regex_arguments _tst /$'[^\0]#\0'/ \
		     \( /$'aaa\0'/ :'compadd aaa' \| \
		     /$'bbb\0'/ :'compadd bbb' \) \#

	      This  is similar, but either aaa or bbb may be completed for any
	      argument.	 In this case _regex_words could be used to generate a
	      suitable expression for the arguments.

       _regex_words tag description spec ...
	      This  function  can  be  used  to	 generate  arguments  for  the
	      _regex_arguments command which may  be  inserted	at  any	 point
	      where  a set of rules is expected.  The tag and description give
	      a standard tag and description pertaining to  the	 current  con‐
	      text.   Each spec contains two or three arguments separated by a
	      colon: note that there is no leading colon in this case.

	      Each spec gives one of a set of words that may be	 completed  at
	      this point, together with arguments.  It is thus roughly equiva‐
	      lent to the _arguments function when used in normal  (non-regex)
	      completion.

	      The  part	 of  the spec before the first colon is the word to be
	      completed.  This may contain a *; the entire  word,  before  and
	      after  the  *  is	 completed,  but only the text before the * is
	      required for the context to be matched, so  that	further	 argu‐
	      ments may be completed after the abbreviated form.

	      The second part of spec is a description for the word being com‐
	      pleted.

	      The optional third part of the spec describes how words  follow‐
	      ing  the one being completed are themselves to be completed.  It
	      will be evaluated in order to avoid problems with quoting.  This
	      means  that  typically  it contains a reference to an array con‐
	      taining previously generated regex arguments.

	      The option -t term specifies a terminator for the	 word  instead
	      of the usual space.  This is handled as an auto-removable suffix
	      in the manner of the option -s sep to _values.

	      The result of the processing by _regex_words is  placed  in  the
	      array reply, which should be made local to the calling function.
	      If the set of words and arguments may be matched repeatedly, a #
	      should be appended to the generated array at that point.

	      For example:

		     local -a reply
		     _regex_words mydb-commands 'mydb commands' \
		       'add:add an entry to mydb:$mydb_add_cmds' \
		       'show:show entries in mydb'
		     _regex_arguments _mydb "$reply[@]"
		     _mydb "$@"

	      This  shows a completion function for a command mydb which takes
	      two command arguments, add and show.  show takes	no  arguments,
	      while  the  arguments  for  add have already been prepared in an
	      array mydb_add_cmds,  quite  possibly  by	 a  previous  call  to
	      _regex_words.

       _requested [ -x ] [ -12VJ ] tag [ name descr [ command args ... ] ]
	      This  function  is called to decide whether a tag already regis‐
	      tered by a call to _tags (see below) has been requested  by  the
	      user  and	 hence	completion  should  be	performed  for it.  It
	      returns status zero if the tag is requested and non-zero	other‐
	      wise.   The  function  is	 typically used as part of a loop over
	      different tags as follows:

		     _tags foo bar baz
		     while _tags; do
		       if _requested foo; then
			 ... # perform completion for foo
		       fi
		       ... # test the tags bar and baz in the same way
		       ... # exit loop if matches were generated
		     done

	      Note that the test for whether matches  were  generated  is  not
	      performed	 until the end of the _tags loop.  This is so that the
	      user can set the tag-order style to specify a set of tags to  be
	      completed at the same time.

	      If  name	and descr are given, _requested calls the _description
	      function with these arguments together with the  options	passed
	      to _requested.

	      If  command  is  given,  the _all_labels function will be called
	      immediately with the same arguments.  In simple cases this makes
	      it  possible to perform the test for the tag and the matching in
	      one go.  For example:

		     local expl ret=1
		     _tags foo bar baz
		     while _tags; do
		       _requested foo expl 'description' \
			   compadd foobar foobaz && ret=0
		       ...
		       (( ret )) || break
		     done

	      If the command is not compadd, it must nevertheless be  prepared
	      to handle the same options.

       _retrieve_cache cache_identifier
	      This  function  retrieves	 completion  information from the file
	      given by cache_identifier, stored in a  directory	 specified  by
	      the  cache-path  style  which  defaults  to  ~/.zcompcache.  The
	      return status is zero if retrieval was successful.  It will only
	      attempt retrieval if the use-cache style is set, so you can call
	      this function without worrying about whether the user wanted  to
	      use the caching layer.

	      See _store_cache below for more details.

       _sep_parts
	      This  function  is  passed  alternating arrays and separators as
	      arguments.  The arrays specify completions for parts of  strings
	      to  be separated by the separators.  The arrays may be the names
	      of array parameters or a quoted list of  words  in  parentheses.
	      For   example,  with  the	 array	`hosts=(ftp  news)'  the  call
	      `_sep_parts '(foo bar)' @ hosts' will complete the  string   `f'
	      to `foo' and the string `b@n' to `bar@news'.

	      This  function  accepts  the  compadd  options `-V', `-J', `-1',
	      `-2', `-n', `-X', `-M', `-P', `-S', `-r',	 `-R',	and  `-q'  and
	      passes them on to the compadd builtin used to add the matches.

       _setup tag [ group ]
	      This function sets up the special parameters used by the comple‐
	      tion system appropriately for the tag given as the  first	 argu‐
	      ment.	It   uses   the	  styles   list-colors,	  list-packed,
	      list-rows-first, last-prompt, accept-exact, menu and force-list.

	      The optional group supplies the name of the group in  which  the
	      matches  will be placed.	If it is not given, the tag is used as
	      the group name.

	      This function is	called	automatically  from  _description  and
	      hence is not normally called explicitly.

       _store_cache cache_identifier params ...
	      This function, together with _retrieve_cache and _cache_invalid,
	      implements a caching layer which can be used in  any  completion
	      function.	  Data	obtained  by  costly  operations are stored in
	      parameters; this function then dumps the values of those parame‐
	      ters  to	a  file.   The data can then be retrieved quickly from
	      that file via _retrieve_cache, even in  different	 instances  of
	      the shell.

	      The cache_identifier specifies the file which the data should be
	      dumped to.  The file is stored in a directory specified  by  the
	      cache-path style which defaults to ~/.zcompcache.	 The remaining
	      params arguments are the parameters to dump to the file.

	      The return status is zero if storage was successful.  The	 func‐
	      tion will only attempt storage if the use-cache style is set, so
	      you can call this function without worrying  about  whether  the
	      user wanted to use the caching layer.

	      The  completion  function may avoid calling _retrieve_cache when
	      it already has the  completion  data  available  as  parameters.
	      However,	in  that  case	it should call _cache_invalid to check
	      whether the data in the parameters and in the  cache  are	 still
	      valid.

	      See  the	_perl_modules completion function for a simple example
	      of the usage of the caching layer.

       _tags [ [ -C name ] tags ... ]
	      If called with arguments, these are taken to  be	the  names  of
	      tags  valid  for completions in the current context.  These tags
	      are stored internally and sorted by using the tag-order style.

	      Next, _tags is called repeatedly without arguments from the same
	      completion  function.  This successively selects the first, sec‐
	      ond, etc. set of tags requested by the user.  The return	status
	      is  zero	if  at least one of the tags is requested and non-zero
	      otherwise.  To test if a particular tag  is  to  be  tried,  the
	      _requested function should be called (see above).

	      If  `-C  name' is given, name is temporarily stored in the argu‐
	      ment field (the fifth) of the context in the curcontext  parame‐
	      ter  during  the	call  to _tags; the field is restored on exit.
	      This allows _tags to use a more specific context without	having
	      to change and reset the curcontext parameter (which has the same
	      effect).

       _values [ -O name ] [ -s sep ] [ -S sep ] [ -wC ] desc spec ...
	      This is used to complete arbitrary keywords (values)  and	 their
	      arguments, or lists of such combinations.

	      If  the  first argument is the option `-O name', it will be used
	      in the same way as by the _arguments function.  In other	words,
	      the  elements  of	 the name array will be passed to compadd when
	      executing an action.

	      If the first argument (or the first argument after `-O name') is
	      `-s',  the next argument is used as the character that separates
	      multiple values.	This character is  automatically  added	 after
	      each  value in an auto-removable fashion (see below); all values
	      completed by `_values -s' appear in the same word on the command
	      line, unlike completion using _arguments.	 If this option is not
	      present, only a single value will be completed per word.

	      Normally, _values will only use the current  word	 to  determine
	      which  values  are already present on the command line and hence
	      are not to be completed again.  If the -w option is given, other
	      arguments are examined as well.

	      The  first non-option argument is used as a string to print as a
	      description before listing the values.

	      All other arguments describe the possible values and their argu‐
	      ments  in the same format used for the description of options by
	      the _arguments function (see above).  The only  differences  are
	      that  no minus or plus sign is required at the beginning, values
	      can have only one argument, and the forms	 of  action  beginning
	      with an equal sign are not supported.

	      The  character  separating  a value from its argument can be set
	      using the option -S (like -s, followed by the character  to  use
	      as  the  separator in the next argument).	 By default the equals
	      sign will be used as the separator between values and arguments.

	      Example:

		     _values -s , 'description' \
			     '*foo[bar]' \
			     '(two)*one[number]:first count:' \
			     'two[another number]::second count:(1 2 3)'

	      This describes three possible values: `foo', `one',  and	`two'.
	      The  first  is  described	 as  `bar',  takes no argument and may
	      appear more than once.  The second is described as `number', may
	      appear   more  than  once,  and  takes  one  mandatory  argument
	      described as `first count'; no action is specified, so  it  will
	      not be completed.	 The `(two)' at the beginning says that if the
	      value `one' is on the line, the value `two' will	no  longer  be
	      considered  a  possible  completion.   Finally,  the  last value
	      (`two') is described as `another number' and takes  an  optional
	      argument	described  as `second count' for which the completions
	      (to appear after an `=') are `1', `2',  and  `3'.	  The  _values
	      function	will  complete lists of these values separated by com‐
	      mas.

	      Like _arguments, this function temporarily adds another  context
	      name  component to the arguments element (the fifth) of the cur‐
	      rent context while executing the action.	Here this name is just
	      the name of the value for which the argument is completed.

	      The  style verbose is used to decide if the descriptions for the
	      values (but not those for the arguments) should be printed.

	      The associative array val_args is	 used  to  report  values  and
	      their  arguments;	 this works similarly to the opt_args associa‐
	      tive array used by _arguments.  Hence the function calling _val‐
	      ues should declare the local parameters state, line, context and
	      val_args:

		     local context state line
		     typeset -A val_args

	      when using an action of the form `->string'.  With this function
	      the context parameter will be set to the name of the value whose
	      argument is to be completed.

	      Note also that _values normally adds the character used  as  the
	      separator between values as an auto-removable suffix (similar to
	      a `/' after a directory).	 However, this is not possible	for  a
	      `->string'  action as the matches for the argument are generated
	      by the calling function.	To get the usual  behaviour,  the  the
	      calling  function can add the separator x as a suffix by passing
	      the options `-qS x' either directly or indirectly to compadd.

	      The option -C is treated in the same way as it is by _arguments.
	      In  that	case  the  parameter  curcontext  should be made local
	      instead of context (as described above).

       _wanted [ -x ] [ -C name ]  [ -12VJ ] tag name descr command args ...
	      In many contexts, completion can only  generate  one  particular
	      set of matches, usually corresponding to a single tag.  However,
	      it is still  necessary  to  decide  whether  the	user  requires
	      matches of this type.  This function is useful in such a case.

	      The  arguments  to  _wanted are the same as those to _requested,
	      i.e. arguments to be passed to _description.  However,  in  this
	      case  the	 command is not optional;  all the processing of tags,
	      including the loop over both tags and tag labels and the genera‐
	      tion of matches, is carried out automatically by _wanted.

	      Hence  to offer only one tag and immediately add the correspond‐
	      ing matches with the given description:

		     local expl
		     _wanted tag expl 'description' \
			 compadd matches...

	      Note that, as for _requested, the command must be able to accept
	      options to be passed down to compadd.

	      Like  _tags  this function supports the -C option to give a dif‐
	      ferent name for the argument context field.  The -x  option  has
	      the same meaning as for _description.

COMPLETION DIRECTORIES
       In  the	source distribution, the files are contained in various subdi‐
       rectories of the Completion directory.  They may have been installed in
       the same structure, or into one single function directory.  The follow‐
       ing is a description of the  files  found  in  the  original  directory
       structure.   If	you  wish to alter an installed file, you will need to
       copy it to some directory which appears earlier in your fpath than  the
       standard directory where it appears.

       Base   The  core functions and special completion widgets automatically
	      bound to keys.  You will certainly need most  of	these,	though
	      will  probably  not need to alter them.  Many of these are docu‐
	      mented above.

       Zsh    Functions for completing arguments of shell builtin commands and
	      utility  functions  for  this.   Some  of these are also used by
	      functions from the Unix directory.

       Unix   Functions for completing	arguments  of  external	 commands  and
	      suites  of  commands.   They may need modifying for your system,
	      although in many cases some attempt is made to decide which ver‐
	      sion  of	a command is present.  For example, completion for the
	      mount command tries to determine the system it  is  running  on,
	      while  completion for many other utilities try to decide whether
	      the GNU version of the command is in use, and hence whether  the
	      --help option is supported.

       X, AIX, BSD, ...
	      Completion  and  utility function for commands available only on
	      some systems.  These are not arranged  hierarchically,  so,  for
	      example, both the Linux and Debian directories, as well as the X
	      directory, may be useful on your system.

ZSHCOMPCTL(1)							 ZSHCOMPCTL(1)

NAME
       zshcompctl - zsh programmable completion

DESCRIPTION
       This version of zsh has two ways of performing completion of  words  on
       the  command  line.  New users of the shell may prefer to use the newer
       and more powerful system based on shell functions; this is described in
       zshcompsys(1),  and  the	 basic	shell  mechanisms which support it are
       described in zshcompwid(1).  This manual entry describes the older com‐
       pctl command.
       compctl [ -CDT ] options [ command ... ]
       compctl	[ -CDT ] options [ -x pattern options - ... -- ] [ + options [
       -x ... -- ] ... [+] ] [ command ... ]
       compctl -M match-specs ...
       compctl -L [ -CDTM ] [ command ... ]
       compctl + command ...

       Control the editor's completion behavior according to the supplied  set
       of options.  Various editing commands, notably expand-or-complete-word,
       usually bound to tab, will attempt to complete  a  word	typed  by  the
       user, while others, notably delete-char-or-list, usually bound to ^D in
       EMACS editing mode, list the possibilities; compctl controls what those
       possibilities  are.  They may for example be filenames (the most common
       case, and  hence	 the  default),	 shell	variables,  or	words  from  a
       user-specified list.

COMMAND FLAGS
       Completion of the arguments of a command may be different for each com‐
       mand or may use the default.  The behavior when completing the  command
       word  itself may also be separately specified.  These correspond to the
       following flags and arguments, all of which (except for -L) may be com‐
       bined with any combination of the options described subsequently in the
       section `Option Flags':

       command ...
	      controls completion for the named commands, which must be listed
	      last on the command line.	 If completion is attempted for a com‐
	      mand with a pathname containing slashes and no completion	 defi‐
	      nition  is  found,  the search is retried with the last pathname
	      component. If the command starts with a =, completion  is	 tried
	      with the pathname of the command.

	      Any  of the command strings may be patterns of the form normally
	      used for filename generation.  These should be be quoted to pro‐
	      tect  them  from	immediate  expansion;  for example the command
	      string 'foo*' arranges for completion of the words of  any  com‐
	      mand beginning with foo.	When completion is attempted, all pat‐
	      tern completions are tried in the reverse order of their defini‐
	      tion until one matches.  By default, completion then proceeds as
	      normal, i.e. the shell will try to generate more matches for the
	      specific	command on the command line; this can be overridden by
	      including -tn in the flags for the pattern completion.

	      Note that aliases are expanded before the command name is deter‐
	      mined  unless  the COMPLETE_ALIASES option is set.  Commands may
	      not be combined with the -C, -D or -T flags.

       -C     controls completion when the command word itself is  being  com‐
	      pleted.  If no compctl -C command has been issued,  the names of
	      any executable command (whether in the path or specific  to  the
	      shell, such as aliases or functions) are completed.

       -D     controls	default	 completion behavior for the arguments of com‐
	      mands not assigned any special behavior.	If no compctl -D  com‐
	      mand has been issued, filenames are completed.

       -T     supplies completion flags to be used before any other processing
	      is done, even before processing for compctls  defined  for  spe‐
	      cific  commands.	 This  is especially useful when combined with
	      extended completion (the -x flag, see the section `Extended Com‐
	      pletion'	below).	 Using this flag you can define default behav‐
	      ior which will apply to all commands without exception,  or  you
	      can  alter the standard behavior for all commands.  For example,
	      if your access to the user database is too slow and/or  it  con‐
	      tains  too  many users (so that completion after `~' is too slow
	      to be usable), you can use

		     compctl -T -x 's[~] C[0,[^/]#]' -k friends -S/ -tn

	      to complete the strings in the array friends after a  `~'.   The
	      C[...]  argument	is necessary so that this form of ~-completion
	      is not tried after the directory name is finished.

       -L     lists the existing completion behavior in a manner suitable  for
	      putting  into  a	start-up  script; the existing behavior is not
	      changed.	Any combination of the above forms,  or	 the  -M  flag
	      (which must follow the -L flag), may be specified, otherwise all
	      defined completions are listed.  Any other  flags	 supplied  are
	      ignored.

       no argument
	      If  no  argument is given, compctl lists all defined completions
	      in an abbreviated form;  with a list of options, all completions
	      with  those  flags  set  (not  counting extended completion) are
	      listed.

       If the + flag is alone and followed immediately by  the	command	 list,
       the  completion	behavior  for all the commands in the list is reset to
       the default.  In other words,  completion  will	subsequently  use  the
       options specified by the -D flag.

       The  form  with -M as the first and only option defines global matching
       specifications (see zshcompwid). The match specifications given will be
       used  for  every	 completion attempt (only when using compctl, not with
       the new completion system) and are tried in the order in which they are
       defined until one generates at least one match. E.g.:

	      compctl -M '' 'm:{a-zA-Z}={A-Za-z}'

       This  will first try completion without any global match specifications
       (the empty string) and, if that generates no  matches,  will  try  case
       insensitive completion.

OPTION FLAGS
       [ -fcFBdeaRGovNAIOPZEnbjrzu/12 ]
       [ -k array ] [ -g globstring ] [ -s subststring ]
       [ -K function ]
       [ -Q ] [ -P prefix ] [ -S suffix ]
       [ -W file-prefix ] [ -H num pattern ]
       [ -q ] [ -X explanation ] [ -Y explanation ]
       [ -y func-or-var ] [ -l cmd ] [ -h cmd ] [ -U ]
       [ -t continue ] [ -J name ] [ -V name ]
       [ -M match-spec ]

       The remaining options specify the type of command arguments to look for
       during completion.  Any combination of these flags  may	be  specified;
       the  result is a sorted list of all the possibilities.  The options are
       as follows.

   Simple Flags
       These produce completion lists made up by the shell itself:

       -f     Filenames and filesystem paths.

       -/     Just filesystem paths.

       -c     Command names, including aliases, shell functions, builtins  and
	      reserved words.

       -F     Function names.

       -B     Names of builtin commands.

       -m     Names of external commands.

       -w     Reserved words.

       -a     Alias names.

       -R     Names of regular (non-global) aliases.

       -G     Names of global aliases.

       -d     This can be combined with -F, -B, -w, -a, -R and -G to get names
	      of disabled functions, builtins, reserved words or aliases.

       -e     This option (to show enabled commands) is in effect by  default,
	      but may be combined with -d; -de in combination with -F, -B, -w,
	      -a, -R and  -G  will  complete  names  of	 functions,  builtins,
	      reserved words or aliases whether or not they are disabled.

       -o     Names of shell options (see zshoptions(1)).

       -v     Names of any variable defined in the shell.

       -N     Names of scalar (non-array) parameters.

       -A     Array names.

       -I     Names of integer variables.

       -O     Names of read-only variables.

       -p     Names of parameters used by the shell (including special parame‐
	      ters).

       -Z     Names of shell special parameters.

       -E     Names of environment variables.

       -n     Named directories.

       -b     Key binding names.

       -j     Job names:  the first word of the	 job  leader's	command	 line.
	      This is useful with the kill builtin.

       -r     Names of running jobs.

       -z     Names of suspended jobs.

       -u     User names.

   Flags with Arguments
       These have user supplied arguments to determine how the list of comple‐
       tions is to be made up:

       -k array
	      Names taken from the elements of $array (note that the `$'  does
	      not  appear  on  the command line).  Alternatively, the argument
	      array itself may be a set of space- or comma-separated values in
	      parentheses,  in which any delimiter may be escaped with a back‐
	      slash; in this case the argument should be quoted.  For example,

		     compctl -k "(cputime filesize datasize stacksize
				 coredumpsize resident descriptors)" limit

       -g globstring
	      The globstring is expanded using filename globbing; it should be
	      quoted  to  protect  it  from immediate expansion. The resulting
	      filenames are taken as the  possible  completions.   Use	`*(/)'
	      instead  of `*/' for directories.	 The fignore special parameter
	      is not applied to the resulting files.  More  than  one  pattern
	      may  be given separated by blanks. (Note that brace expansion is
	      not part of globbing.  Use the  syntax  `(either|or)'  to	 match
	      alternatives.)

       -s subststring
	      The  subststring	is  split  into words and these words are than
	      expanded using all shell expansion mechanisms (see  zshexpn(1)).
	      The resulting words are taken as possible completions.  The fig‐
	      nore special parameter is not applied to	the  resulting	files.
	      Note that -g is faster for filenames.

       -K function
	      Call the given function to get the completions.  Unless the name
	      starts with an underscore, the function is passed two arguments:
	      the  prefix and the suffix of the word on which completion is to
	      be attempted, in other words those characters before the	cursor
	      position, and those from the cursor position onwards.  The whole
	      command line can be accessed with the -c and  -l	flags  of  the
	      read  builtin.  The function should set the variable reply to an
	      array containing the completions (one completion	per  element);
	      note  that reply should not be made local to the function.  From
	      such a function the command line can be accessed with the -c and
	      -l flags to the read builtin.  For example,

		     function whoson { reply=(`users`); }
		     compctl -K whoson talk

	      completes only logged-on users after `talk'.  Note that `whoson'
	      must return an array, so `reply=`users`' would be incorrect.

       -H num pattern
	      The possible completions are taken from  the  last  num  history
	      lines.   Only  words matching pattern are taken.	If num is zero
	      or negative the whole history is searched and if pattern is  the
	      empty  string  all words are taken (as with `*').	 A typical use
	      is

		     compctl -D -f + -H 0 ''

	      which forces completion to look back in the history list	for  a
	      word if no filename matches.

   Control Flags
       These do not directly specify types of name to be completed, but manip‐
       ulate the options that do:

       -Q     This instructs the shell not to quote any metacharacters in  the
	      possible	completions.  Normally the results of a completion are
	      inserted into the command line with any metacharacters quoted so
	      that  they are interpreted as normal characters.	This is appro‐
	      priate for filenames and ordinary strings.  However, for special
	      effects,	such  as inserting a backquoted expression from a com‐
	      pletion array (-k) so that the expression will not be  evaluated
	      until the complete line is executed, this option must be used.

       -P prefix
	      The  prefix  is  inserted	 just before the completed string; any
	      initial part already typed will be completed and the whole  pre‐
	      fix ignored for completion purposes.  For example,

		     compctl -j -P "%" kill

	      inserts  a  `%'  after  the  kill command and then completes job
	      names.

       -S suffix
	      When a completion is found the suffix is inserted after the com‐
	      pleted  string.	In  the	 case of menu completion the suffix is
	      inserted immediately, but it is still possible to cycle  through
	      the list of completions by repeatedly hitting the same key.

       -W file-prefix
	      With  directory  file-prefix:   for command, file, directory and
	      globbing completion (options -c, -f, -/, -g), the file prefix is
	      implicitly added in front of the completion.  For example,

		     compctl -/ -W ~/Mail maildirs

	      completes	 any subdirectories to any depth beneath the directory
	      ~/Mail, although that prefix does	 not  appear  on  the  command
	      line.   The  file-prefix may also be of the form accepted by the
	      -k flag, i.e. the name of an array or a literal list  in	paren‐
	      thesis.  In  this	 case  all the directories in the list will be
	      searched for possible completions.

       -q     If used with a suffix as specified by the -S option, this causes
	      the  suffix to be removed if the next character typed is a blank
	      or does not insert anything or if the suffix  consists  of  only
	      one  character  and the next character typed is the same charac‐
	      ter; this the same rule used for the  AUTO_REMOVE_SLASH  option.
	      The  option  is  most  useful for list separators (comma, colon,
	      etc.).

       -l cmd This option restricts the range of command line words  that  are
	      considered  to  be  arguments.   If  combined  with  one	of the
	      extended completion patterns  `p[...]',  `r[...]',  or  `R[...]'
	      (see  the	 section  `Extended  Completion'  below)  the range is
	      restricted to the range of arguments specified in the  brackets.
	      Completion is then performed as if these had been given as argu‐
	      ments to the cmd supplied with the option. If the cmd string  is
	      empty  the  first word in the range is instead taken as the com‐
	      mand name, and command name completion performed	on  the	 first
	      word in the range.  For example,

		     compctl -x 'r[-exec,;]' -l '' -- find

	      completes	 arguments  between  `-exec' and the following `;' (or
	      the end of the command line if there is no such  string)	as  if
	      they were a separate command line.

       -h cmd Normally	zsh  completes	quoted	strings	 as a whole. With this
	      option, completion can be done separately on different parts  of
	      such  strings. It works like the -l option but makes the comple‐
	      tion code work on the parts of the current word that  are	 sepa‐
	      rated by spaces. These parts are completed as if they were argu‐
	      ments to the given cmd. If cmd is the empty  string,  the	 first
	      part is completed as a command name, as with -l.

       -U     Use  the whole list of possible completions, whether or not they
	      actually match the word on the command line.  The word typed  so
	      far will be deleted.  This is most useful with a function (given
	      by the -K option) which can examine the word  components	passed
	      to  it  (or  via the read builtin's -c and -l flags) and use its
	      own criteria to decide what matches.  If there is no completion,
	      the original word is retained.  Since the produced possible com‐
	      pletions seldom have interesting common prefixes	and  suffixes,
	      menu  completion	is started immediately if AUTO_MENU is set and
	      this flag is used.

       -y func-or-var
	      The list provided by func-or-var is  displayed  instead  of  the
	      list  of	completions whenever a listing is required; the actual
	      completions to be inserted are not affected.  It can be provided
	      in  two ways. Firstly, if func-or-var begins with a $ it defines
	      a variable, or if it begins with a left  parenthesis  a  literal
	      array, which contains the list.  A variable may have been set by
	      a call to a function using the -K option.	 Otherwise it contains
	      the  name	 of  a	function  which will be executed to create the
	      list.  The function will be  passed  as  an  argument  list  all
	      matching	completions,  including prefixes and suffixes expanded
	      in full, and should set the array reply to the result.  In  both
	      cases,  the display list will only be retrieved after a complete
	      list of matches has been created.

	      Note that the returned list does not have to correspond, even in
	      length,  to  the original set of matches, and may be passed as a
	      scalar instead of an array.  No special formatting of characters
	      is performed on the output in this case; in particular, newlines
	      are printed literally and if they appear output  in  columns  is
	      suppressed.

       -X explanation
	      Print  explanation  when trying completion on the current set of
	      options. A `%n' in this string is	 replaced  by  the  number  of
	      matches that were added for this explanation string.  The expla‐
	      nation only appears if completion was tried  and	there  was  no
	      unique  match,  or when listing completions. Explanation strings
	      will be listed together with the matches of the group  specified
	      together	with the -X option (using the -J or -V option). If the
	      same explanation string is given to  multiple  -X	 options,  the
	      string  appears  only  once  (for	 each group) and the number of
	      matches shown for the `%n' is the total number  of  all  matches
	      for each of these uses. In any case, the explanation string will
	      only be shown if there was at least  one	match  added  for  the
	      explanation string.

	      The  sequences  %B,  %b,	%S,  %s,  %U,  and  %u	specify output
	      attributes (bold, standout, and underline) and  %{...%}  can  be
	      used to include literal escape sequences as in prompts.

       -Y explanation
	      Identical	 to  -X,  except  that the explanation first undergoes
	      expansion following  the	usual  rules  for  strings  in	double
	      quotes.	The  expansion will be carried out after any functions
	      are called for the -K or -y options, allowing them to set	 vari‐
	      ables.

       -t continue
	      The  continue-string  contains  a character that specifies which
	      set of completion flags should be used next.  It is useful:

	      (i) With -T, or when trying a list of pattern completions,  when
	      compctl  would  usually  continue with ordinary processing after
	      finding matches; this can be suppressed with `-tn'.

	      (ii) With a list of alternatives separated by  +,	 when  compctl
	      would  normally  stop  when  one	of  the alternatives generates
	      matches.	It can be forced to consider the next set  of  comple‐
	      tions by adding `-t+' to the flags of the alternative before the
	      `+'.

	      (iii) In an extended completion list (see below),	 when  compctl
	      would  normally  continue	 until	a set of conditions succeeded,
	      then use only the immediately following flags.  With `-t-', com‐
	      pctl  will  continue  trying extended completions after the next
	      `-'; with `-tx' it will  attempt	completion  with  the  default
	      flags, in other words those before the `-x'.

       -J name
	      This  gives  the	name of the group the matches should be placed
	      in. Groups are listed and sorted separately; likewise, menu com‐
	      pletion  will  offer  the	 matches in the groups in the order in
	      which the groups were defined. If no group  name	is  explicitly
	      given,  the  matches  are	 stored	 in a group named default. The
	      first time a group name is encountered, a group with  that  name
	      is  created. After that all matches with the same group name are
	      stored in that group.

	      This can be useful with non-exclusive  alternative  completions.
	      For example, in

		     compctl -f -J files -t+ + -v -J variables foo

	      both  files  and	variables are possible completions, as the -t+
	      forces both sets of alternatives before and after the  +	to  be
	      considered  at  once.   Because  of the -J options, however, all
	      files are listed before all variables.

       -V name
	      Like -J, but matches within the group  will  not	be  sorted  in
	      listings	nor in menu completion. These unsorted groups are in a
	      different name space from the sorted ones, so groups defined  as
	      -J files and -V files are distinct.

       -1     If  given	 together  with	 the -V option, makes only consecutive
	      duplicates in the group be removed. Note that  groups  with  and
	      without this flag are in different name spaces.

       -2     If given together with the -J or -V option, makes all duplicates
	      be kept. Again, groups with and without this flag are in differ‐
	      ent name spaces.

       -M match-spec
	      This  defines  additional	 matching  control specifications that
	      should be used only when testing words for  the  list  of	 flags
	      this  flag  appears  in.	The format of the match-spec string is
	      described in zshcompwid.

ALTERNATIVE COMPLETION
       compctl [ -CDT ] options + options [ + ... ] [ + ] command ...

       The form with `+' specifies alternative options.	 Completion  is	 tried
       with the options before the first `+'. If this produces no matches com‐
       pletion is tried with the flags after the `+' and so on. If  there  are
       no  flags  after the last `+' and a match has not been found up to that
       point, default completion is tried.  If the list of flags contains a -t
       with  a + character, the next list of flags is used even if the current
       list produced matches.

       Additional options are available that restrict completion to some  part
       of the command line; this is referred to as `extended completion'.

EXTENDED COMPLETION
       compctl [ -CDT ] options -x pattern options - ... --
		[ command ... ]
       compctl [ -CDT ] options [ -x pattern options - ... -- ]
		[ + options [ -x ... -- ] ... [+] ] [ command ... ]

       The  form  with	`-x'  specifies	 extended  completion for the commands
       given; as shown, it may be combined with alternative  completion	 using
       `+'.  Each pattern is examined in turn; when a match is found, the cor‐
       responding options, as described in the section `Option	Flags'	above,
       are  used to generate possible completions.  If no pattern matches, the
       options given before the -x are used.

       Note that each pattern should be supplied  as  a	 single	 argument  and
       should be quoted to prevent expansion of metacharacters by the shell.

       A  pattern  is built of sub-patterns separated by commas; it matches if
       at least one of these sub-patterns matches  (they  are  `or'ed).	 These
       sub-patterns  are  in  turn composed of other sub-patterns separated by
       white spaces which match if all of the  sub-patterns  match  (they  are
       `and'ed).  An element of the sub-patterns is of the form `c[...][...]',
       where the pairs of brackets may be repeated as often as necessary,  and
       matches	if  any	 of the sets of brackets match (an `or').  The example
       below makes this clearer.

       The elements may be any of the following:

       s[string]...
	      Matches if the current word on the command line starts with  one
	      of the strings given in brackets.	 The string is not removed and
	      is not part of the completion.

       S[string]...
	      Like s[string] except that the string is part of the completion.

       p[from,to]...
	      Matches if the number of the current word is between one of  the
	      from  and	 to pairs inclusive. The comma and to are optional; to
	      defaults to the same value as from.  The numbers	may  be	 nega‐
	      tive: -n refers to the n'th last word on the line.

       c[offset,string]...
	      Matches if the string matches the word offset by offset from the
	      current word position.  Usually offset will be negative.

       C[offset,pattern]...
	      Like c but using pattern matching instead.

       w[index,string]...
	      Matches if the word in position index is	equal  to  the	corre‐
	      sponding	string.	  Note	that  the word count is made after any
	      alias expansion.

       W[index,pattern]...
	      Like w but using pattern matching instead.

       n[index,string]...
	      Matches if the current word contains string.  Anything up to and
	      including the indexth occurrence of this string will not be con‐
	      sidered part of the completion, but the rest will.  index may be
	      negative	to  count from the end: in most cases, index will be 1
	      or -1.  For example,

		     compctl -s '`users`' -x 'n[1,@]' -k hosts -- talk

	      will usually complete usernames, but if you insert  an  @	 after
	      the  name,  names from the array hosts (assumed to contain host‐
	      names, though you must make the array  yourself)	will  be  com‐
	      pleted.  Other commands such as rcp can be handled similarly.

       N[index,string]...
	      Like  n  except  that  the  string  will be taken as a character
	      class.  Anything up to and including the indexth	occurrence  of
	      any  of  the characters in string will not be considered part of
	      the completion.

       m[min,max]...
	      Matches if the total number of words lies between	 min  and  max
	      inclusive.

       r[str1,str2]...
	      Matches  if  the	cursor	is  after a word with prefix str1.  If
	      there is also a word with prefix str2 on the command line	 after
	      the  one matched by str1 it matches only if the cursor is before
	      this word. If the comma and str2 are omitted, it matches if  the
	      cursor is after a word with prefix str1.

       R[str1,str2]...
	      Like r but using pattern matching instead.

       q[str]...
	      Matches  the  word currently being completed is in single quotes
	      and the str begins with the letter `s', or if completion is done
	      in  double quotes and str starts with the letter `d', or if com‐
	      pletion is done in backticks and str starts with a `b'.

EXAMPLE
	      compctl -u -x 's[+] c[-1,-f],s[-f+]' \
		-g '~/Mail/*(:t)' - 's[-f],c[-1,-f]' -f -- mail

       This is to be interpreted as follows:

       If the current command is mail, then

	      if ((the current word begins with + and the previous word is -f)
	      or (the current word begins with -f+)), then complete the
	      non-directory part (the `:t' glob modifier) of files in the directory
	      ~/Mail; else

	      if the current word begins with -f or the previous word was -f, then
	      complete any file; else

	      complete user names.

ZSHMODULES(1)							 ZSHMODULES(1)

NAME
       zshmodules - zsh loadable modules

DESCRIPTION
       Some optional parts of zsh are in modules, separate from	 the  core  of
       the  shell.   Each  of  these  modules may be linked in to the shell at
       build time, or can be dynamically linked while the shell is running  if
       the  installation  supports this feature.  The modules that are bundled
       with the zsh distribution are:

       zsh/cap
	      Builtins for manipulating POSIX.1e (POSIX.6) capability  (privi‐
	      lege) sets.

       zsh/clone
	      A builtin that can clone a running shell onto another terminal.

       zsh/compctl
	      The compctl builtin for controlling completion.

       zsh/complete
	      The basic completion code.

       zsh/complist
	      Completion listing extensions.

       zsh/computil
	      A	 module	 with  utility	builtins needed for the shell function
	      based completion system.

       zsh/curses
	      curses windowing commands

       zsh/datetime
	      Some date/time commands and parameters.

       zsh/deltochar
	      A ZLE function duplicating EMACS' zap-to-char.

       zsh/example
	      An example of how to write a module.

       zsh/files
	      Some basic file manipulation commands as builtins.

       zsh/mapfile
	      Access to external files via a special associative array.

       zsh/mathfunc
	      Standard scientific functions for use  in	 mathematical  evalua‐
	      tions.

       zsh/newuser
	      Arrange for files for new users to be installed.

       zsh/parameter
	      Access to internal hash tables via special associative arrays.

       zsh/pcre
	      Interface to the PCRE library.

       zsh/regex
	      Interface to the POSIX regex library.

       zsh/sched
	      A	 builtin  that	provides a timed execution facility within the
	      shell.

       zsh/net/socket
	      Manipulation of Unix domain sockets

       zsh/stat
	      A builtin command interface to the stat system call.

       zsh/system
	      A builtin interface to various low-level system features.

       zsh/net/tcp
	      Manipulation of TCP sockets

       zsh/termcap
	      Interface to the termcap database.

       zsh/terminfo
	      Interface to the terminfo database.

       zsh/zftp
	      A builtin FTP client.

       zsh/zle
	      The Zsh Line Editor, including the bindkey and vared builtins.

       zsh/zleparameter
	      Access to internals of the Zsh Line Editor via parameters.

       zsh/zprof
	      A module allowing profiling for shell functions.

       zsh/zpty
	      A builtin for starting a command in a pseudo-terminal.

       zsh/zselect
	      Block and return when file descriptors are ready.

       zsh/zutil
	      Some utility builtins, e.g. the one for supporting configuration
	      via styles.

THE ZSH/CAP MODULE
       The zsh/cap module is used for manipulating POSIX.1e (POSIX.6) capabil‐
       ity sets.  If the operating system does not support this interface, the
       builtins	 defined by this module will do nothing.  The builtins in this
       module are:

       cap [ capabilities ]
	      Change the shell's process  capability  sets  to	the  specified
	      capabilities,  otherwise	display	 the shell's current capabili‐
	      ties.

       getcap filename ...
	      This is a built-in implementation of the POSIX standard utility.
	      It displays the capability sets on each specified filename.

       setcap capabilities filename ...
	      This is a built-in implementation of the POSIX standard utility.
	      It sets the capability sets on each specified  filename  to  the
	      specified capabilities.

THE ZSH/CLONE MODULE
       The zsh/clone module makes available one builtin command:

       clone tty
	      Creates  a forked instance of the current shell, attached to the
	      specified tty.  In the new shell, the PID, PPID and TTY  special
	      parameters  are changed appropriately.  $! is set to zero in the
	      new shell, and to the new shell's PID in the original shell.

	      The return status of the builtin is zero in both shells if  suc‐
	      cessful, and non-zero on error.

	      The  target  of  clone  should be an unused terminal, such as an
	      unused virtual console or a virtual terminal created by

	      xterm -e sh -c 'trap : INT QUIT TSTP; tty;  while	 :;  do	 sleep
	      100000000; done'

	      Some  words  of  explanation are warranted about this long xterm
	      command line: when doing clone on a pseudo-terminal, some	 other
	      session  ("session"  meant  as  a unix session group, or SID) is
	      already owning the terminal. Hence the cloned zsh cannot acquire
	      the pseudo-terminal as a controlling tty. That means two things:

	      the  job	control	 signals  will	go  to the sh-started-by-xterm
	      process
		    group (that's why we disable INT QUIT and TSTP with	 trap;
	      otherwise
		    the while loop could get suspended or killed)

	      the cloned shell will have job control disabled, and the job
		    control keys (control-C, control-\ and control-Z) will not
	      work.

	      This does not apply when cloning to an unused vc.

	      Cloning to an used (and unprepared) terminal will result in  two
	      processes	 reading  simultaneously  from the same terminal, with
	      input bytes going randomly to either process.

	      clone is mostly useful  as  a  shell  built-in  replacement  for
	      openvt.

THE ZSH/COMPCTL MODULE
       The  zsh/compctl	 module makes available two builtin commands. compctl,
       is the old, deprecated way to control completions for ZLE.  See zshcom‐
       pctl(1).	   The	 other	builtin	 command,  compcall  can  be  used  in
       user-defined completion widgets, see zshcompwid(1).

THE ZSH/COMPLETE MODULE
       The zsh/complete module makes available several builtin commands	 which
       can be used in user-defined completion widgets, see zshcompwid(1).

THE ZSH/COMPLIST MODULE
       The zsh/complist module offers three extensions to completion listings:
       the ability to highlight matches in such a list, the ability to	scroll
       through long lists and a different style of menu completion.

   Colored completion listings
       Whenever one of the parameters ZLS_COLORS or ZLS_COLOURS is set and the
       zsh/complist module is loaded or	 linked	 into  the  shell,  completion
       lists will be colored.  Note, however, that complist will not automati‐
       cally be loaded if it is not linked in:	on systems with dynamic	 load‐
       ing, `zmodload zsh/complist' is required.

       The  parameters	ZLS_COLORS  and	 ZLS_COLOURS  describe how matches are
       highlighted.  To turn on highlighting an empty value suffices, in which
       case  all  the  default values given below will be used.	 The format of
       the value of these parameters is the same as used by the GNU version of
       the  ls	command:  a colon-separated list of specifications of the form
       `name=value'.  The name may be one of the following  strings,  most  of
       which specify file types for which the value will be used.  The strings
       and their default values are:

       no 0   for normal text (i.e. when displaying  something	other  than  a
	      matched file)

       fi 0   for regular files

       di 32  for directories

       ln 36  for symbolic links

       pi 31  for named pipes (FIFOs)

       so 33  for sockets

       bd 44;37
	      for block devices

       cd 44;37
	      for character devices

       ex 35  for executable files

       mi none
	      for a non-existent file (default is the value defined for fi)

       lc \e[ for the left code (see below)

       rc m   for the right code

       tc 0   for  the character indicating the file type  printed after file‐
	      names if the LIST_TYPES option is set

       sp 0   for the spaces printed after matches to align the next column

       ec none
	      for the end code

       Apart from these strings, the name may also be an asterisk  (`*')  fol‐
       lowed by any string. The value given for such a string will be used for
       all files whose name ends with the string.  The name  may  also	be  an
       equals sign (`=') followed by a pattern.	 The value given for this pat‐
       tern will be used for all matches (not just  filenames)	whose  display
       string  are matched by the pattern.  Definitions for both of these take
       precedence over the values defined for file types and the form with the
       leading	asterisk takes precedence over the form with the leading equal
       sign.

       The last form also allows different parts of the displayed  strings  to
       be  colored  differently.   For this, the pattern has to use the `(#b)'
       globbing flag and pairs of parentheses surrounding  the	parts  of  the
       strings that are to be colored differently.  In this case the value may
       consist of more than one color code  separated  by  equal  signs.   The
       first  code  will  be  used for all parts for which no explicit code is
       specified and the following codes will be used for the parts matched by
       the  sub-patterns  in  parentheses.   For  example,  the	 specification
       `=(#b)(?)*(?)=0=3=7' will be used for all matches which	are  at	 least
       two  characters long and will use the code `3' for the first character,
       `7' for the last character and `0' for the rest.

       All three forms of name may be preceded by a  pattern  in  parentheses.
       If  this	 is  given,  the value will be used only for matches in groups
       whose names are matched by the pattern given in the  parentheses.   For
       example,	 `(g*)m*=43'  highlights  all  matches	beginning  with `m' in
       groups whose names  begin with `g' using the color code `43'.  In  case
       of the `lc', `rc', and `ec' codes, the group pattern is ignored.

       Note also that all patterns are tried in the order in which they appear
       in the parameter value until the first one matches which is then used.

       When printing a match, the code prints the value of lc, the  value  for
       the  file-type or the last matching specification with a `*', the value
       of rc, the string to display for the match itself, and then  the	 value
       of  ec  if that is defined or the values of lc, no, and rc if ec is not
       defined.

       The default values are ISO 6429 (ANSI) compliant and  can  be  used  on
       vt100 compatible terminals such as xterms.  On monochrome terminals the
       default values will have no visible effect.  The colors	function  from
       the  contribution  can be used to get associative arrays containing the
       codes for ANSI terminals (see the section `Other Functions' in  zshcon‐
       trib(1)).   For	example,  after	 loading  colors, one could use `$col‐
       ors[red]'  to  get  the	code  for  foreground  color  red  and	`$col‐
       ors[bg-green]' for the code for background color green.

       If  the completion system invoked by compinit is used, these parameters
       should not be set directly because the  system  controls	 them  itself.
       Instead, the list-colors style should be used (see the section `Comple‐
       tion System Configuration' in zshcompsys(1)).

   Scrolling in completion listings
       To enable scrolling through a completion list, the LISTPROMPT parameter
       must  be set.  Its value will be used as the prompt; if it is the empty
       string, a default prompt will be used.  The value may  contain  escapes
       of  the	form  `%x'.   It  supports the escapes `%B', `%b', `%S', `%s',
       `%U', `%u' and `%{...%}' used also in shell prompts as  well  as	 three
       pairs of additional sequences: a `%l' or `%L' is replaced by the number
       of the last line shown and the total number of lines in the form	 `num‐
       ber/total';  a  `%m'  or	 `%M'  is replaced with the number of the last
       match shown and the total number	 of  matches;  and  `%p'  or  `%P'  is
       replaced	 with  `Top', `Bottom' or the position of the first line shown
       in percent of the total number of  lines,  respectively.	  In  each  of
       these  cases the form with the uppercase letter will be replaced with a
       string of fixed width, padded to the right with spaces, while the  low‐
       ercase form will not be padded.

       If the parameter LISTPROMPT is set, the completion code will not ask if
       the list should be shown.  Instead it immediately starts displaying the
       list,  stopping	after  the  first screenful, showing the prompt at the
       bottom, waiting for a  keypress	after  temporarily  switching  to  the
       listscroll  keymap.   Some  of the zle functions have a special meaning
       while scrolling lists:

       send-break
	      stops listing discarding the key pressed

       accept-line, down-history, down-line-or-history
       down-line-or-search, vi-down-line-or-history
	      scrolls forward one line

       complete-word, menu-complete, expand-or-complete
       expand-or-complete-prefix, menu-complete-or-expand
	      scrolls forward one screenful

       Every other character stops listing and immediately processes  the  key
       as  usual.   Any key that is not bound in the listscroll keymap or that
       is bound	 to  undefined-key  is	looked	up  in	the  keymap  currently
       selected.

       As for the ZLS_COLORS and ZLS_COLOURS parameters, LISTPROMPT should not
       be set directly when using the shell function based completion  system.
       Instead, the list-prompt style should be used.

   Menu selection
       The  zsh/complist  module also offers an alternative style of selecting
       matches from a list, called menu selection, which can be	 used  if  the
       shell is set up to return to the last prompt after showing a completion
       list (see the ALWAYS_LAST_PROMPT option in zshoptions(1)).

       Menu selection can  be  invoked	directly  by  the  widget  menu-select
       defined	by  this  module.   This  is a standard ZLE widget that can be
       bound to a key in the usual way as described in zshzle(1).

       Alternatively, the parameter MENUSELECT can be set to an integer, which
       gives  the  minimum  number of matches that must be present before menu
       selection is automatically turned on.  This second method requires that
       menu  completion	 be  started,  either  directly	 from a widget such as
       menu-complete, or due to one of the options MENU_COMPLETE or  AUTO_MENU
       being  set.  If MENUSELECT is set, but is 0, 1 or empty, menu selection
       will always be started during an ambiguous menu completion.

       When using the completion system based on shell functions, the  MENUSE‐
       LECT  parameter should not be used (like the ZLS_COLORS and ZLS_COLOURS
       parameters described above).  Instead, the menu style  should  be  used
       with the select=... keyword.

       After  menu  selection is started, the matches will be listed. If there
       are more matches than fit on the screen, only the  first	 screenful  is
       shown.	The  matches  to  insert into the command line can be selected
       from this list.	In the list one match is highlighted using  the	 value
       for ma from the ZLS_COLORS or ZLS_COLOURS parameter.  The default value
       for this is `7' which forces the selected match to be highlighted using
       standout	 mode  on  a vt100-compatible terminal.	 If neither ZLS_COLORS
       nor ZLS_COLOURS is set, the same terminal control sequence as  for  the
       `%S' escape in prompts is used.

       If  there  are  more  matches  than fit on the screen and the parameter
       MENUPROMPT is set, its value will be shown below the matches.  It  sup‐
       ports  the  same	 escape sequences as LISTPROMPT, but the number of the
       match or line shown will be that of the one where the mark  is  placed.
       If its value is the empty string, a default prompt will be used.

       The  MENUSCROLL	parameter  can	be  used  to  specify  how the list is
       scrolled.  If the parameter is unset, this is done line by line, if  it
       is  set to `0' (zero), the list will scroll half the number of lines of
       the screen.  If the value is positive, it gives the number of lines  to
       scroll  and  if it is negative, the list will be scrolled the number of
       lines of the screen minus the (absolute) value.

       As for the ZLS_COLORS, ZLS_COLOURS and LISTPROMPT  parameters,  neither
       MENUPROMPT  nor	MENUSCROLL should be set directly when using the shell
       function based  completion  system.   Instead,  the  select-prompt  and
       select-scroll styles should be used.

       The completion code sometimes decides not to show all of the matches in
       the list.  These hidden matches are either matches for which  the  com‐
       pletion	function  which	 added them explicitly requested that they not
       appear in the list (using the -n option of the compadd builtin command)
       or  they	 are  matches  which  duplicate	 a  string already in the list
       (because they differ only in things like prefixes or suffixes that  are
       not  displayed).	  In  the  list used for menu selection, however, even
       these matches are shown so that it is  possible	to  select  them.   To
       highlight such matches the hi and du capabilities in the ZLS_COLORS and
       ZLS_COLOURS parameters are supported for hidden matches	of  the	 first
       and second kind, respectively.

       Selecting matches is done by moving the mark around using the zle move‐
       ment functions.	When not all matches can be shown on the screen at the
       same  time,  the	 list will scroll up and down when crossing the top or
       bottom line.  The following zle functions have special  meaning	during
       menu selection:

       accept-line
	      accepts the current match and leaves menu selection

       send-break
	      leaves  menu selection and restores the previous contents of the
	      command line

       redisplay, clear-screen
	      execute their normal function without leaving menu selection

       accept-and-hold, accept-and-menu-complete
	      accept the  currently  inserted  match  and  continue  selection
	      allowing to select the next match to insert into the line

       accept-and-infer-next-history
	      accepts  the  current  match and then tries completion with menu
	      selection again;	in the case of files this allows one to select
	      a directory and immediately attempt to complete files in it;  if
	      there are no matches, a message is shown and one can use undo to
	      go  back	to  completion	on the previous level, every other key
	      leaves menu selection (including the other zle  functions	 which
	      are otherwise special during menu selection)

       undo   removes matches inserted during the menu selection by one of the
	      three functions before

       down-history, down-line-or-history
       vi-down-line-or-history,	 down-line-or-search
	      moves the mark one line down

       up-history, up-line-or-history
       vi-up-line-or-history, up-line-or-search
	      moves the mark one line up

       forward-char, vi-forward-char
	      moves the mark one column right

       backward-char, vi-backward-char
	      moves the mark one column left

       forward-word, vi-forward-word
       vi-forward-word-end, emacs-forward-word
	      moves the mark one screenful down

       backward-word, vi-backward-word, emacs-backward-word
	      moves the mark one screenful up

       vi-forward-blank-word, vi-forward-blank-word-end
	      moves the mark to the first line of the next group of matches

       vi-backward-blank-word
	      moves the mark to the last line of the previous group of matches

       beginning-of-history
	      moves the mark to the first line

       end-of-history
	      moves the mark to the last line

       beginning-of-buffer-or-history, beginning-of-line
       beginning-of-line-hist, vi-beginning-of-line
	      moves the mark to the leftmost column

       end-of-buffer-or-history, end-of-line
       end-of-line-hist, vi-end-of-line
	      moves the mark to the rightmost column

       complete-word, menu-complete, expand-or-complete
       expand-or-complete-prefix, menu-expand-or-complete
	      moves the mark to the next match

       reverse-menu-complete
	      moves the mark to the previous match

       vi-insert
	      this toggles between normal and interactive mode; in interactive
	      mode the keys bound to self-insert and self-insert-unmeta insert
	      into the command line as in  normal  editing  mode  but  without
	      leaving menu selection; after each character completion is tried
	      again and the list changes to contain only the new matches;  the
	      completion  widgets  make	 the  longest  unambiguous  string  be
	      inserted in the command line and undo  and  backward-delete-char
	      go back to the previous set of matches

       history-incremental-search-forward,
	      history-incremental-search-backward   this   starts  incremental
	      searches in the list of completions  displayed;  in  this	 mode,
	      accept-line  only	 leaves	 incremental search, going back to the
	      normal menu selection mode

       All movement functions wrap around at the edges; any other zle function
       not  listed  leaves  menu  selection and executes that function.	 It is
       possible to make widgets in the above list do the  same	by  using  the
       form  of	 the  widget  with  a  `.'  in front.  For example, the widget
       `.accept-line' has the effect of leaving menu selection	and  accepting
       the entire command line.

       During  this  selection the widget uses the keymap menuselect.  Any key
       that is not defined in this keymap or that is bound to undefined-key is
       looked  up  in  the  keymap currently selected.	This is used to ensure
       that the most important keys used during selection (namely  the	cursor
       keys,  return,  and  TAB) have sensible defaults.  However, keys in the
       menuselect keymap can be modified directly using	 the  bindkey  builtin
       command	(see zshmodules(1)). For example, to make the return key leave
       menu selection without accepting the match currently selected one could
       call

	      bindkey -M menuselect '^M' send-break

       after loading the zsh/complist module.

THE ZSH/COMPUTIL MODULE
       The  zsh/computil module adds several builtin commands that are used by
       some of the completion functions in  the	 completion  system  based  on
       shell  functions	 (see  zshcompsys(1)  ).   Except  for compquote these
       builtin commands are very specialised and  thus	not  very  interesting
       when  writing your own completion functions.  In summary, these builtin
       commands are:

       comparguments
	      This is used by the _arguments function to do the	 argument  and
	      command  line parsing.  Like compdescribe it has an option -i to
	      do the parsing and initialize some internal  state  and  various
	      options to access the state information to decide what should be
	      completed.

       compdescribe
	      This is used by the _describe function to build the displays for
	      the  matches and to get the strings to add as matches with their
	      options.	On the first call one of the options -i or  -I	should
	      be  supplied  as the first argument.  In the first case, display
	      strings without the descriptions will be generated, in the  sec‐
	      ond  case,  the  string  used to separate the matches from their
	      descriptions must be  given  as  the  second  argument  and  the
	      descriptions  (if	 any)  will be shown.  All other arguments are
	      like the definition arguments to _describe itself.

	      Once compdescribe has been called with either the -i or  the  -I
	      option,  it  can be repeatedly called with the -g option and the
	      names of five arrays as its arguments.  This will	 step  through
	      the different sets of matches and store the options in the first
	      array, the strings with descriptions in the second, the  matches
	      for  these in the third, the strings without descriptions in the
	      fourth, and the matches for them in the fifth array.  These  are
	      then  directly given to compadd to register the matches with the
	      completion code.

       compfiles
	      Used by the _path_files function to optimize  complex  recursive
	      filename generation (globbing).  It does three things.  With the
	      -p and -P options it builds the glob patterns to use,  including
	      the  paths  already  handled and trying to optimize the patterns
	      with respect to the prefix and suffix  from  the	line  and  the
	      match  specification  currently  used.   The  -i option does the
	      directory tests for the ignore-parents style and the  -r	option
	      tests  if	 a  component for some of the matches are equal to the
	      string on the line and removes all  other	 matches  if  that  is
	      true.

       compgroups
	      Used  by	the  _tags  function to implement the internals of the
	      group-order style.  This only takes its arguments	 as  names  of
	      completion  groups and creates the groups for it (all six types:
	      sorted and unsorted,  both  without  removing  duplicates,  with
	      removing	all  duplicates	 and  with removing consecutive dupli‐
	      cates).

       compquote [ -p ] names ...
	      There may be reasons to write completion functions that have  to
	      add the matches using the -Q option to compadd and perform quot‐
	      ing themselves.  Instead of interpreting the first character  of
	      the  all_quotes  key  of	the  compstate special association and
	      using the q flag for parameter  expansions,  one	can  use  this
	      builtin command.	The arguments are the names of scalar or array
	      parameters and the values of  these  parameters  are  quoted  as
	      needed  for  the	innermost  quoting level.  If the -p option is
	      given, quoting is done as if there is  some  prefix  before  the
	      values  of the parameters, so that a leading equal sign will not
	      be quoted.

	      The return status is non-zero in case of an error and zero  oth‐
	      erwise.

       comptags
       comptry
	      These implement the internals of the tags mechanism.

       compvalues
	      Like comparguments, but for the _values function.

THE ZSH/CURSES MODULE
       The  zsh/curses	module makes available one builtin command and various
       parameters.

   Builtin
       zcurses init
       zcurses end
       zcurses addwin targetwin nlines ncols begin_y begin_x [ parentwin ]
       zcurses delwin targetwin
       zcurses refresh [ targetwin ... ]
       zcurses touch targetwin ...
       zcurses move targetwin new_y new_x
       zcurses clear targetwin [ redraw | eol | bot ]
       zcurses location targetwin array
       zcurses char targetwin character
       zcurses string targetwin string
       zcurses border targetwin border (
       zcurses attr targetwin [ {+/-}attribute | fg_col/bg_col ] [...]
       zcurses bg targetwin [ {+/-}attribute | fg_col/bg_col | @char ] [...]
       zcurses scroll targetwin [ on | off | {+/-}lines ]
       zcurses input targetwin [ param [ kparam [ mparam ] ] ]
       zcurses mouse [ delay num | {+/-}motion ]
       zcurses timeout targetwin intval
       zcurses querychar targetwin [ param ]
	      Manipulate curses windows.  All uses of this command  should  be
	      bracketed	 by  `zcurses  init'  to initialise use of curses, and
	      `zcurses end' to end it; omitting `zcurses end'  can  cause  the
	      terminal to be in an unwanted state.

	      The  subcommand  addwin  creates	a window with nlines lines and
	      ncols columns.  Its upper left corner  will  be  placed  at  row
	      begin_y and column begin_x of the screen.	 targetwin is a string
	      and refers to the	 name  of  a  window  that  is	not  currently
	      assigned.	  Note in particular the curses convention that verti‐
	      cal values appear before horizontal values.

	      If addwin is given an existing window as the final argument, the
	      new window is created as a subwindow of parentwin.  This differs
	      from an ordinary new window in that the  memory  of  the	window
	      contents is shared with the parent's memory.  Subwindows must be
	      deleted before their parent.  Note that the coordinates of  sub‐
	      windows  are  relative  to  the  screen, not the parent, as with
	      other windows.

	      Use the subcommand  delwin  to  delete  a	 window	 created  with
	      addwin.	Note  that end does not implicitly delete windows, and
	      that delwin does not erase the screen image of the window.

	      The window corresponding to the full visible  screen  is	called
	      stdscr;  it  always  exists  after  `zcurses init' and cannot be
	      delete with delwin.

	      The subcommand refresh will refresh window  targetwin;  this  is
	      necessary	 to  make  any pending changes (such as characters you
	      have prepared for output	with  char)  visible  on  the  screen.
	      refresh  without an argument causes the screen to be cleared and
	      redrawn.	If multiple windows are given, the screen  is  updated
	      once at the end.

	      The  subcommand  touch  marks  the targetwins listed as changed.
	      This is necessary before refreshing windows if a window that was
	      in front of another window (which may be stdscr) is deleted.

	      The  subcommand  move  moves the cursor position in targetwin to
	      new coordinates new_y  and  new_x.   Note	 that  the  subcommand
	      string  (but  not the subcommand char) advances the cursor posi‐
	      tion over the characters added.

	      The subcommand clear erases the contents of targetwin.  One (and
	      no  more	than one) of three options may be specified.  With the
	      option redraw, in addition the next refresh  of  targetwin  will
	      cause  the  screen to be cleared and repainted.  With the option
	      eol, targetwin is only cleared to the end of the current	cursor
	      line.   With  the option bot, targetwin is cleared to the end of
	      the window, i.e everything to the right and below the cursor  is
	      cleared.

	      The subcommand location writes various positions associated with
	      targetwin into the array named array.  These are, in order:

	      The y and x coordinates of the cursor relative to the top left
		     of targetwin

	      The y and x coordinates of the top left of targetwin on the
		     screen

	      The size of targetwin in y and x dimensions.

	      Outputting characters and	 strings  are  achieved	 by  char  and
	      string respectively.

	      To draw a border around window targetwin, use border.  Note that
	      the border is not	 subsequently  handled	specially:   in	 other
	      words,  the  border  is simply a set of characters output at the
	      edge of the window.  Hence it can be overwritten, can scroll off
	      the window, etc.

	      The  subcommand  attr  will  set targetwin's attributes or fore‐
	      ground/background color pair for any successive  character  out‐
	      put.   Each  attribute given on the line may be prepended by a +
	      to set or a - to unset that attribute; + is assumed  if  absent.
	      The  attributes  supported are blink, bold, dim, reverse, stand‐
	      out, and underline.

	      Each fg_col/bg_col attribute (to be read as `fg_col on  bg_col')
	      sets  the	 foreground and background color for character output.
	      The color default is sometimes available (in particular  if  the
	      library  is  ncurses),  specifying  the foreground or background
	      color  with  which  the  terminal	 started.   The	  color	  pair
	      default/default is always available.

	      bg overrides the color and other attributes of all characters in
	      the window.  Its usual use is to set the	background  initially,
	      but  it  will  overwrite the attributes of any characters at the
	      time when it is called.  In addition to  the  arguments  allowed
	      with  attr,  an argument @char specifies a character to be shown
	      in otherwise blank areas of the window.  Owing to limitations of
	      curses  this cannot be a multibyte character (use of ASCII char‐
	      acters only is recommended).  As the specified set of attributes
	      override	the existing background, turning attributes off in the
	      arguments is not useful, though this does not cause an error.

	      The subcommand scroll can be used with on or off to  enabled  or
	      disable  scrolling  of  a window when the cursor would otherwise
	      move below the window due to typing or output.  It can  also  be
	      used with a positive or negative integer to scroll the window up
	      or down the given number of lines without changing  the  current
	      cursor position (which therefore appears to move in the opposite
	      direction relative to the	 window).   In	the  second  case,  if
	      scrolling is off it is temporarily turned on to allow the window
	      to be scrolled.

	      The subcommand input reads a single character  from  the	window
	      without  echoing it back.	 If param is supplied the character is
	      assigned to the parameter param, else  it	 is  assigned  to  the
	      parameter REPLY.

	      If  both param and kparam are supplied, the key is read in `key‐
	      pad' mode.  In this mode special keys such as function keys  and
	      arrow  keys  return the name of the key in the parameter kparam.
	      The key  names  are  the	macros	defined	 in  the  curses.h  or
	      ncurses.h	 with the prefix `KEY_' removed; see also the descrip‐
	      tion of the parameter zcurses_keycodes below.  Other keys	 cause
	      a	 value	to  be set in param as before.	On a successful return
	      only one of param or kparam contains  a  non-empty  string;  the
	      other is set to an empty string.

	      If  mparam  is  also  supplied,  input  attempts to handle mouse
	      input.  This is only available with the ncurses  library;	 mouse
	      handling	can  be	 detected  by  checking for the exit status of
	      `zcurses mouse' with no arguments.  If a mouse button is clicked
	      (or  double-  or	triple-clicked,	 or pressed or released with a
	      configurable delay from being clicked) then kparam is set to the
	      string  MOUSE,  and  mparam is set to an array consisting of the
	      following elements:
	      -	     An identifier to discriminate  different  input  devices;
		     this is only rarely useful.
	      -	     The x, y and z coordinates of the mouse click relative to
		     the full screen, as three elements in  that  order	 (i.e.
		     the  y coordinate is, unusually, after the x coordinate).
		     The z coordinate is only  available  for  a  few  unusual
		     input devices and is otherwise set to zero.
	      -	     Any events that occurred as separate items; usually there
		     will  be  just  one.   An	event  consists	 of   PRESSED,
		     RELEASED,	CLICKED, DOUBLE_CLICKED or TRIPLE_CLICKED fol‐
		     lowed immediately (in the same element) by the number  of
		     the button.
	      -	     If the shift key was pressed, the string SHIFT.
	      -	     If the control key was pressed, the string CTRL.
	      -	     If the alt key was pressed, the string ALT.

	      Not  all mouse events may be passed through to the terminal win‐
	      dow; most terminal emulators  handle  some  mouse	 events	 them‐
	      selves.	Note  that the ncurses manual implies that using input
	      both with and without mouse handling may cause the mouse	cursor
	      to appear and disappear.

	      The  subcommand  mouse  can  be used to configure the use of the
	      mouse.  There is no window argument; mouse options  are  global.
	      `zcurses mouse' with no arguments returns status 0 if mouse han‐
	      dling is possible, else status 1.	 Otherwise, the possible argu‐
	      ments  (which  may  be combined on the same command line) are as
	      follows.	delay num  sets	 the  maximum  delay  in  milliseconds
	      between  press  and  release events to be considered as a click;
	      the value 0 disables click resolution, and the  default  is  one
	      sixth  of	 a  second.   motion proceeded by an optional `+' (the
	      default) or - turns on or off reporting of mouse motion in addi‐
	      tion to clicks, presses and releases, which are always reported.
	      However, it appears reports for mouse motion are	not  currently
	      implemented.

	      The  subcommand timeout specifies a timeout value for input from
	      targetwin.  If intval is negative, `zcurses input' waits indefi‐
	      nitely  for  a  character	 to be typed; this is the default.  If
	      intval is zero, `zcurses input' returns immediately; if there is
	      typeahead	 it is returned, else no input is done and status 1 is
	      returned.	 If intval is positive, `zcurses input'	 waits	intval
	      milliseconds  for	 input and if there is none at the end of that
	      period returns status 1.

	      The subcommand querychar queries the character  at  the  current
	      cursor  position.	  The  return  values  are stored in the array
	      named param if supplied, else in the  array  reply.   The	 first
	      value  is	 the  character (which may be a multibyte character if
	      the system supports them); the second is the color pair  in  the
	      usual  fg_col/bg_col  notation,  or 0 if color is not supported.
	      Any attributes other than color that apply to the character,  as
	      set with the subcommand attr, appear as additional elements.

   Parameters
       ZCURSES_COLORS
	      Readonly	integer.   The	maximum	 number of colors the terminal
	      supports.	 This value is initialised by the curses  library  and
	      is not available until the first time zcurses init is run.

       ZCURSES_COLOR_PAIRS
	      Readonly	 integer.    The   maximum   number   of  color	 pairs
	      fg_col/bg_col that may be defined in  `zcurses  attr'  commands;
	      note  this  limit applies to all color pairs that have been used
	      whether or not they are currently active.	 This  value  is  ini‐
	      tialised	by  the	 curses library and is not available until the
	      first time zcurses init is run.

       zcurses_attrs
	      Readonly array.  The attributes supported by zsh/curses;	avail‐
	      able as soon as the module is loaded.

       zcurses_colors
	      Readonly	array.	 The colors supported by zsh/curses; available
	      as soon as the module is loaded.

       zcurses_keycodes
	      Readonly array.  The values that may be returned in  the	second
	      parameter supplied to `zcurses input' in the order in which they
	      are defined internally by curses.	 Not  all  function  keys  are
	      listed, only F0; curses reserves space for F0 up to F63.

       zcurses_windows
	      Readonly	array.	 The current list of windows, i.e. all windows
	      that have been created with `zcurses  addwin'  and  not  removed
	      with `zcurses delwin'.

THE ZSH/DATETIME MODULE
       The zsh/datetime module makes available one builtin command:

       strftime [ -s scalar ] format epochtime
       strftime -r [ -q ] [ -s scalar ] format timestring
	      Output the date denoted by epochtime in the format specified.

	      With the option -r (reverse), use the format format to parse the
	      input string timestring and output the number of	seconds	 since
	      the epoch at which the time occurred.  If no timezone is parsed,
	      the current timezone is used; other parameters are set  to  zero
	      if not present.  If timestring does not match format the command
	      returns status 1; it will additionally print  an	error  message
	      unless  the  option  -q (quiet) is given.	 If timestring matches
	      format but not all characters in timestring were used, the  con‐
	      version succeeds; however, a warning is issued unless the option
	      -q is given.  The matching is implemented by the system function
	      strptime;	 see  strptime(3).   This means that zsh format exten‐
	      sions are not available, however for reverse lookup they are not
	      required.	  If  the  function  is	 not  implemented, the command
	      returns status 2 and (unless -q is given) prints a message.

	      If -s scalar is given, assign the date string (or epoch time  in
	      seconds if -r is given) to scalar instead of printing it.

       The zsh/datetime module makes available one parameter:

       EPOCHSECONDS
	      An  integer  value  representing the number of seconds since the
	      epoch.

THE ZSH/DELTOCHAR MODULE
       The zsh/deltochar module makes available two ZLE functions:

       delete-to-char
	      Read a character from the keyboard, and delete from  the	cursor
	      position	up to and including the next (or, with repeat count n,
	      the nth) instance of that	 character.   Negative	repeat	counts
	      mean delete backwards.

       zap-to-char
	      This  behaves  like delete-to-char, except that the final occur‐
	      rence of the character itself is not deleted.

THE ZSH/EXAMPLE MODULE
       The zsh/example module makes available one builtin command:

       example [ -flags ] [ args ... ]
	      Displays the flags and arguments it is invoked with.

       The purpose of the module is to serve as an example of how to  write  a
       module.

THE ZSH/FILES MODULE
       The   zsh/files	module	makes  some  standard  commands	 available  as
       builtins:

       chgrp [ -hRs ] group filename ...
	      Changes group of files specified.	 This is equivalent  to	 chown
	      with a user-spec argument of `:group'.

       chown [ -hRs ] user-spec filename ...
	      Changes ownership and group of files specified.

	      The user-spec can be in four forms:

	      user   change owner to user; do not change group
	      user:: change owner to user; do not change group
	      user:  change  owner  to	user;  change  group to user's primary
		     group
	      user:group
		     change owner to user; change group to group
	      :group do not change owner; change group to group

	      In each case, the `:' may instead be a `.'.  The rule is that if
	      there  is a `:' then the separator is `:', otherwise if there is
	      a `.' then the separator is `.', otherwise there is  no  separa‐
	      tor.

	      Each  of user and group may be either a username (or group name,
	      as appropriate) or a decimal user ID (group ID).	Interpretation
	      as  a name takes precedence, if there is an all-numeric username
	      (or group name).

	      If the target is a symbolic link, the -h option causes chown  to
	      set the ownership of the link instead of its target.

	      The  -R option causes chown to recursively descend into directo‐
	      ries, changing the ownership of all files in the directory after
	      changing the ownership of the directory itself.

	      The  -s  option  is  a zsh extension to chown functionality.  It
	      enables paranoid behaviour, intended to avoid security  problems
	      involving	 a chown being tricked into affecting files other than
	      the ones intended.  It will refuse to follow symbolic links,  so
	      that  (for  example) ``chown luser /tmp/foo/passwd'' can't acci‐
	      dentally chown /etc/passwd if /tmp/foo happens to be a  link  to
	      /etc.  It will also check where it is after leaving directories,
	      so that a recursive chown of a deep directory tree can't end  up
	      recursively chowning /usr as a result of directories being moved
	      up the tree.

       ln [ -dfis ] filename dest
       ln [ -dfis ] filename ... dir
	      Creates hard (or, with -s, symbolic) links.  In the first	 form,
	      the specified destination is created, as a link to the specified
	      filename.	 In the second form, each of the filenames is taken in
	      turn,  and  linked to a pathname in the specified directory that
	      has the same last pathname component.

	      Normally, ln will not attempt to create hard links  to  directo‐
	      ries.   This check can be overridden using the -d option.	 Typi‐
	      cally only the super-user can actually succeed in creating  hard
	      links  to directories.  This does not apply to symbolic links in
	      any case.

	      By default, existing files cannot be replaced by links.  The  -i
	      option  causes  the  user to be queried about replacing existing
	      files.  The -f option  causes  existing  files  to  be  silently
	      deleted, without querying.  -f takes precedence.

       mkdir [ -p ] [ -m mode ] dir ...
	      Creates  directories.   With  the -p option, non-existing parent
	      directories are first created if necessary, and there will be no
	      complaint if the directory already exists.  The -m option can be
	      used to specify (in octal) a set of  file	 permissions  for  the
	      created  directories, otherwise mode 777 modified by the current
	      umask (see umask(2)) is used.

       mv [ -fi ] filename dest
       mv [ -fi ] filename ... dir
	      Moves files.  In the first form, the specified filename is moved
	      to  the  specified destination.  In the second form, each of the
	      filenames is taken in turn, and moved to a pathname in the spec‐
	      ified directory that has the same last pathname component.

	      By  default,  the user will be queried before replacing any file
	      that the user cannot  write  to,	but  writable  files  will  be
	      silently	removed.   The -i option causes the user to be queried
	      about replacing any existing files.  The -f  option  causes  any
	      existing	files  to  be  silently deleted, without querying.  -f
	      takes precedence.

	      Note that this mv will not move files across devices.   Histori‐
	      cal  versions  of	 mv,  when actual renaming is impossible, fall
	      back on  copying	and  removing  files;  if  this	 behaviour  is
	      desired,	use  cp	 and rm manually.  This may change in a future
	      version.

       rm [ -dfirs ] filename ...
	      Removes files and directories specified.

	      Normally, rm will not remove directories	(except	 with  the  -r
	      option).	 The  -d  option causes rm to try removing directories
	      with unlink (see unlink(2)), the same  method  used  for	files.
	      Typically	 only the super-user can actually succeed in unlinking
	      directories in this way.	-d takes precedence over -r.

	      By default, the user will be queried before  removing  any  file
	      that  the	 user  cannot  write  to,  but	writable files will be
	      silently removed.	 The -i option causes the user to  be  queried
	      about  removing  any  files.   The  -f option causes files to be
	      silently deleted, without querying,  and	suppresses  all	 error
	      indications.  -f takes precedence.

	      The -r option causes rm to recursively descend into directories,
	      deleting all files in the directory before removing  the	direc‐
	      tory with the rmdir system call (see rmdir(2)).

	      The  -s  option  is  a  zsh  extension  to rm functionality.  It
	      enables paranoid behaviour, intended to  avoid  common  security
	      problems	involving  a  root-run	rm being tricked into removing
	      files other than the ones intended.  It will  refuse  to	follow
	      symbolic	links,	so  that  (for example) ``rm /tmp/foo/passwd''
	      can't accidentally remove /etc/passwd if /tmp/foo happens to  be
	      a	 link  to  /etc.  It will also check where it is after leaving
	      directories, so that a recursive removal	of  a  deep  directory
	      tree  can't  end	up  recursively	 removing  /usr as a result of
	      directories being moved up the tree.

       rmdir dir ...
	      Removes empty directories specified.

       sync   Calls the system call of the  same  name	(see  sync(2)),	 which
	      flushes  dirty  buffers to disk.	It might return before the I/O
	      has actually been completed.

THE ZSH/MAPFILE MODULE
       The zsh/mapfile module provides one special associative array parameter
       of the same name.

       mapfile
	      This  associative	 array	takes  as keys the names of files; the
	      resulting value is the  content  of  the	file.	The  value  is
	      treated  identically  to any other text coming from a parameter.
	      The value may also be assigned to, in which  case	 the  file  in
	      question	is  written (whether or not it originally existed); or
	      an element may be unset, which will delete the file in question.
	      For  example, `vared mapfile[myfile]' works as expected, editing
	      the file `myfile'.

	      When the array is accessed as a whole, the keys are the names of
	      files  in	 the  current  directory, and the values are empty (to
	      save a huge overhead in memory).	 Thus  ${(k)mapfile}  has  the
	      same  affect  as	the  glob operator *(D), since files beginning
	      with a dot are not special.  Care must be taken with expressions
	      such  as	rm  ${(k)mapfile}, which will delete every file in the
	      current directory without the usual `rm *' test.

	      The parameter mapfile may be made read-only; in that case, files
	      referenced may not be written or deleted.

   Limitations
       Although	 reading  and  writing	of the file in question is efficiently
       handled, zsh's internal memory management may be	 arbitrarily  baroque.
       Thus  it should not automatically be assumed that use of mapfile repre‐
       sents a gain in efficiency over use of other mechanisms.	 Note in  par‐
       ticular	that  the whole contents of the file will always reside physi‐
       cally in memory when accessed (possibly multiple times, due to standard
       parameter substitution operations).  In particular, this means handling
       of sufficiently long files (greater than the machine's swap  space,  or
       than the range of the pointer type) will be incorrect.

       No  errors  are	printed	 or  flagged  for non-existent, unreadable, or
       unwritable files, as the parameter mechanism is too low	in  the	 shell
       execution hierarchy to make this convenient.

       It  is  unfortunate that the mechanism for loading modules does not yet
       allow the user to specify the name of the shell parameter to  be	 given
       the special behaviour.

THE ZSH/MATHFUNC MODULE
       The  zsh/mathfunc  module  provides standard mathematical functions for
       use when evaluating mathematical formulae.  The syntax agrees with nor‐
       mal C and FORTRAN conventions, for example,

	      (( f = sin(0.3) ))

       assigns the sine of 0.3 to the parameter f.

       Most  functions	take  floating	point  arguments and return a floating
       point value.  However, any necessary conversions	 from  or  to  integer
       type  will  be  performed  automatically by the shell.  Apart from atan
       with a second argument and the abs, int and float functions, all	 func‐
       tions  behave as noted in the manual page for the corresponding C func‐
       tion, except that any arguments out of range for the function in	 ques‐
       tion will be detected by the shell and an error reported.

       The  following  functions  take a single floating point argument: acos,
       acosh, asin, asinh, atan, atanh, cbrt, ceil, cos, cosh, erf, erfc, exp,
       expm1,  fabs,  floor,  gamma,  j0, j1, lgamma, log, log10, log1p, logb,
       sin, sinh, sqrt, tan, tanh, y0, y1.  The atan function  can  optionally
       take  a	second	argument, in which case it behaves like the C function
       atan2.  The ilogb function takes a single floating point argument,  but
       returns an integer.

       The  function signgam takes no arguments, and returns an integer, which
       is the C variable of the same name, as  described  in  gamma(3).	  Note
       that  it	 is therefore only useful immediately after a call to gamma or
       lgamma.	Note also  that	 `signgam(RPAR'	 and  `signgam'	 are  distinct
       expressions.

       The  following  functions  take two floating point arguments: copysign,
       fmod, hypot, nextafter.

       The following take an integer first argument and a floating point  sec‐
       ond argument: jn, yn.

       The  following take a floating point first argument and an integer sec‐
       ond argument: ldexp, scalb.

       The function abs does not convert the type of its single	 argument;  it
       returns	the  absolute  value  of  either a floating point number or an
       integer.	 The functions float and int convert their  arguments  into  a
       floating point or integer value (by truncation) respectively.

       Note  that  the C pow function is available in ordinary math evaluation
       as the `**' operator and is not provided here.

       The function rand48 is available if your system's mathematical  library
       has the function erand48(3).  It returns a pseudo-random floating point
       number between 0 and 1.	It takes a single string optional argument.

       If the argument is not present, the random number seed  is  initialised
       by  three calls to the rand(3) function --- this produces the same ran‐
       dom numbers as the next three values of $RANDOM.

       If the argument is present, it gives the name  of  a  scalar  parameter
       where  the  current  random  number  seed will be stored.  On the first
       call, the value must contain at least twelve  hexadecimal  digits  (the
       remainder of the string is ignored), or the seed will be initialised in
       the same manner as for a call to rand48 with no	argument.   Subsequent
       calls  to  rand48(param)	 will  then maintain the seed in the parameter
       param as a string of twelve hexadecimal digits, with no base signifier.
       The  random  number  sequences  for different parameters are completely
       independent, and are also independent from that used by calls to rand48
       with no argument.

       For example, consider

	      print $(( rand48(seed) ))
	      print $(( rand48() ))
	      print $(( rand48(seed) ))

       Assuming	 $seed	does  not  exist,  it will be initialised by the first
       call.  In the second call, the default seed is initialised; note,  how‐
       ever,  that  because of the properties of rand() there is a correlation
       between the seeds used for the two initialisations, so for more	secure
       uses,  you  should  generate  your  own	12-byte	 seed.	The third call
       returns to the same sequence of random numbers used in the first	 call,
       unaffected by the intervening rand48().

THE ZSH/NEWUSER MODULE
       The  zsh/newuser	 module	 is loaded at boot if it is available, the RCS
       option is set, and the PRIVILEGED option is not set (all three are true
       by default).  This takes place immediately after commands in the global
       zshenv file (typically /etc/zshenv), if any, have  been	executed.   If
       the  module  is	not available it is silently ignored by the shell; the
       module may safely be removed from $MODULE_PATH by the administrator  if
       it is not required.

       On  loading,  the  module  tests	 if any of the start-up files .zshenv,
       .zprofile, .zshrc or .zlogin exist in the directory given by the	 envi‐
       ronment	variable  ZDOTDIR, or the user's home directory if that is not
       set.  The test is not performed and the module halts processing if  the
       shell  was  in  an  emulation mode (i.e. had been invoked as some other
       shell than zsh).

       If none of the start-up files were found, the module then looks for the
       file  newuser  first in a sitewide directory, usually the parent direc‐
       tory of the site-functions directory, and if that is not found the mod‐
       ule searches in a version-specific directory, usually the parent of the
       functions  directory  containing	 version-specific  functions.	(These
       directories   can   be	configured   when   zsh	 is  built  using  the
       --enable-site-scriptdir=dir and --enable-scriptdir=dir flags to config‐
       ure,   respectively;   the   defaults  are  prefix/share/zsh  and  pre‐
       fix/share/zsh/$ZSH_VERSION where the default prefix is /usr/local.)

       If the file newuser is found, it is then sourced in the same manner  as
       a  start-up  file.   The	 file  is  expected to contain code to install
       start-up files for the user, however any valid shell code will be  exe‐
       cuted.

       The zsh/newuser module is then unconditionally unloaded.

       Note  that  it  is  possible  to achieve exactly the same effect as the
       zsh/newuser module by adding code to /etc/zshenv.   The	module	exists
       simply  to  allow  the shell to make arrangements for new users without
       the need for intervention by package maintainers and system administra‐
       tors.

       The  script  supplied  with  the	 module	 invokes  the  shell  function
       zsh-newuser-install.  This may be invoked directly by the user even  if
       the  zsh/newuser module is disabled.  Note, however, that if the module
       is not installed the function will not be installed either.  The	 func‐
       tion  is documented in the section User Configuration Functions in zsh‐
       contrib(1).

THE ZSH/PARAMETER MODULE
       The zsh/parameter module gives access to	 some  of  the	internal  hash
       tables used by the shell by defining some special parameters.

       options
	      The keys for this associative array are the names of the options
	      that can	be  set	 and  unset  using  the	 setopt	 and  unsetopt
	      builtins.	 The  value of each key is either the string on if the
	      option is currently set, or the string  off  if  the  option  is
	      unset.  Setting a key to one of these strings is like setting or
	      unsetting the option, respectively.  Unsetting  a	 key  in  this
	      array is like setting it to the value off.

       commands
	      This  array gives access to the command hash table. The keys are
	      the names of external commands, the values are the pathnames  of
	      the  files  that	would  be  executed  when the command would be
	      invoked. Setting a key in this array defines a new entry in this
	      table  in the same way as with the hash builtin. Unsetting a key
	      as in `unset "commands[foo]"' removes the entry  for  the	 given
	      key from the command hash table.

       functions
	      This  associative array maps names of enabled functions to their
	      definitions. Setting a key in it is  like	 defining  a  function
	      with  the name given by the key and the body given by the value.
	      Unsetting a key removes the definition for the function named by
	      the key.

       dis_functions
	      Like functions but for disabled functions.

       builtins
	      This  associative array gives information about the builtin com‐
	      mands currently enabled. The keys are the names of  the  builtin
	      commands	and the values are either `undefined' for builtin com‐
	      mands that will automatically be loaded from a module if invoked
	      or `defined' for builtin commands that are already loaded.

       dis_builtins
	      Like builtins but for disabled builtin commands.

       reswords
	      This array contains the enabled reserved words.

       dis_reswords
	      Like reswords but for disabled reserved words.

       aliases
	      This  maps the names of the regular aliases currently enabled to
	      their expansions.

       dis_aliases
	      Like aliases but for disabled regular aliases.

       galiases
	      Like aliases, but for global aliases.

       dis_galiases
	      Like galiases but for disabled global aliases.

       saliases
	      Like raliases, but for suffix aliases.

       dis_saliases
	      Like saliases but for disabled suffix aliases.

       parameters
	      The keys in this associative array are the names of the  parame‐
	      ters  currently  defined.	 The values are strings describing the
	      type of the parameter, in the same format used by the t  parame‐
	      ter  flag,  see  zshexpn(1) .  Setting or unsetting keys in this
	      array is not possible.

       modules
	      An associative array giving information about modules. The  keys
	      are   the	  names	 of  the  modules  loaded,  registered	to  be
	      autoloaded, or aliased. The value says  which  state  the	 named
	      module  is  in and is one of the strings `loaded', `autoloaded',
	      or `alias:name', where name is the name the  module  is  aliased
	      to.

	      Setting or unsetting keys in this array is not possible.

       dirstack
	      A normal array holding the elements of the directory stack. Note
	      that the output of the dirs builtin command  includes  one  more
	      directory, the current working directory.

       history
	      This  associative	 array	maps history event numbers to the full
	      history lines.

       historywords
	      A special array containing the words stored in the history.

       jobdirs
	      This associative array maps job numbers to the directories  from
	      which  the  job was started (which may not be the current direc‐
	      tory of the job).

	      The keys of the associative arrays are usually  valid  job  num‐
	      bers,  and  these	 are  the  values  output  with,  for example,
	      ${(k)jobdirs}.  Non-numeric job  references  may	be  used  when
	      looking  up  a  value; for example, ${jobdirs[%+]} refers to the
	      current job.

       jobtexts
	      This associative array maps job numbers to the texts of the com‐
	      mand lines that were used to start the jobs.

	      Handling	of  the	 keys of the associative array is as described
	      for jobdirs above.

       jobstates
	      This associative array gives information about the states of the
	      jobs  currently known. The keys are the job numbers and the val‐
	      ues are strings of the form  `job-state:mark:pid=state...'.  The
	      job-state	 gives the state the whole job is currently in, one of
	      `running', `suspended', or `done'. The mark is `+' for the  cur‐
	      rent  job, `-' for the previous job and empty otherwise. This is
	      followed by one `pid=state' for every process in	the  job.  The
	      pids are, of course, the process IDs and the state describes the
	      state of that process.

	      Handling of the keys of the associative array  is	 as  described
	      for jobdirs above.

       nameddirs
	      This  associative	 array	maps the names of named directories to
	      the pathnames they stand for.

       userdirs
	      This associative array maps user names to the pathnames of their
	      home directories.

       funcstack
	      This  array  contains the names of the functions currently being
	      executed. The first element is the name of  the  function	 using
	      the parameter.

       functrace
	      This  array  contains  the names and line numbers of the callers
	      corresponding to the functions currently	being  executed.   The
	      format of each element is name:lineno.

THE ZSH/PCRE MODULE
       The zsh/pcre module makes some commands available as builtins:

       pcre_compile [ -aimx ] PCRE
	      Compiles a perl-compatible regular expression.

	      Option -a will force the pattern to be anchored.	Option -i will
	      compile a case-insensitive pattern.  Option -m  will  compile  a
	      multi-line  pattern; that is, ^ and $ will match newlines within
	      the pattern.   Option  -x	 will  compile	an  extended  pattern,
	      wherein whitespace and # comments are ignored.

       pcre_study
	      Studies  the previously-compiled PCRE which may result in faster
	      matching.

       pcre_match [ -v var ] [ -a arr ] string
	      Returns successfully if string matches  the  previously-compiled
	      PCRE.

	      If   the	expression  captures  substrings  within  parentheses,
	      pcre_match will set the array $match to those substrings, unless
	      the -a option is given, in which case it will set the array arr.
	      Similarly, the variable MATCH will be set to the entire  matched
	      portion  of  the string, unless the -v option is given, in which
	      case the variable var will be set.

       The zsh/pcre module makes available the following test condition:
       expr -pcre-match pcre
	      Matches a string against a perl-compatible regular expression.

	      For example,

	      [[ "$text" -pcre-match ^d+$ ]] && print text  variable  contains
	      only "d's".

THE ZSH/REGEX MODULE
       The zsh/regex module makes available the following test condition:
       expr -regex-match regex
	      Matches  a  string  against a POSIX extended regular expression.
	      The matched portion of the string will normally be placed in the
	      MATCH  variable.	 If there are any capturing parentheses within
	      the regex, then the match array variable will contain those.

	      For example,

		     [[ alphabetical -regex-match ^a([^a]+)a([^a]+)a ]] &&
		     print -l $MATCH X $match

	      If the option REMATCH_PCRE is not set, then the =~ operator will
	      automatically  load  this	 module	 as needed and will invoke the
	      -regex-match operator.

	      If BASH_REMATCH is set, then the array BASH_REMATCH will be  set
	      instead of MATCH and match.

THE ZSH/SCHED MODULE
       The zsh/sched module makes available one builtin command and one param‐
       eter.

       sched [-o] [+]hh:mm[:ss] command ...
       sched [-o] [+]seconds command ...
       sched [ -item ]
	      Make an entry in the scheduled list of commands to execute.  The
	      time  may	 be specified in either absolute or relative time, and
	      either as hours, minutes and (optionally) seconds separated by a
	      colon,  or  seconds  alone.  An absolute number of seconds indi‐
	      cates the time since the epoch (1970/01/01 00:00); this is  use‐
	      ful in combination with the features in the zsh/datetime module,
	      see the zsh/datetime module entry in zshmodules(1).

	      With no arguments, prints the list of  scheduled	commands.   If
	      the  scheduled command has the -o flag set, this is shown at the
	      start of the command.

	      With the argument `-item', removes the given item from the list.
	      The  numbering of the list is continuous and entries are in time
	      order, so the numbering can change when  entries	are  added  or
	      deleted.

	      Commands	are  executed  either  immediately before a prompt, or
	      while the shell's line editor is waiting for input.  In the lat‐
	      ter case it is useful to be able to produce output that does not
	      interfere with the line being edited.  Providing the  option  -o
	      causes  the shell to clear the command line before the event and
	      redraw it afterwards.  This should be used  with	any  scheduled
	      event  that  produces  visible output to the terminal; it is not
	      needed, for example, with output that updates a terminal	emula‐
	      tor's title bar.

       zsh_scheduled_events
	      A	 readonly  array  corresponding to the events scheduled by the
	      sched builtin.  The indices of the array correspond to the  num‐
	      bers  shown  when	 sched is run with no arguments (provided that
	      the KSH_ARRAYS option is not set).  The value of the array  con‐
	      sists  of the scheduled time in seconds since the epoch (see the
	      section `The zsh/datetime Module' for facilities for using  this
	      number), followed by a colon, followed by any options (which may
	      be empty but will be preceded by a `-' otherwise), followed by a
	      colon, followed by the command to be executed.

	      The  sched  builtin  should be used for manipulating the events.
	      Note that this will have an immediate effect on the contents  of
	      the array, so that indices may become invalid.

THE ZSH/NET/SOCKET MODULE
       The zsh/net/socket module makes available one builtin command:

       zsocket [ -altv ] [ -d fd ] [ args ]
	      zsocket  is  implemented as a builtin to allow full use of shell
	      command line editing, file I/O, and job control mechanisms.

   Outbound Connections
       zsocket [ -v ] [ -d fd ] filename
	      Open a new Unix domain connection to filename.  The shell param‐
	      eter  REPLY  will	 be set to the file descriptor associated with
	      that connection.	Currently, only stream	connections  are  sup‐
	      ported.

	      If  -d  is  specified,  its argument will be taken as the target
	      file descriptor for the connection.

	      In order to elicit more verbose output, use -v.

   Inbound Connections
       zsocket -l [ -v ] [ -d fd ] filename
	      zsocket -l will open a socket listening on filename.  The	 shell
	      parameter	 REPLY	will  be set to the file descriptor associated
	      with that listener.

	      If -d is specified, its argument will be	taken  as  the	target
	      file descriptor for the connection.

	      In order to elicit more verbose output, use -v.

       zsocket -a [ -tv ] [ -d targetfd ] listenfd
	      zsocket  -a  will	 accept	 an  incoming connection to the socket
	      associated with listenfd.	 The shell parameter REPLY will be set
	      to the file descriptor associated with the inbound connection.

	      If  -d  is  specified,  its argument will be taken as the target
	      file descriptor for the connection.

	      If -t is specified, zsocket will return if no  incoming  connec‐
	      tion is pending.	Otherwise it will wait for one.

	      In order to elicit more verbose output, use -v.

THE ZSH/STAT MODULE
       The  zsh/stat module makes available one builtin command under two pos‐
       sible names:

       zstat [ -gnNolLtTrs ] [ -f fd ] [ -H hash ] [ -A array ] [ -F fmt  ]  [
       +element ] [ file ... ]
       stat ...
	      The  command  acts  as  a front end to the stat system call (see
	      stat(2)).	 The same command is provided with two names;  as  the
	      name stat is often used by an external command it is recommended
	      that only the zstat form of the command is used.	 This  can  be
	      arranged	by  loading  the  module with the command `zmodload -F
	      zsh/stat b:zstat'.

	      If the stat call fails, the  appropriate	system	error  message
	      printed  and  status  1  is returned.  The fields of struct stat
	      give information about the files provided as  arguments  to  the
	      command.	 In addition to those available from the stat call, an
	      extra element `link' is provided.	 These elements are:

	      device The number of the device on which the file resides.

	      inode  The unique number of the file  on	this  device  (`inode'
		     number).

	      mode   The mode of the file; that is, the file's type and access
		     permissions.  With the -s option, this will  be  returned
		     as a string corresponding to the first column in the dis‐
		     play of the ls -l command.

	      nlink  The number of hard links to the file.

	      uid    The user ID of the	 owner	of  the	 file.	 With  the  -s
		     option, this is displayed as a user name.

	      gid    The  group	 ID  of the file.  With the -s option, this is
		     displayed as a group name.

	      rdev   The raw device number.  This is only useful  for  special
		     devices.

	      size   The size of the file in bytes.

	      atime
	      mtime
	      ctime  The  last	access, modification and inode change times of
		     the file, respectively, as the number  of	seconds	 since
		     midnight  GMT  on 1st January, 1970.  With the -s option,
		     these are printed as strings for the local time zone; the
		     format can be altered with the -F option, and with the -g
		     option the times are in GMT.

	      blksize
		     The number of bytes in one allocation block on the device
		     on which the file resides.

	      block  The number of disk blocks used by the file.

	      link   If	 the  file  is	a link and the -L option is in effect,
		     this contains the name of the file linked	to,  otherwise
		     it	 is  empty.   Note  that  if  this element is selected
		     (``zstat +link'') then the	 -L  option  is	 automatically
		     used.

	      A	 particular element may be selected by including its name pre‐
	      ceded by a `+' in the option list; only one element is  allowed.
	      The  element may be shortened to any unique set of leading char‐
	      acters.  Otherwise, all elements will be shown for all files.

	      Options:

	      -A array
		     Instead of displaying the	results	 on  standard  output,
		     assign  them  to  an  array,  one struct stat element per
		     array element for each file in order.  In this case  nei‐
		     ther  the	name  of the element nor the name of the files
		     appears in array unless the -t or -n options were	given,
		     respectively.   If	 -t is given, the element name appears
		     as a prefix to the appropriate array element;  if	-n  is
		     given,  the file name appears as a separate array element
		     preceding all the others.	Other formatting  options  are
		     respected.

	      -H hash
		     Similar  to  -A,  but  instead assign the values to hash.
		     The keys are the elements listed above.  If the -n option
		     is	 provided then the name of the file is included in the
		     hash with key name.

	      -f fd  Use the file on  file  descriptor	fd  instead  of	 named
		     files; no list of file names is allowed in this case.

	      -F fmt Supplies a strftime (see strftime(3)) string for the for‐
		     matting of the time elements.  The -s option is implied.

	      -g     Show the time elements in the  GMT	 time  zone.   The  -s
		     option is implied.

	      -l     List  the	names of the type elements (to standard output
		     or an  array  as  appropriate)  and  return  immediately;
		     options other than -A and arguments are ignored.

	      -L     Perform an lstat (see lstat(2)) rather than a stat system
		     call.  In this case, if the file is a  link,  information
		     about  the	 link  itself  rather  than the target file is
		     returned.	This option is required to make the link  ele‐
		     ment useful.

	      -n     Always  show  the names of files.	Usually these are only
		     shown when output is to standard output and there is more
		     than one file in the list.

	      -N     Never show the names of files.

	      -o     If a raw file mode is printed, show it in octal, which is
		     more useful for human consumption	than  the  default  of
		     decimal.	A  leading  zero will be printed in this case.
		     Note that this does not affect whether a raw or formatted
		     file  mode is shown, which is controlled by the -r and -s
		     options, nor whether a mode is shown at all.

	      -r     Print raw data (the default format) alongside string data
		     (the  -s  format); the string data appears in parentheses
		     after the raw data.

	      -s     Print mode, uid, gid  and	the  three  time  elements  as
		     strings  instead  of numbers.  In each case the format is
		     like that of ls -l.

	      -t     Always show the type names for  the  elements  of	struct
		     stat.   Usually  these  are  only shown when output is to
		     standard  output  and  no	individual  element  has  been
		     selected.

	      -T     Never show the type names of the struct stat elements.

THE ZSH/SYSTEM MODULE
       The  zsh/system	module	makes available three builtin commands and two
       parameters.

BUILTINS
       syserror [ -e errvar ] [ -p prefix ] [ errno | errname ]
	      This command prints out the error message associated with errno,
	      a system error number, followed by a newline to standard error.

	      Instead of the error number, a name errname, for example ENOENT,
	      may be used.  The set of names is the same as  the  contents  of
	      the array errnos, see below.

	      If  the  string  prefix  is given, it is printed in front of the
	      error message, with no intervening space.

	      If errvar is supplied, the entire message, without a newline, is
	      assigned to the parameter names errvar and nothing is output.

	      A	 return	 status	 of  0	indicates the message was successfully
	      printed (although it may not be useful if the error  number  was
	      out  of  the  system's range), a return status of 1 indicates an
	      error in the parameters, and a return status of 2 indicates  the
	      error name was not recognised (no message is printed for this).

       sysread [ -c countvar ] [ -i infd ] [ -o outfd ]
	 [ -s bufsize ] [ -t timeout ] [ param ]
	      Perform  a single system read from file descriptor infd, or zero
	      if that is not given.  The result of the read is stored in param
	      or REPLY if that is not given.  If countvar is given, the number
	      of bytes read is assigned to the parameter named by countvar.

	      The maximum number of bytes read is bufsize or 8192 if  that  is
	      not  given, however the command returns as soon as any number of
	      bytes was successfully read.

	      If timeout is given, it specifies a timeout  in  seconds,	 which
	      may be zero to poll the file descriptor.	This is handled by the
	      poll system call if available, otherwise the select system  call
	      if available.

	      If  outfd	 is  given,  an attempt is made to write all the bytes
	      just read to the file descriptor outfd.  If this fails,  because
	      of a system error other than EINTR or because of an internal zsh
	      error during an interrupt, the bytes read but  not  written  are
	      stored  in  the parameter named by param if supplied (no default
	      is used in this case), and the number  of	 bytes	read  but  not
	      written  is stored in the parameter named by countvar if that is
	      supplied.	 If it was successful, countvar contains the full num‐
	      ber of bytes transferred, as usual, and param is not set.

	      The  error EINTR (interrupted system call) is handled internally
	      so that shell interrupts are transparent	to  the	 caller.   Any
	      other error causes a return.

	      The possible return statuses are
	      0	     At	 least	one byte of data was successfully read and, if
		     appropriate, written.

	      1	     There was an error in  the	 parameters  to	 the  command.
		     This  is the only error for which a message is printed to
		     standard error.

	      2	     There was an error on the read, or on polling  the	 input
		     file descriptor for a timeout.  The parameter ERRNO gives
		     the error.

	      3	     Data were successfully read, but there was an error writ‐
		     ing them to outfd.	 The parameter ERRNO gives the error.

	      4	     The  attempt  to  read timed out.	Note this does not set
		     ERRNO as this is not a system error.

	      5	     No system error occurred, but zero bytes were read.  This
		     usually  indicates	 end  of file.	The parameters are set
		     according to the  usual  rules;  no  write	 to  outfd  is
		     attempted.

       syswrite [ -c countvar ] [ -o outfd ] data
	      The  data	 (a  single  string  of bytes) are written to the file
	      descriptor outfd, or 1 if that is not  given,  using  the	 write
	      system call.  Multiple write operations may be used if the first
	      does not write all the data.

	      If countvar is given, the number of byte written	is  stored  in
	      the parameter named by countvar; this may not be the full length
	      of data if an error occurred.

	      The error EINTR (interrupted system call) is handled  internally
	      by  retrying;  otherwise	an error causes the command to return.
	      For example, if the file descriptor is set to non-blocking  out‐
	      put,  an	error EAGAIN (on some systems, EWOULDBLOCK) may result
	      in the command returning early.

	      The return status may be 0 for success, 1 for an	error  in  the
	      parameters  to  the  command, or 2 for an error on the write; no
	      error message is printed in the last  case,  but	the  parameter
	      ERRNO will reflect the error that occurred.

PARAMETERS
       errnos A	 readonly  array of the names of errors defined on the system.
	      These are typically macros defined in C by including the	system
	      header  file  errno.h.   The  index  of  each name (assuming the
	      option KSH_ARRAYS is unset) corresponds  to  the	error  number.
	      Error numbers num before the last known error which have no name
	      are given the name Enum in the array.

	      Note that aliases for errors are not handled; only the canonical
	      name is used.

       sysparams
	      A readonly associative array.  The keys are:
       pid    Returns  the  process  ID	 of  the current process, even in sub‐
	      shells.  Compare $$, which returns the process ID	 of  the  main
	      shell process.

       ppid   Returns  the  process  ID	 of the parent of the current process,
	      even in subshells.  Compare $PPID, which returns the process  ID
	      of the parent of the main shell process.

THE ZSH/NET/TCP MODULE
       The zsh/net/tcp module makes available one builtin command:

       ztcp [ -acflLtv ] [ -d fd ] [ args ]
	      ztcp is implemented as a builtin to allow full use of shell com‐
	      mand line editing, file I/O, and job control mechanisms.

	      If ztcp is run with no options, it will output the  contents  of
	      its session table.

	      If  it  is  run with only the option -L, it will output the con‐
	      tents of the session table in a format  suitable	for  automatic
	      parsing.	 The option is ignored if given with a command to open
	      or close a session.  The output consists of a set of lines,  one
	      per session, each containing the following elements separated by
	      spaces:

	      File descriptor
		     The file descriptor in use for the connection.  For  nor‐
		     mal  inbound (I) and outbound (O) connections this may be
		     read and written by the usual shell mechanisms.  However,
		     it should only be close with `ztcp -c'.

	      Connection type
		     A letter indicating how the session was created:

		     Z	    A session created with the zftp command.

		     L	    A connection opened for listening with `ztcp -l'.

		     I	    An inbound connection accepted with `ztcp -a'.

		     O	    An	outbound  connection  created  with `ztcp host
			    ...'.

	      The local host
		     This is usually set to an	all-zero  IP  address  as  the
		     address of the localhost is irrelevant.

	      The local port
		     This  is  likely  to be zero unless the connection is for
		     listening.

	      The remote host
		     This is the fully qualified domain name of the  peer,  if
		     available,	 else  an  IP  address.	  It is an all-zero IP
		     address for a session opened for listening.

	      The remote port
		     This is zero for a connection opened for listening.

   Outbound Connections
       ztcp [ -v ] [ -d fd ] host [ port ]
	      Open a new TCP connection to host.  If the port is  omitted,  it
	      will  default  to	 port 23.  The connection will be added to the
	      session table and the shell parameter REPLY will be set  to  the
	      file descriptor associated with that connection.

	      If  -d  is  specified,  its argument will be taken as the target
	      file descriptor for the connection.

	      In order to elicit more verbose output, use -v.

   Inbound Connections
       ztcp -l [ -v ] [ -d fd ] port
	      ztcp -l will open a socket listening on TCP  port.   The	socket
	      will be added to the session table and the shell parameter REPLY
	      will be set to the file descriptor  associated  with  that  lis‐
	      tener.

	      If  -d  is  specified,  its argument will be taken as the target
	      file descriptor for the connection.

	      In order to elicit more verbose output, use -v.

       ztcp -a [ -tv ] [ -d targetfd ] listenfd
	      ztcp -a will accept an incoming connection to the	 port  associ‐
	      ated with listenfd.  The connection will be added to the session
	      table and the shell parameter REPLY will	be  set	 to  the  file
	      descriptor associated with the inbound connection.

	      If  -d  is  specified,  its argument will be taken as the target
	      file descriptor for the connection.

	      If -t is specified, ztcp will return if no  incoming  connection
	      is pending.  Otherwise it will wait for one.

	      In order to elicit more verbose output, use -v.

   Closing Connections
       ztcp -cf [ -v ] [ fd ]
       ztcp -c [ -v ] [ fd ]
	      ztcp  -c	will  close the socket associated with fd.  The socket
	      will be removed from the session table.  If fd is not specified,
	      ztcp will close everything in the session table.

	      Normally, sockets registered by zftp (see zshmodules(1) ) cannot
	      be closed this way.  In order to force such a socket closed, use
	      -f.

	      In order to elicit more verbose output, use -v.

   Example
       Here  is	 how  to create a TCP connection between two instances of zsh.
       We need to pick an unassigned port; here we  use	 the  randomly	chosen
       5123.

       On host1,
	      zmodload zsh/net/tcp
	      ztcp -l 5123
	      listenfd=$REPLY
	      ztcp -a $listenfd
	      fd=$REPLY
       The  second from last command blocks until there is an incoming connec‐
       tion.

       Now create a connection from host2 (which may, of course, be  the  same
       machine):
	      zmodload zsh/net/tcp
	      ztcp host1 5123
	      fd=$REPLY

       Now  on	each  host,  $fd contains a file descriptor for talking to the
       other.  For example, on host1:
	      print This is a message >&$fd
       and on host2:
	      read -r line <&$fd; print -r - $line
       prints `This is a message'.

       To tidy up, on host1:
	      ztcp -c $listenfd
	      ztcp -c $fd
       and on host2
	      ztcp -c $fd

THE ZSH/TERMCAP MODULE
       The zsh/termcap module makes available one builtin command:

       echotc cap [ arg ... ]
	      Output the termcap value corresponding to	 the  capability  cap,
	      with optional arguments.

       The zsh/termcap module makes available one parameter:

       termcap
	      An associative array that maps termcap capability codes to their
	      values.

THE ZSH/TERMINFO MODULE
       The zsh/terminfo module makes available one builtin command:

       echoti cap [ arg ]
	      Output the terminfo value corresponding to the  capability  cap,
	      instantiated with arg if applicable.

       The zsh/terminfo module makes available one parameter:

       terminfo
	      An  associative  array  that  maps  terminfo capability names to
	      their values.

THE ZSH/ZFTP MODULE
       The zsh/zftp module makes available one builtin command:

       zftp subcommand [ args ]
	      The zsh/zftp module is a client for FTP  (file  transfer	proto‐
	      col).  It is implemented as a builtin to allow full use of shell
	      command line editing, file  I/O,	and  job  control  mechanisms.
	      Often, users will access it via shell functions providing a more
	      powerful interface; a set is provided with the zsh  distribution
	      and is described in zshzftpsys(1).  However, the zftp command is
	      entirely usable in its own right.

	      All commands consist of the command name zftp  followed  by  the
	      name  of a subcommand.  These are listed below.  The return sta‐
	      tus of each subcommand is supposed to  reflect  the  success  or
	      failure of the remote operation.	See a description of the vari‐
	      able ZFTP_VERBOSE for more information on how responses from the
	      server may be printed.

   Subcommands
       open host[:port] [ user [ password [ account ] ] ]
	      Open  a  new  FTP	 session  to  host, which may be the name of a
	      TCP/IP connected host or an IP number in the standard dot	 nota‐
	      tion.   If the argument is in the form host:port, open a connec‐
	      tion to TCP port port instead of the standard FTP port 21.  This
	      may  be the name of a TCP service or a number:  see the descrip‐
	      tion of ZFTP_PORT below for more information.

	      If IPv6 addresses in colon format are used, the host  should  be
	      surrounded  by quoted square brackets to distinguish it from the
	      port, for example '[fe80::203:baff:fe02:8b56]'.  For consistency
	      this is allowed with all forms of host.

	      Remaining	 arguments  are	 passed to the login subcommand.  Note
	      that if no arguments beyond host are  supplied,  open  will  not
	      automatically  call login.  If no arguments at all are supplied,
	      open will use the parameters set by the params subcommand.

	      After  a	successful  open,  the	shell	variables   ZFTP_HOST,
	      ZFTP_PORT,  ZFTP_IP  and	ZFTP_SYSTEM  are available; see `Vari‐
	      ables' below.

       login [ name [ password [ account ] ] ]
       user [ name [ password [ account ] ] ]
	      Login the user name with parameters password and	account.   Any
	      of the parameters can be omitted, and will be read from standard
	      input if needed (name is always needed).	If standard input is a
	      terminal,	 a  prompt  for	 each  one will be printed on standard
	      error and password will not be echoed.  If any of the parameters
	      are not used, a warning message is printed.

	      After   a	 successful  login,  the  shell	 variables  ZFTP_USER,
	      ZFTP_ACCOUNT and ZFTP_PWD are available; see `Variables' below.

	      This command may be re-issued when a user is already logged  in,
	      and the server will first be reinitialized for a new user.

       params [ host [ user [ password [ account ] ] ] ]
       params -
	      Store  the  given	 parameters  for  a later open command with no
	      arguments.  Only those given on the command line will be	remem‐
	      bered.   If no arguments are given, the parameters currently set
	      are printed, although the password will  appear  as  a  line  of
	      stars;  the return status is one if no parameters were set, zero
	      otherwise.

	      Any of the parameters may be specified as a `?', which may  need
	      to  be quoted to protect it from shell expansion.	 In this case,
	      the appropriate parameter will be read from stdin	 as  with  the
	      login  subcommand,  including  special handling of password.  If
	      the `?' is followed by a string, that is used as the prompt  for
	      reading the parameter instead of the default message (any neces‐
	      sary punctuation and whitespace should be included at the end of
	      the  prompt).   The  first letter of the parameter (only) may be
	      quoted with a `\'; hence an argument "\\$word"  guarantees  that
	      the string from the shell parameter $word will be treated liter‐
	      ally, whether or not it begins with a `?'.

	      If instead a single `-' is given, the  existing  parameters,  if
	      any,  are deleted.  In that case, calling open with no arguments
	      will cause an error.

	      The list of parameters is not deleted after a close, however  it
	      will be deleted if the zsh/zftp module is unloaded.

	      For example,

		     zftp params ftp.elsewhere.xx juser '?Password for juser: '

	      will store the host ftp.elsewhere.xx and the user juser and then
	      prompt the user for the corresponding password  with  the	 given
	      prompt.

       test   Test  the	 connection;  if  the  server has reported that it has
	      closed the connection (maybe due to a timeout), return status 2;
	      if  no  connection was open anyway, return status 1; else return
	      status 0.	 The test subcommand is silent,	 apart	from  messages
	      printed by the $ZFTP_VERBOSE mechanism, or error messages if the
	      connection closes.  There is no network overhead for this test.

	      The test is only supported on systems with either the  select(2)
	      or poll(2) system calls; otherwise the message `not supported on
	      this system' is printed instead.

	      The test subcommand will automatically be called at the start of
	      any  other  subcommand for the current session when a connection
	      is open.

       cd directory
	      Change the remote directory to directory.	 Also alters the shell
	      variable ZFTP_PWD.

       cdup   Change  the  remote directory to the one higher in the directory
	      tree.  Note that cd .. will also work correctly on non-UNIX sys‐
	      tems.

       dir [ args... ]
	      Give  a (verbose) listing of the remote directory.  The args are
	      passed directly to the server. The command's behaviour is imple‐
	      mentation	 dependent, but a UNIX server will typically interpret
	      args as arguments to the ls command and with no arguments return
	      the  result of `ls -l'. The directory is listed to standard out‐
	      put.

       ls [ args ]
	      Give a (short) listing of the remote directory.  With  no	 args,
	      produces a raw list of the files in the directory, one per line.
	      Otherwise, up to vagaries of the server implementation,  behaves
	      similar to dir.

       type [ type ]
	      Change  the  type for the transfer to type, or print the current
	      type if type is absent.  The allowed values are `A' (ASCII), `I'
	      (Image, i.e. binary), or `B' (a synonym for `I').

	      The FTP default for a transfer is ASCII.	However, if zftp finds
	      that the remote host is a UNIX machine with 8-bit byes, it  will
	      automatically  switch  to	 using	binary for file transfers upon
	      open.  This can subsequently be overridden.

	      The transfer type is only passed to the remote host when a  data
	      connection  is  established;  this  command  involves no network
	      overhead.

       ascii  The same as type A.

       binary The same as type I.

       mode [ S | B ]
	      Set the mode type to stream (S) or block (B).   Stream  mode  is
	      the default; block mode is not widely supported.

       remote files...
       local [ files... ]
	      Print the size and last modification time of the remote or local
	      files.  If there is more than one item on the list, the name  of
	      the  file	 is printed first.  The first number is the file size,
	      the second is the last modification time of the file in the for‐
	      mat  CCYYMMDDhhmmSS  consisting of year, month, date, hour, min‐
	      utes and seconds in GMT.	Note that this format,	including  the
	      length, is guaranteed, so that time strings can be directly com‐
	      pared via the [[ builtin's < and > operators, even if  they  are
	      too long to be represented as integers.

	      Not  all servers support the commands for retrieving this infor‐
	      mation.  In that case, the remote command will print nothing and
	      return status 2, compared with status 1 for a file not found.

	      The  local  command  (but	 not remote) may be used with no argu‐
	      ments, in which case the information comes from  examining  file
	      descriptor zero.	This is the same file as seen by a put command
	      with no further redirection.

       get file [...]
	      Retrieve all files from the server, concatenating them and send‐
	      ing them to standard output.

       put file [...]
	      For  each file, read a file from standard input and send that to
	      the remote host with the given name.

       append file [...]
	      As put, but if the remote file already exists, data is  appended
	      to it instead of overwriting it.

       getat file point
       putat file point
       appendat file point
	      Versions of get, put and append which will start the transfer at
	      the given point in the remote file.  This is useful for  append‐
	      ing  to an incomplete local file.	 However, note that this abil‐
	      ity is not universally supported by servers (and	is  not	 quite
	      the behaviour specified by the standard).

       delete file [...]
	      Delete the list of files on the server.

       mkdir directory
	      Create a new directory directory on the server.

       rmdir directory
	      Delete the directory directory  on the server.

       rename old-name new-name
	      Rename file old-name to new-name on the server.

       site args...
	      Send  a  host-specific command to the server.  You will probably
	      only need this if instructed by the server to use it.

       quote args...
	      Send the raw FTP command sequence to the server.	You should  be
	      familiar	with  the  FTP command set as defined in RFC959 before
	      doing this.  Useful commands may include STAT  and  HELP.	  Note
	      also  the	 mechanism for returning messages as described for the
	      variable ZFTP_VERBOSE below, in  particular  that	 all  messages
	      from the control connection are sent to standard error.

       close
       quit   Close the current data connection.  This unsets the shell param‐
	      eters ZFTP_HOST,	ZFTP_PORT,  ZFTP_IP,  ZFTP_SYSTEM,  ZFTP_USER,
	      ZFTP_ACCOUNT, ZFTP_PWD, ZFTP_TYPE and ZFTP_MODE.

       session [ sessname ]
	      Allows  multiple	FTP  sessions to be used at once.  The name of
	      the session is an arbitrary string of  characters;  the  default
	      session  is called `default'.  If this command is called without
	      an argument, it will list all  the  current  sessions;  with  an
	      argument,	 it  will either switch to the existing session called
	      sessname, or create a new session of that name.

	      Each session remembers the status of the connection, the set  of
	      connection-specific  shell parameters (the same set as are unset
	      when a connection closes, as given in the description of close),
	      and  any	user  parameters specified with the params subcommand.
	      Changing to a previous session restores those  values;  changing
	      to a new session initialises them in the same way as if zftp had
	      just been loaded.	 The name of the current session is  given  by
	      the parameter ZFTP_SESSION.

       rmsession [ sessname ]
	      Delete a session; if a name is not given, the current session is
	      deleted.	If the current session is deleted, the earliest exist‐
	      ing  session becomes the new current session, otherwise the cur‐
	      rent session is not changed.  If the session  being  deleted  is
	      the  only	 one,  a  new  session called `default' is created and
	      becomes the current session; note that this  is  a  new  session
	      even  if	the session being deleted is also called `default'. It
	      is recommended that sessions not	be  deleted  while  background
	      commands which use zftp are still active.

   Parameters
       The  following  shell  parameters  are used by zftp.  Currently none of
       them are special.

       ZFTP_TMOUT
	      Integer.	The time in seconds to wait for a network operation to
	      complete before returning an error.  If this is not set when the
	      module is loaded, it will be given  the  default	value  60.   A
	      value  of	 zero  turns off timeouts.  If a timeout occurs on the
	      control connection it will be closed.  Use  a  larger  value  if
	      this occurs too frequently.

       ZFTP_IP
	      Readonly.	 The IP address of the current connection in dot nota‐
	      tion.

       ZFTP_HOST
	      Readonly.	 The hostname of the current remote  server.   If  the
	      host  was	 opened	 as  an	 IP  number,  ZFTP_HOST	 contains that
	      instead; this saves the overhead for a name lookup, as  IP  num‐
	      bers are most commonly used when a nameserver is unavailable.

       ZFTP_PORT
	      Readonly.	  The  number of the remote TCP port to which the con‐
	      nection is open (even if the port was originally specified as  a
	      named service).  Usually this is the standard FTP port, 21.

	      In  the unlikely event that your system does not have the appro‐
	      priate conversion functions, this appears in network byte order.
	      If  your	system is little-endian, the port then consists of two
	      swapped bytes and the standard port will be  reported  as	 5376.
	      In  that	case, numeric ports passed to zftp open will also need
	      to be in this format.

       ZFTP_SYSTEM
	      Readonly.	 The system type string	 returned  by  the  server  in
	      response to an FTP SYST request.	The most interesting case is a
	      string beginning "UNIX Type: L8", which ensures maximum compati‐
	      bility with a local UNIX host.

       ZFTP_TYPE
	      Readonly.	  The  type to be used for data transfers , either `A'
	      or `I'.	Use the type subcommand to change this.

       ZFTP_USER
	      Readonly.	 The username currently logged in, if any.

       ZFTP_ACCOUNT
	      Readonly.	 The account name of the current user, if  any.	  Most
	      servers do not require an account name.

       ZFTP_PWD
	      Readonly.	 The current directory on the server.

       ZFTP_CODE
	      Readonly.	  The  three digit code of the last FTP reply from the
	      server as a string.  This can still be read after the connection
	      is closed, and is not changed when the current session changes.

       ZFTP_REPLY
	      Readonly.	  The  last line of the last reply sent by the server.
	      This can still be read after the connection is  closed,  and  is
	      not changed when the current session changes.

       ZFTP_SESSION
	      Readonly.	 The name of the current FTP session; see the descrip‐
	      tion of the session subcommand.

       ZFTP_PREFS
	      A string of preferences for altering aspects  of	zftp's	behav‐
	      iour.  Each preference is a single character.  The following are
	      defined:

	      P	     Passive:  attempt to make the remote server initiate data
		     transfers.	 This is slightly more efficient than sendport
		     mode.  If the letter S occurs later in the	 string,  zftp
		     will use sendport mode if passive mode is not available.

	      S	     Sendport:	 initiate  transfers  by the FTP PORT command.
		     If this occurs before any P in the string,	 passive  mode
		     will never be attempted.

	      D	     Dumb:   use  only the bare minimum of FTP commands.  This
		     prevents the  variables  ZFTP_SYSTEM  and	ZFTP_PWD  from
		     being set, and will mean all connections default to ASCII
		     type.  It may prevent ZFTP_SIZE from being set  during  a
		     transfer  if  the	server	does  not send it anyway (many
		     servers do).

	      If ZFTP_PREFS is not set when zftp is loaded, it will be set  to
	      a default of `PS', i.e. use passive mode if available, otherwise
	      fall back to sendport mode.

       ZFTP_VERBOSE
	      A string of digits between 0 and 5 inclusive,  specifying	 which
	      responses	 from  the server should be printed.  All responses go
	      to standard error.  If any of the numbers 1 to 5 appear  in  the
	      string, raw responses from the server with reply codes beginning
	      with that digit will be printed to standard  error.   The	 first
	      digit of the three digit reply code is defined by RFC959 to cor‐
	      respond to:

	      1.     A positive preliminary reply.

	      2.     A positive completion reply.

	      3.     A positive intermediate reply.

	      4.     A transient negative completion reply.

	      5.     A permanent negative completion reply.

	      It should be noted that, for unknown reasons, the reply `Service
	      not  available',	which  forces  termination of a connection, is
	      classified as 421, i.e.  `transient  negative',  an  interesting
	      interpretation of the word `transient'.

	      The  code 0 is special:  it indicates that all but the last line
	      of multiline replies read from the server	 will  be  printed  to
	      standard	error  in  a processed format.	By convention, servers
	      use this mechanism for sending information for the user to read.
	      The  appropriate	reply  code,  if it matches the same response,
	      takes priority.

	      If ZFTP_VERBOSE is not set when zftp is loaded, it will  be  set
	      to  the  default value 450, i.e., messages destined for the user
	      and all errors will be printed.  A  null	string	is  valid  and
	      specifies that no messages should be printed.

   Functions
       zftp_chpwd
	      If this function is set by the user, it is called every time the
	      directory changes on the server, including when a user is logged
	      in, or when a connection is closed.  In the last case, $ZFTP_PWD
	      will be unset; otherwise it will reflect the new directory.

       zftp_progress
	      If this function is set by the user, it will be called during  a
	      get,  put or append operation each time sufficient data has been
	      received from the host.  During a get, the data is sent to stan‐
	      dard  output,  so it is vital that this function should write to
	      standard error or directly to the terminal, not to standard out‐
	      put.

	      When  it	is  called  with a transfer in progress, the following
	      additional shell parameters are set:

	      ZFTP_FILE
		     The name of the remote file being transferred from or to.

	      ZFTP_TRANSFER
		     A G for a get operation and a P for a put operation.

	      ZFTP_SIZE
		     The total size of the complete  file  being  transferred:
		     the  same	as  the first value provided by the remote and
		     local subcommands for a particular file.  If  the	server
		     cannot   supply  this  value  for	a  remote  file	 being
		     retrieved, it will not be set.  If input is from  a  pipe
		     the  value	 may  be  incorrect and correspond simply to a
		     full pipe buffer.

	      ZFTP_COUNT
		     The amount of data so far transferred; a  number  between
		     zero  and	$ZFTP_SIZE,  if	 that  is set.	This number is
		     always available.

	      The function is initially called with ZFTP_TRANSFER  set	appro‐
	      priately and ZFTP_COUNT set to zero.  After the transfer is fin‐
	      ished,  the  function  will  be  called  one  more   time	  with
	      ZFTP_TRANSFER set to GF or PF, in case it wishes to tidy up.  It
	      is  otherwise  never  called  twice  with	 the  same  value   of
	      ZFTP_COUNT.

	      Sometimes	 the progress meter may cause disruption.  It is up to
	      the user to decide whether the function should be defined and to
	      use unfunction when necessary.

   Problems
       A  connection may not be opened in the left hand side of a pipe as this
       occurs in a subshell and the file information is	 not  updated  in  the
       main shell.  In the case of type or mode changes or closing the connec‐
       tion in a subshell, the information is returned but variables  are  not
       updated until the next call to zftp.  Other status changes in subshells
       will not be reflected by changes to the variables (but should be other‐
       wise harmless).

       Deleting	 sessions while a zftp command is active in the background can
       have unexpected effects, even if it does	 not  use  the	session	 being
       deleted.	  This	is because all shell subprocesses share information on
       the state of all connections, and deleting a session changes the order‐
       ing of that information.

       On  some operating systems, the control connection is not valid after a
       fork(), so that operations in subshells, on the left  hand  side	 of  a
       pipeline,  or  in  the  background are not possible, as they should be.
       This is presumably a bug in the operating system.

THE ZSH/ZLE MODULE
       The zsh/zle module contains the Zsh Line Editor.	 See zshzle(1).

THE ZSH/ZLEPARAMETER MODULE
       The zsh/zleparameter module defines two special parameters that can  be
       used  to	 access	 internal information of the Zsh Line Editor (see zsh‐
       zle(1)).

       keymaps
	      This array contains the names of the keymaps currently defined.

       widgets
	      This associative array contains one entry	 per  widget  defined.
	      The  name	 of the widget is the key and the value gives informa‐
	      tion about the widget. It is either  the	string	`builtin'  for
	      builtin	widgets,   a   string  of  the	form  `user:name'  for
	      user-defined widgets, where name is the name of the shell	 func‐
	      tion  implementing  the  widget,	or  it is a string of the form
	      `completion:type:name', for completion widgets. In the last case
	      type  is	the  name of the builtin widgets the completion widget
	      imitates in its behavior and name is the name of the shell func‐
	      tion implementing the completion widget.

THE ZSH/ZPROF MODULE
       When  loaded, the zsh/zprof causes shell functions to be profiled.  The
       profiling results can be obtained with the zprof builtin	 command  made
       available  by this module.  There is no way to turn profiling off other
       than unloading the module.

       zprof [ -c ]
	      Without the -c option, zprof lists profiling results to standard
	      output.	The  format  is	 comparable  to	 that of commands like
	      gprof.

	      At the top there is a summary listing all	 functions  that  were
	      called  at  least	 once.	 This  summary is sorted in decreasing
	      order of the amount of time spent in each.   The	lines  contain
	      the  number  of  the  function  in order, which is used in other
	      parts of the list in suffixes of the form `[num]'.RE,  then  the
	      number  of  calls	 made to the function.	The next three columns
	      list the time in milliseconds spent  in  the  function  and  its
	      descendents, the average time in milliseconds spent in the func‐
	      tion and its descendents per call and  the  percentage  of  time
	      spent  in	 all  shell  functions	used  in this function and its
	      descendents.  The following three columns give the same informa‐
	      tion,  but  counting only the time spent in the function itself.
	      The final column shows the name of the function.

	      After the summary, detailed  information	about  every  function
	      that  was	 invoked  is listed, sorted in decreasing order of the
	      amount of time spent in each function and its descendents.  Each
	      of these entries consists of descriptions for the functions that
	      called the function described,  the  function  itself,  and  the
	      functions	 that  were  called  from it.  The description for the
	      function itself has the same format as in the summary (and shows
	      the same information).  The other lines don't show the number of
	      the function at the beginning  and  have	their  function	 named
	      indented	to  make it easier to distinguish the line showing the
	      function described in the section from the surrounding lines.

	      The information shown in this case is almost the same as in  the
	      summary,	but only refers to the call hierarchy being displayed.
	      For example, for a calling function the column showing the total
	      running  time lists the time spent in the described function and
	      its descendents only for the times when it was called from  that
	      particular  calling  function.  Likewise, for a called function,
	      this columns lists the total time spent in the  called  function
	      and  its	descendents only for the times when it was called from
	      the function described.

	      Also in this case, the column showing the number of calls	 to  a
	      function also shows a slash and then the total number of invoca‐
	      tions made to the called function.

	      As long as the zsh/zprof module is  loaded,  profiling  will  be
	      done  and multiple invocations of the zprof builtin command will
	      show the times and numbers of calls since the module was loaded.
	      With  the	 -c  option,  the zprof builtin command will reset its
	      internal counters and will not show the listing.	)

THE ZSH/ZPTY MODULE
       The zsh/zpty module offers one builtin:

       zpty [ -e ] [ -b ] name [ arg ... ]
	      The  arguments  following	 name  are  concatenated  with	spaces
	      between,	then  executed	as a command, as if passed to the eval
	      builtin.	The command runs under a newly assigned	 pseudo-termi‐
	      nal; this is useful for running commands non-interactively which
	      expect an interactive environment.  The name is not part of  the
	      command,	but is used to refer to this command in later calls to
	      zpty.

	      With the -e option, the pseudo-terminal is set up so that	 input
	      characters are echoed.

	      With the -b option, input to and output from the pseudo-terminal
	      are made non-blocking.

       zpty -d [ names ... ]
	      The second form, with the -d option, is used to delete  commands
	      previously  started,  by supplying a list of their names.	 If no
	      names are given, all commands are deleted.  Deleting  a  command
	      causes the HUP signal to be sent to the corresponding process.

       zpty -w [ -n ] name [ strings ... ]
	      The  -w option can be used to send the to command name the given
	      strings as input (separated by spaces).  If the -n option is not
	      given, a newline is added at the end.

	      If  no strings are provided, the standard input is copied to the
	      pseudo-terminal; this may stop before copying the full input  if
	      the pseudo-terminal is non-blocking.

	      Note  that the command under the pseudo-terminal sees this input
	      as if it were typed, so beware when sending special  tty	driver
	      characters such as word-erase, line-kill, and end-of-file.

       zpty -r [ -t ] name [ param [ pattern ] ]
	      The  -r  option  can  be	used to read the output of the command
	      name.  With only a name argument, the output read is  copied  to
	      the  standard  output.  Unless the pseudo-terminal is non-block‐
	      ing, copying continues until the command under the pseudo-termi‐
	      nal  exits; when non-blocking, only as much output as is immedi‐
	      ately available is copied.  The return status  is	 zero  if  any
	      output is copied.

	      When  also  given a param argument, at most one line is read and
	      stored in the parameter named param.  Less than a full line  may
	      be read if the pseudo-terminal is non-blocking.  The return sta‐
	      tus is zero if at least one character is stored in param.

	      If a pattern is given as well, output is read  until  the	 whole
	      string  read matches the pattern, even in the non-blocking case.
	      The return status is zero if the string read  matches  the  pat‐
	      tern,  or	 if  the command has exited but at least one character
	      could still be read.  As of  this	 writing,  a  maximum  of  one
	      megabyte	of output can be consumed this way; if a full megabyte
	      is read without matching	the  pattern,  the  return  status  is
	      non-zero.

	      In  all cases, the return status is non-zero if nothing could be
	      read, and is 2 if this is because the command has finished.

	      If the -r option is combined with	 the  -t  option,  zpty	 tests
	      whether output is available before trying to read.  If no output
	      is available, zpty immediately returns the status 1.  When  used
	      with  a  pattern,	 the  behaviour on a failed poll is similar to
	      when the command has exited:  the return value  is  zero	if  at
	      least  one  character  could  still  be read even if the pattern
	      failed to match.

       zpty -t name
	      The -t option without the -r option can be used to test  whether
	      the  command name is still running.  It returns a zero status if
	      the command is running and a non-zero value otherwise.

       zpty [ -L ]
	      The last form, without any arguments, is used to list  the  com‐
	      mands  currently	defined.   If  the -L option is given, this is
	      done in the form of calls to the zpty builtin.

THE ZSH/ZSELECT MODULE
       The zsh/zselect module makes available one builtin command:

       zselect [ -rwe -t timeout -a array ] [ fd ... ]
	      The zselect builtin is a front-end to the `select' system	 call,
	      which  blocks  until  a  file descriptor is ready for reading or
	      writing, or has an error condition, with	an  optional  timeout.
	      If  this	is not available on your system, the command prints an
	      error message and returns status 2 (normal errors return	status
	      1).   For	 more  information, see your systems documentation for
	      select(3).  Note there is no connection with the	shell  builtin
	      of the same name.

	      Arguments	  and  options	may  be	 intermingled  in  any	order.
	      Non-option arguments are file descriptors, which must be decimal
	      integers.	  By  default,	file  descriptors are to be tested for
	      reading, i.e. zselect will return when data is available	to  be
	      read  from  the  file descriptor, or more precisely, when a read
	      operation from the file descriptor will not block.  After a  -r,
	      -w and -e, the given file descriptors are to be tested for read‐
	      ing, writing, or error conditions.  These options and  an	 arbi‐
	      trary list of file descriptors may be given in any order.

	      (The presence of an `error condition' is not well defined in the
	      documentation for many  implementations  of  the	select	system
	      call.   According to recent versions of the POSIX specification,
	      it is really an exception condition, of which the only  standard
	      example  is out-of-band data received on a socket.  So zsh users
	      are unlikely to find the -e option useful.)

	      The option `-t timeout' specifies a timeout in hundredths	 of  a
	      second.	This  may  be zero, in which case the file descriptors
	      will simply be polled and zselect will return  immediately.   It
	      is  possible  to	call  zselect  with  no file descriptors and a
	      non-zero timeout for use	as  a  finer-grained  replacement  for
	      `sleep'; not, however, the return status is always 1 for a time‐
	      out.

	      The option `-a array' indicates that  array  should  be  set  to
	      indicate	the file descriptor(s) which are ready.	 If the option
	      is not given, the array reply will be  used  for	this  purpose.
	      The  array  will	contain	 a string similar to the arguments for
	      zselect.	For example,

		     zselect -t 0 -r 0 -w 1

	      might return immediately with status 0 and $reply containing `-r
	      0	 -w  1'	 to  show that both file descriptors are ready for the
	      requested operations.

	      The option `-A assoc' indicates that the associative array assoc
	      should  be  set  to  indicate  the  file descriptor(s( which are
	      ready.  This option overrides the option -a, nor will  reply  be
	      modified.	  The  keys of assoc are the file descriptors, and the
	      corresponding values are any of the characters `rwe' to indicate
	      the condition.

	      The  command returns status 0 if some file descriptors are ready
	      for reading.  If the operation timed out, or a timeout of 0  was
	      given and no file descriptors were ready, or there was an error,
	      it returns status 1 and the array will not be set (nor  modified
	      in  any way).  If there was an error in the select operation the
	      appropriate error message is printed.

THE ZSH/ZUTIL MODULE
       The zsh/zutil module only adds some builtins:

       zstyle [ -L [ pattern [ style ] ] ]
       zstyle [ -e | - | -- ] pattern style strings ...
       zstyle -d [ pattern [ styles ... ] ]
       zstyle -g name [ pattern [ style ] ]
       zstyle -abs context style name [ sep ]
       zstyle -Tt context style [ strings ...]
       zstyle -m context style pattern
	      This builtin command  is	used  to  define  and  lookup  styles.
	      Styles  are  pairs of names and values, where the values consist
	      of any number of strings.	 They are stored  together  with  pat‐
	      terns  and  lookup  is done by giving a string, called the `con‐
	      text', which is compared to the patterns.	 The definition stored
	      for the first matching pattern will be returned.

	      For  ordering  of	 comparisons,  patterns are searched from most
	      specific to least specific, and patterns that are	 equally  spe‐
	      cific  keep  the order in which they were defined.  A pattern is
	      considered to be more specific than another if it contains  more
	      components  (substrings  separated by colons) or if the patterns
	      for the components are more specific, where simple  strings  are
	      considered  to  be  more specific than patterns and complex pat‐
	      terns are considered to be more specific than the pattern `*'.

	      The  first  form	(without  arguments)  lists  the  definitions.
	      Styles  are  shown in alphabetic order and patterns are shown in
	      the order zstyle will test them.

	      If the -L option is given, listing is done in the form of	 calls
	      to  zstyle.  The optional first argument is a pattern which will
	      be matched against the string supplied as the  pattern  for  the
	      context; note that this means, for example, `zstyle -L ":comple‐
	      tion:*"' will match any  supplied	 pattern  beginning  `:comple‐
	      tion:', not just ":completion:*":	 use ":completion:\*" to match
	      that.  The optional second argument limits the output to a  spe‐
	      cific  style  (not  a  pattern).	 -L is not compatible with any
	      other options.

	      The other forms are the following:

	      zstyle [ - | -- | -e ] pattern style strings ...
		     Defines the given style for the pattern with the  strings
		     as	 the  value.   If  the -e option is given, the strings
		     will  be  concatenated  (separated	 by  spaces)  and  the
		     resulting string will be evaluated (in the same way as it
		     is done by the eval builtin command) when	the  style  is
		     looked  up.   In  this case the parameter `reply' must be
		     assigned to set the strings returned  after  the  evalua‐
		     tion.   Before  evaluating the value, reply is unset, and
		     if it is still unset after the evaluation, the  style  is
		     treated as if it were not set.

	      zstyle -d [ pattern [ styles ... ] ]
		     Delete  style  definitions. Without arguments all defini‐
		     tions are deleted, with a	pattern	 all  definitions  for
		     that  pattern  are	 deleted  and if any styles are given,
		     then only those styles are deleted for the pattern.

	      zstyle -g name [ pattern [ style ] ]
		     Retrieve a style definition. The name is used as the name
		     of	 an array in which the results are stored. Without any
		     further arguments, all  patterns  defined	are  returned.
		     With  a  pattern  the styles defined for that pattern are
		     returned and with both a pattern and a style,  the	 value
		     strings of that combination is returned.

	      The other forms can be used to look up or test patterns.

	      zstyle -s context style name [ sep ]
		     The  parameter  name  is  set  to	the value of the style
		     interpreted as a string.  If the value  contains  several
		     strings  they  are	 concatenated with spaces (or with the
		     sep string if that is given) between them.

	      zstyle -b context style name
		     The value is stored in name as a  boolean,	 i.e.  as  the
		     string  `yes'  if	the value has only one string and that
		     string is equal to one of `yes', `true', `on', or `1'. If
		     the  value	 is  any  other	 string	 or  has more than one
		     string, the parameter is set to `no'.

	      zstyle -a context style name
		     The value is stored in name  as  an  array.  If  name  is
		     declared as an associative array,	the first, third, etc.
		     strings are used as the keys and the  other  strings  are
		     used as the values.

	      zstyle -t context style [ strings ...]
	      zstyle -T context style [ strings ...]
		     Test  the	value  of  a  style,  i.e.  the -t option only
		     returns a status (sets  $?).   Without  any  strings  the
		     return  status  is	 zero  if  the style is defined for at
		     least one matching pattern, has only one  string  in  its
		     value, and that is equal to one of `true', `yes', `on' or
		     `1'. If any strings are given the status is zero  if  and
		     only  if at least one of the strings is equal to at least
		     one of the strings in the value.  If  the	style  is  not
		     defined, the status is 2.

		     The  -T option tests the values of the style like -t, but
		     it returns status zero (rather than 2) if	the  style  is
		     not defined for any matching pattern.

	      zstyle -m context style pattern
		     Match a value. Returns status zero if the pattern matches
		     at least one of the strings in the value.

       zformat -f param format specs ...
       zformat -a array sep specs ...
	      This builtin provides two different  forms  of  formatting.  The
	      first form is selected with the -f option. In this case the for‐
	      mat string will be modified by replacing sequences starting with
	      a	 percent  sign	in  it with strings from the specs.  Each spec
	      should be of the	form  `char:string'  which  will  cause	 every
	      appearance  of  the sequence `%char' in format to be replaced by
	      the string.  The `%' sequence may also contain optional  minimum
	      and  maximum  field width specifications between the `%' and the
	      `char' in the form `%min.maxc', i.e. the minimum field width  is
	      given first and if the maximum field width is used, it has to be
	      preceded by a dot.  Specifying a minimum field width  makes  the
	      result  be  padded  with	spaces	to  the right if the string is
	      shorter than the requested width.	 Padding to the	 left  can  be
	      achieved by giving a negative minimum field width.  If a maximum
	      field width is specified, the string  will  be  truncated	 after
	      that  many  characters.	After  all `%' sequences for the given
	      specs have been processed, the resulting string is stored in the
	      parameter param.

	      The  %-escapes  also  understand ternary expressions in the form
	      used by prompts.	The % is followed by a `(' and then  an	 ordi‐
	      nary  format  specifier character as described above.  There may
	      be a set of digits either before or after the `('; these specify
	      a	 test  number,	which  defaults to zero.  Negative numbers are
	      also allowed.  An arbitrary delimiter character follows the for‐
	      mat  specifier, which is followed by a piece of `true' text, the
	      delimiter character again, a piece of `false' text, and a	 clos‐
	      ing  parenthesis.	  The complete expression (without the digits)
	      thus looks like `%(X.text1.text2)', except that the `.'  charac‐
	      ter  is  arbitrary.  The value given for the format specifier in
	      the char:string  expressions  is	evaluated  as  a  mathematical
	      expression,  and compared with the test number.  If they are the
	      same, text1 is output, else text2 is output.  A parenthesis  may
	      be escaped in text2 as %).  Either of text1 or text2 may contain
	      nested %-escapes.

	      For example:

		     zformat -f REPLY "The answer is '%3(c.yes.no)'." c:3

	      outputs "The answer is 'yes'." to REPLY since the value for  the
	      format specifier c is 3, agreeing with the digit argument to the
	      ternary expression.

	      The second form, using the -a option, can be used	 for  aligning
	      strings.	 Here,	the  specs  are of the form `left:right' where
	      `left' and `right' are arbitrary	strings.   These  strings  are
	      modified	by  replacing the colons by the sep string and padding
	      the left strings with spaces  to	the  right  so	that  the  sep
	      strings  in  the result (and hence the right strings after them)
	      are all aligned if the strings are  printed  below  each	other.
	      All  strings  without a colon are left unchanged and all strings
	      with an empty right string have the trailing colon removed.   In
	      both  cases the lengths of the strings are not used to determine
	      how the other strings are to be aligned.	The resulting  strings
	      are stored in the array.

       zregexparse
	      This implements some internals of the _regex_arguments function.

       zparseopts [ -D ] [ -K ] [ -E ] [ -a array ] [ -A assoc ] specs
	      This  builtin  simplifies	 the  parsing of options in positional
	      parameters, i.e. the set of arguments given by  $*.   Each  spec
	      describes	 one option and must be of the form `opt[=array]'.  If
	      an option described by opt is found in the positional parameters
	      it is copied into the array specified with the -a option; if the
	      optional `=array' is given,  it  is  instead  copied  into  that
	      array.

	      Note  that  it  is an error to give any spec without an `=array'
	      unless one of the -a or -A options is used.

	      Unless the -E option is given, parsing stops at the first string
	      that isn't described by one of the specs.	 Even with -E, parsing
	      always stops at a positional parameter equal to `-' or `--'.

	      The opt description must be one of the following.	  Any  of  the
	      special  characters can appear in the option name provided it is
	      preceded by a backslash.

	      name
	      name+  The name is the name of the option	 without  the  leading
		     `-'.   To	specify	 a  GNU-style  long option, one of the
		     usual two leading `-' must be included in name; for exam‐
		     ple,  a  `--file'	option	is  represented	 by  a name of
		     `-file'.

		     If a `+' appears after name, the option  is  appended  to
		     array each time it is found in the positional parameters;
		     without the `+' only the last occurrence of the option is
		     preserved.

		     If	 one of these forms is used, the option takes no argu‐
		     ment, so parsing stops if the next	 positional  parameter
		     does  not	also  begin  with `-' (unless the -E option is
		     used).

	      name:
	      name:-
	      name:: If one or two colons are given, the option takes an argu‐
		     ment;  with one colon, the argument is mandatory and with
		     two colons it is optional.	 The argument is  appended  to
		     the array after the option itself.

		     An	 optional  argument is put into the same array element
		     as the option name (note that this makes empty strings as
		     arguments	indistinguishable).   A	 mandatory argument is
		     added as a separate element unless the `:-' form is used,
		     in which case the argument is put into the same element.

		     A	`+' as described above may appear between the name and
		     the first colon.

       The options of zparseopts itself are:

       -a array
	      As described above, this names the default  array	 in  which  to
	      store the recognised options.

       -A assoc
	      If this is given, the options and their values are also put into
	      an associative array with the option names as keys and the argu‐
	      ments (if any) as the values.

       -D     If  this option is given, all options found are removed from the
	      positional parameters of the calling shell or shell function, up
	      to  but  not  including any not described by the specs.  This is
	      similar to using the shift builtin.

       -K     With this option, the  arrays  specified	with  the  -a  and  -A
	      options and with the `=array' forms are kept unchanged when none
	      of the specs for	them  is  used.	  This	allows	assignment  of
	      default values to them before calling zparseopts.

       -E     This  changes  the parsing rules to not stop at the first string
	      that isn't described by one of the specs.	 It  can  be  used  to
	      test for or (if used together with -D) extract options and their
	      arguments, ignoring all other options and arguments that may  be
	      in the positional parameters.

       For example,

	      set -- -a -bx -c y -cz baz -cend
	      zparseopts a=foo b:=bar c+:=bar

       will have the effect of

	      foo=(-a)
	      bar=(-b x -c y -c z)

       The arguments from `baz' on will not be used.

       As an example for the -E option, consider:

	      set -- -a x -b y -c z arg1 arg2
	      zparseopts -E -D b:=bar

       will have the effect of

	      bar=(-b y)
	      set -- -a x -c z arg1 arg2

       I.e.,  the  option  -b  and its arguments are taken from the positional
       parameters and put into the array bar.

ZSHCALSYS(1)							  ZSHCALSYS(1)

NAME
       zshcalsys - zsh calendar system

DESCRIPTION
       The shell is supplied with a series of functions to replace and enhance
       the  traditional Unix calendar programme, which warns the user of immi‐
       nent or future events, details of which are stored in a text file (typ‐
       ically  calendar	 in  the user's home directory).  The version provided
       here includes a mechanism for alerting the user when an event is due.

       In addition a function age is provided that can be used in a glob qual‐
       ifier;  it  allows  files  to  be  selected based on their modification
       times.

       The format of the calendar file and the dates used there in and in  the
       age function are described first, then the functions that can be called
       to examine and modify the calendar file.

       The functions here depend on the availability of the zsh/datetime  mod‐
       ule  which  is  usually installed with the shell.  The library function
       strptime() must be available; it is present on  most  recent  operating
       systems.

FILE AND DATE FORMATS
   Calendar File Format
       The  calendar file is by default ~/calendar.  This can be configured by
       the calendar-file style, see the section STYLES below.  The basic  for‐
       mat  consists  of a series of separate lines, with no indentation, each
       including a date and time specification followed by  a  description  of
       the event.

       Various	enhancements to this format are supported, based on the syntax
       of Emacs calendar mode.	An indented line indicates a continuation line
       that  continues	the  description  of the event from the preceding line
       (note the date may not be continued in this way).  An initial ampersand
       (&) is ignored for compatibility.

       An  indented  line  on which the first non-whitespace character is # is
       not displayed with the calendar entry, but is still scanned for	infor‐
       mation.	 This  can  be used to hide information useful to the calendar
       system but not to the user, such as the unique identifier used by  cal‐
       endar_add.

       The Emacs extension that a date with no description may refer to a num‐
       ber of succeeding events at different times is not supported.

       Unless the done-file style has been altered, any events which have been
       processed  are  appended to the file with the same name as the calendar
       file with the suffix .done, hence ~/calendar.done by default.

       An example is shown below.

   Date Format
       The format of the date and time is designed to allow flexibility	 with‐
       out admitting ambiguity.	 (The words `date' and `time' are both used in
       the documentation below; except where specifically noted this implies a
       string  that  may  include both a date and a time specification.)  Note
       that there is no localization support; month and day names must	be  in
       English	and separator characters are fixed.  Matching is case insensi‐
       tive, and only the first three letters of the  names  are  significant,
       although	 as  a	special	 case  a form beginning "month" does not match
       "Monday".  Furthermore, time zones  are	not  handled;  all  times  are
       assumed to be local.

       It  is  recommended  that, rather than exploring the intricacies of the
       system, users find a date format that is natural to them and  stick  to
       it.   This  will avoid unexpected effects.  Various key facts should be
       noted.

       ·      In particular, note the  confusion  between  month/day/year  and
	      day/month/year  when  the month is numeric; these formats should
	      be avoided if at all possible.  Many alternatives are available.

       ·      The year must be given in full  to  avoid	 confusion,  and  only
	      years from 1900 to 2099 inclusive are matched.

       The  following  give some obvious examples; users finding here a format
       they like and not subject to  vagaries  of  style  may  skip  the  full
       description.   As  dates	 and times are matched separately (even though
       the time may be embedded in the date), any date	format	may  be	 mixed
       with  any  format  for the time of day provide the separators are clear
       (whitespace, colons, commas).

	      2007/04/03 13:13
	      2007/04/03:13:13
	      2007/04/03 1:13 pm
	      3rd April 2007, 13:13
	      April 3rd 2007 1:13 p.m.
	      Apr 3, 2007 13:13
	      Tue Apr 03 13:13:00 2007
	      13:13 2007/apr/3

       More detailed rules follow.

       Times are parsed and extracted before dates.  They must use  colons  to
       separate	 hours	and minutes, though a dot is allowed before seconds if
       they are present.  This limits time formats to the following:

       ·      HH:MM[:SS[.FFFFF]] [am|pm|a.m.|p.m.]

       ·      HH:MM.SS[.FFFFF] [am|pm|a.m.|p.m.]

       Here, square brackets indicate optional elements, possibly with	alter‐
       natives.	  Fractions of a second are recognised but ignored.  For abso‐
       lute times (the normal format require by the calendar file and the  age
       function)  a  date  is  mandatory  but  a  time of day is not; the time
       returned is at the start of the date.  One  variation  is  allowed:  if
       a.m.  or	 p.m.  or  one of their variants is present, an hour without a
       minute is allowed, e.g. 3 p.m..

       Time zones are not handled, though if one is matched following  a  time
       specification  it  will	be  removed  to allow a surrounding date to be
       parsed.	This only happens if the format of the	timezone  is  not  too
       unusual.	 The following are examples of forms that are understood:

	      +0100
	      GMT
	      GMT-7
	      CET+1CDT

       Any  part  of  the timezone that is not numeric must have exactly three
       capital letters in the name.

       Dates suffer from the ambiguity between DD/MM/YYYY and MM/DD/YYYY.   It
       is  recommended this form is avoided with purely numeric dates, but use
       of ordinals, eg. 3rd/04/2007, will resolve the ambiguity as the ordinal
       is  always  parsed  as the day of the month.  Years must be four digits
       (and the first two must be 19  or  20);	03/04/08  is  not  recognised.
       Other  numbers may have leading zeroes, but they are not required.  The
       following are handled:

       ·      YYYY/MM/DD

       ·      YYYY-MM-DD

       ·      YYYY/MNM/DD

       ·      YYYY-MNM-DD

       ·      DD[th|st|rd] MNM[,] [ YYYY ]

       ·      MNM DD[th|st|rd][,] [ YYYY ]

       ·      DD[th|st|rd]/MM[,] YYYY

       ·      DD[th|st|rd]/MM/YYYY

       ·      MM/DD[th|st|rd][,] YYYY

       ·      MM/DD[th|st|rd]/YYYY

       Here, MNM is at least the first three letters of a month name,  matched
       case-insensitively.  The remainder of the month name may appear but its
       contents are  irrelevant,  so  janissary,  febrile,  martial,  apricot,
       maybe, junta, etc. are happily handled.

       Where  the  year	 is  shown  as	optional, the current year is assumed.
       There are only two such cases, the form Jun 20  or  14  September  (the
       only  two commonly occurring forms, apart from a "the" in some forms of
       English, which isn't currently supported).  Such dates will  of	course
       become ambiguous in the future, so should ideally be avoided.

       Times  may follow dates with a colon, e.g. 1965/07/12:09:45; this is in
       order to provide a format with no whitespace.  A comma  and  whitespace
       are allowed, e.g. 1965/07/12, 09:45.  Currently the order of these sep‐
       arators is not checked, so illogical  formats  such  as	1965/07/12,  :
       ,09:45  will  also  be matched.	For simplicity such variations are not
       shown in the list above.	 Otherwise, a time is only recognised as being
       associated  with	 a  date if there is only whitespace in between, or if
       the time was embedded in the date.

       Days of the week are not normally scanned, but will be ignored if  they
       occur  at  the  start  of  the date pattern only.  However, in contexts
       where it is useful to specify dates relative to today, days of the week
       with  no	 other date specification may be given.	 The day is assumed to
       be either today or within the past week.	 Likewise, the	words  yester‐
       day, today and tomorrow are handled.  All matches are case-insensitive.
       Hence if today is Monday, then Sunday is equivalent to yesterday,  Mon‐
       day  is	equivalent  to	today,	but Tuesday gives a date six days ago.
       This is not generally useful within the calendar file.  Dates  in  this
       format may be combined with a time specification; for example Tomorrow,
       8 p.m..

       For example, the standard date format:

	      Fri Aug 18 17:00:48 BST 2006

       is handled by matching HH:MM:SS	and  removing  it  together  with  the
       matched (but unused) time zone.	This leaves the following:

	      Fri Aug 18 2006

       Fri is ignored and the rest is matched according to the standard rules.

   Relative Time Format
       In  certain  places  relative  times  are handled.  Here, a date is not
       allowed;	 instead  a  combination  of  various  supported  periods  are
       allowed,	 together with an optional time.  The periods must be in order
       from most to least significant.

       In some cases, a more accurate calculation is possible when there is an
       anchor  date:   offsets of months or years pick the correct day, rather
       than being rounded, and it is possible to pick a particular  day	 in  a
       month as `(1st Friday)', etc., as described in more detail below.

       Anchors	are available in the following cases.  If one or two times are
       passed to the function calendar, the start time acts an anchor for  the
       end  time  when	the  end  time	is relative (even if the start time is
       implicit).  When examining calendar files, the  scheduled  event	 being
       examined	 anchors the warning time when it is given explicitly by means
       of the WARN keyword; likewise, the scheduled event anchors a repetition
       period  when  given  by the RPT keyword, so that specifications such as
       RPT 2 months, 3rd Thursday are handled properly.	 Finally, the -R argu‐
       ment to calendar_scandate directly provides an anchor for relative cal‐
       culations.

       The periods handled, with possible abbreviations are:

       Years  years, yrs, ys, year, yr, y, yearly.   A	year  is  365.25  days
	      unless there is an anchor.

       Months months, mons, mnths, mths, month, mon, mnth, mth, monthly.  Note
	      that m, ms, mn, mns are ambiguous and are not handled.  A	 month
	      is a period of 30 days rather than a calendar month unless there
	      is an anchor.

       Weeks  weeks, wks, ws, week, wk, w, weekly

       Days   days, dys, ds, day, dy, d, daily

       Hours  hours, hrs, hs, hour, hr, h, hourly

       Minutes
	      minutes, mins, minute, min, but not m, ms, mn or mns

       Seconds
	      seconds, secs, ss, second, sec, s

       Spaces between the numbers  are	optional,  but	are  required  between
       items, although a comma may be used (with or without spaces).

       The  forms  yearly  to  hourly  allow  the  number to be omitted; it is
       assumed to be 1.	 For example, 1 d and daily are equivalent.  Note that
       using  those forms with plurals is confusing; 2 yearly is the same as 2
       years, not twice yearly, so it is recommended they only be used without
       numbers.

       When an anchor time is present, there is an extension to handle regular
       events in the form of the nth someday of the month.  Such a  specifica‐
       tion must occur immediately after any year and month specification, but
       before any time of day, and must be in the form	n(th|st|rd)  day,  for
       example	1st  Tuesday  or  3rd  Monday.	 As  in other places, days are
       matched case insensitively, must be in  English,	 and  only  the	 first
       three letters are significant except that a form beginning `month' does
       not match `Monday'.  No attempt is made to sanitize the resulting date;
       attempts to squeeze too many occurrences into a month will push the day
       into the next month (but in the obvious fashion, retaining the  correct
       day of the week).

       Here are some examples:

	      30 years 3 months 4 days 3:42:41
	      14 days 5 hours
	      Monthly, 3rd Thursday
	      4d,10hr

   Example
       Here is an example calendar file.  It uses a consistent date format, as
       recommended above.

	      Feb 1, 2006 14:30 Pointless bureaucratic meeting
	      Mar 27, 2006 11:00 Mutual recrimination and finger pointing
		Bring water pistol and waterproofs
	      Mar 31, 2006 14:00 Very serious managerial pontification
		# UID 12C7878A9A50
	      Apr 10, 2006 13:30 Even more pointless blame assignment exercise WARN 30 mins
	      May 18, 2006 16:00 Regular moaning session RPT monthly, 3rd Thursday

       The second entry has a continuation line.  The third entry has  a  con‐
       tinuation  line that will not be shown when the entry is displayed, but
       the unique identifier will be used by the  calendar_add	function  when
       updating the event.  The fourth entry will produce a warning 30 minutes
       before the event (to allow you to equip yourself	 appropriately).   The
       fifth  entry  repeats  after a month on the 3rd Thursday, i.e. June 15,
       2006, at the same time.

USER FUNCTIONS
       This section  describes	functions  that	 are  designed	to  be	called
       directly by the user.  The first part describes those functions associ‐
       ated with the user's calendar; the second part  describes  the  use  in
       glob qualifiers.

   Calendar system functions
       calendar	 [  -abdDsv  ]	[  -C calfile ] [ -n num ] [ -S showprog ] [ [
       start ] end ](
       calendar -r [ -abdDrsv ] [ -C calfile ] [ -n num ] [ -S	showprog  ]  [
       start ]
	      Show events in the calendar.

	      With no arguments, show events from the start of today until the
	      end of the next working day after today.	 In  other  words,  if
	      today  is Friday, Saturday, or Sunday, show up to the end of the
	      following Monday, otherwise show today and tomorrow.

	      If end is given, show events from the start of today up  to  the
	      time  and	 date  given,  which is in the format described in the
	      previous section.	 Note that if this  is	a  date	 the  time  is
	      assumed  to be midnight at the start of the date, so that effec‐
	      tively this shows all events before the given date.

	      end may start with a +, in which case the remainder of the spec‐
	      ification is a relative time format as described in the previous
	      section indicating the range of time from the start time that is
	      to be included.

	      If  start is also given, show events starting from that time and
	      date.  The word now can be used to indicate the current time.

	      To implement an alert when events are due, include  calendar  -s
	      in your ~/.zshrc file.

	      Options:

	      -a     Show  all	items in the calendar, regardless of the start
		     and end.

	      -b     Brief:  don't display continuation lines  (i.e.  indented
		     lines  following  the  line with the date/time), just the
		     first line.

	      -C calfile
		     Explicitly specify a calendar file instead of  the	 value
		     of the calendar-file style or the the default ~/calendar.

	      -d     Move  any	events that have passed from the calendar file
		     to the "done" file, as given by the  done-file  style  or
		     the  default  which  is  the  calendar  file  with	 .done
		     appended.	This option is implied by the -s option.

	      -D     Turns off the option -d, even if the -s  option  is  also
		     present.

	      -n num, -num
		     Show  at  least  num  events,  if present in the calendar
		     file, regardless of the start and end.

	      -r     Show all the remaining options in the calendar,  ignoring
		     the  given	 end  time.   The start time is respected; any
		     argument given is treated as a start time.

	      -s     Use the shell's sched command to schedule a  timed	 event
		     that  will warn the user when an event is due.  Note that
		     the sched command only runs if the shell is at an	inter‐
		     active  prompt;  a	 foreground  taks blocks the scheduled
		     task from running until it is finished.

		     The timed event usually runs the programme	 calendar_show
		     to	 show  the  event, as described in the section UTILITY
		     FUNCTIONS below.

		     By default, a warning of the event is shown five  minutes
		     before  it	 is due.  The warning period can be configured
		     by the style warn-time or for a single calendar entry  by
		     including	WARN  reltime  in the first line of the entry,
		     where reltime is one of the usual relative time formats.

		     A repeated event may be indicated by including  RPT  rel‐
		     date in the first line of the entry.  After the scheduled
		     event has been displayed it will be re-entered  into  the
		     calendar file at a time reldate after the existing event.
		     Note that this is currently the  only  use	 made  of  the
		     repeat  count,  so	 that  it is not possible to query the
		     schedule for a recurrence of an  event  in	 the  calendar
		     until the previous event has passed.

		     It	 is  safe to run calendar -s to reschedule an existing
		     event (if the calendar file has  changed,	for  example),
		     and also to have it running in multiples instances of the
		     shell since the calendar file is locked when in use.

		     By default, expired events are moved to the "done"	 file;
		     see the -d option.	 Use -D to prevent this.

	      -S showprog
		     Explicitly	 specify  a  programme	to be used for showing
		     events instead of the value of the show-prog style or the
		     default calendar_show.

	      -v     Verbose:	show more information about stages of process‐
		     ing.  This is useful for confirming that the function has
		     successfully parsed the dates in the calendar file.

       calendar_add [ -BL ] event ...
	      Adds a single event to the calendar in the appropriate location.
	      The event can contain multiple lines, as described in  the  sec‐
	      tion  Calendar  File  Format above.  Using this function ensures
	      that the calendar file is sorted in date	and  time  order.   It
	      also makes special arrangements for locking the file while it is
	      altered.	The old calendar is left in a  file  with  the	suffix
	      .old.

	      The  option  -B indicates that backing up the calendar file will
	      be handled by the caller and should not be performed  by	calen‐
	      dar_add.	 The  option  -L  indicates that calendar_add does not
	      need to lock the calendar file as it is already  locked.	 These
	      options will not usually be needed by users.

	      If the style reformat-date is true, the date and time of the new
	      entry will be rewritten into the standard date format:  see  the
	      descriptions of this style and the style date-format.

	      The  function can use a unique identifier stored with each event
	      to ensure that updates to existing events are treated correctly.
	      The  entry  should contain the word UID, followed by whitespace,
	      followed by a word consisting entirely of hexadecimal digits  of
	      arbitrary	 length (all digits are significant, including leading
	      zeroes).	As the UID is not directly useful to the user,	it  is
	      convenient  to hide it on an indented continuation line starting
	      with a #, for example:

		     Aug 31, 2007 09:30	 Celebrate the end of the holidays
		       # UID 045B78A0

	      The second line will not be shown by the calendar function.

       calendar_edit
	      This calls the user's editor to edit  the	 calendar  file.   The
	      editor  is  given by the variable VISUAL, if set, else the vari‐
	      able EDITOR.  If the calendar scheduler was running, then	 after
	      editing the file calendar -s is called to update it.

	      This  function  locks  out  the calendar system during the edit.
	      Hence it should be used to edit the calendar file	 if  there  is
	      any possibility of a calendar event occurring meanwhile.

       calendar_parse calendar-entry
	      This  is the internal function that analyses the parts of a cal‐
	      endar entry, which is passed as the only argument.  The function
	      returns status 1 if the argument could not be parsed as a calen‐
	      dar entry and status 2 if the wrong  number  of  arguments  were
	      passed; it also sets the parameter reply to an empty associative
	      array.  Otherwise, it returns status 0 and sets elements of  the
	      associative array reply as follows:
       time   The  time	 as a string of digits in the same units as $EPOCHSEC‐
	      ONDS
       text1  The text from the line not including the date and	 time  of  the
	      event, but including any WARN or RPT keywords and values.
       warntime
	      Any warning time given by the WARN keyword as a string of digits
	      containing the time at which  to	warn  in  the  same  units  as
	      $EPOCHSECONDS.  (Note this is an absolute time, not the relative
	      time passed down.)  Not set  no  WARN  keyword  and  value  were
	      matched.
       warnstr
	      The raw string matched after the WARN keyword, else unset.
       rpttime
	      Any recurrence time given by the RPT keyword as a string of dig‐
	      its containing the time of the recurrence in the same  units  as
	      $EPOCHSECONDS.   (Note this is an absolute time.)	 Not set if no
	      RPT keyword and value were matched.
       rptstr The raw string matched after the RPT keyword, else unset.
       text2  The text from the line after removal of the date	and  any  key‐
	      words and values.	 )

       calendar_showdate [ -r ] [ -f fmt ] date-spec ...
	      The  given  date-spec  is interpreted and the corresponding date
	      and time printed.	 If the initial date-spec begins with a + or -
	      it  is treated as relative to the current time; date-specs after
	      the first are treated as relative to the date calculated so  far
	      and  a  leading  + is optional in that case.  This allows one to
	      use the system  as  a  date  calculator.	 For  example,	calen‐
	      dar_showdate  '+1 month, 1st Friday' shows the date of the first
	      Friday of next month.

	      With the option -r nothing is printed but the value of the  date
	      and  time	 in seconds since the epoch is stored in the parameter
	      REPLY.

	      With the option -f fmt the given date/time conversion format  is
	      passed to strftime; see notes on the date-format style below.

	      In order to avoid ambiguity with negative relative date specifi‐
	      cations, options must occur in separate words; in	 other	words,
	      -r and -f should not be combined in the same word.

       calendar_sort
	      Sorts  the  calendar  file  into date and time order.    The old
	      calendar is left in a file with the suffix .old.

   Glob qualifiers
       The function age can be autoloaded and use separately from the calendar
       system,	although  it uses the function calendar_scandate for date for‐
       matting.	 It requires the zsh/stat builtin, which makes	available  the
       builtin stat.  This may conflict with an external programme of the same
       name; if it does, the builtin may be disabled for normal	 operation  by
       including the following code in an initialization file:

	      zmodload -i zsh/stat
	      disable stat

       age  selects  files  having a given modification time for use as a glob
       qualifier.  The format of the date is the same as  that	understood  by
       the  calendar  system,  described  in the section FILE AND DATE FORMATS
       above.

       The function can take one or  two  arguments,  which  can  be  supplied
       either directly as command or arguments, or separately as shell parame‐
       ters.

	      print *(e:age 2006/10/04 2006/10/09:)

       The example above matches all files modified between the start of those
       dates.  The second argument may alternatively be a relative time intro‐
       duced by a +:

	      print *(e:age 2006/10/04 +5d:)

       The example above is equivalent to the previous example.

       In addition to the special use of days of the week, today  and  yester‐
       day,  times with no date may be specified; these apply to today.	 Obvi‐
       ously such uses become problematic around midnight.

	      print *(e-age 12:00 13:30-)

       The example above shows files modified between 12:00 and 13:00 today.

	      print *(e:age 2006/10/04:)

       The example above matches all files modified on that date.  If the sec‐
       ond  argument  is  omitted it is taken to be exactly 24 hours after the
       first argument (even if the first argument contains a time).

	      print *(e-age 2006/10/04:10:15 2006/10/04:10:45-)

       The example above supplies times.  Note that whitespace within the time
       and  date  specification must be quoted to ensure age receives the cor‐
       rect arguments, hence the use of the additional colon to	 separate  the
       date and time.

	      AGEREF1=2006/10/04:10:15
	      AGEREF2=2006/10/04:10:45
	      print *(+age)

       This shows the same example before using another form of argument pass‐
       ing.  The dates and times in the parameters AGEREF1 and AGEREF2 stay in
       effect until unset, but will be overridden if any argument is passed as
       an explicit argument to age.  Any explicit argument causes both parame‐
       ters to be ignored.

STYLES
       The zsh style mechanism using the zstyle command is describe in zshmod‐
       ules(1).	 This is the same mechanism used in the completion system.

       The styles below are all examined in the	 context  :datetime:function:,
       for example :datetime:calendar:.

       calendar-file
	      The location of the main calendar.  The default is ~/calendar.

       date-format
	      A	 strftime  format string (see strftime(3)) with the zsh exten‐
	      sions %f for a day of the month with no leading  zero  or	 space
	      for  single  digits, and %k or %l for the hour of the day on the
	      24- or 12-hour clock, again with no leading zero	or  space  for
	      single digits.

	      This  is	used for outputting dates in calendar, both to support
	      the -v option and when adding recurring events back to the  cal‐
	      endar file, and in calendar_showdate as the final output format.

	      If  the  style is not set, the default used is similar the stan‐
	      dard system format as output by the date command (also known  as
	      `ctime format'): `%a %b %d %H:%M:%S %Z %Y'.

       done-file
	      The  location  of the file to which events which have passed are
	      appended.	 The default is the calendar file  location  with  the
	      suffix  .done.  The style may be set to an empty string in which
	      case a "done" file will not be maintained.

       reformat-date
	      Boolean, used by calendar_add.  If it is true, the date and time
	      of  new entries added to the calendar will be reformatted to the
	      format given by the style date-format or its default.  Only  the
	      date and time of the event itself is reformatted; any subsidiary
	      dates and times such as those associated with repeat and warning
	      times are left alone.

       show-prog
	      The  programme  run  by calendar for showing events.  It will be
	      passed the start time and stop time of the events	 requested  in
	      seconds  since  the epoch followed by the event text.  Note that
	      calendar -s uses a start time and stop time equal to one another
	      to indicate alerts for specific events.

	      The default is the function calendar_show.

       warn-time
	      The  time	 before an event at which a warning will be displayed,
	      if the first line of the event does not include the  text	 EVENT
	      reltime.	The default is 5 minutes.

UTILITY FUNCTIONS
       calendar_lockfiles
	      Attempt  to  lock	 the  files given in the argument.  To prevent
	      problems with network file locking this is done  in  an  ad  hoc
	      fashion by attempting to create a symbolic link to the file with
	      the name file.lockfile.  No other	 system	 level	functions  are
	      used  for locking, i.e. the file can be accessed and modified by
	      any utility that does not use this  mechanism.   In  particular,
	      the  user is not prevented from editing the calendar file at the
	      same time unless calendar_edit is used.

	      Three attempts are made to lock the file before giving  up.   If
	      the  module  zsh/zselect is available, the times of the attempts
	      are jittered so that multiple instances of the calling  function
	      are unlikely to retry at the same time.

	      The  files  locked  are  appended	 to the array lockfiles, which
	      should be local to the caller.

	      If all files were successfully locked, status zero is  returned,
	      else status one.

	      This  function  may  be used as a general file locking function,
	      although this will only work if only this mechanism is  used  to
	      lock files.

       calendar_read
	      This  is	a backend used by various other functions to parse the
	      calendar file, which is passed as the only argument.  The	 array
	      calendar_entries	is  set	 to the list of events in the file; no
	      pruning is done except that  ampersands  are  removed  from  the
	      start of the line.  Each entry may contain multiple lines.

       calendar_scandate
	      This  is a generic function to parse dates and times that may be
	      used separately from the calendar system.	  The  argument	 is  a
	      date  or time specification as described in the section FILE AND
	      DATE FORMATS above.  The parameter REPLY is set to the number of
	      seconds  since the epoch corresponding to that date or time.  By
	      default, the date and time may occur anywhere within  the	 given
	      argument.

	      Returns  status  zero  if	 the  date  and time were successfully
	      parsed, else one.

	      Options:
	      -a     The date and time are anchored to the start of the	 argu‐
		     ment;  they  will	not  be	 matched if there is preceding
		     text.

	      -A     The date and time are anchored to both the start and  end
		     of	 the  argument; they will not be matched if the is any
		     other text in the argument.

	      -d     Enable additional debugging output.

	      -m     Minus.  When -R anchor_time is also  given	 the  relative
		     time is calculated backwards from anchor_time.

	      -r     The argument passed is to be parsed as a relative time.

	      -R anchor_time
		     The  argument  passed is to be parsed as a relative time.
		     The time is relative to anchor_time, a  time  in  seconds
		     since  the	 epoch, and the returned value is the absolute
		     time corresponding to advancing anchor_time by the	 rela‐
		     tive  time	 given.	  This	allows lengths of months to be
		     correctly taken into account.  If the final day does  not
		     exist in the given month, the last day of the final month
		     is given.	For example, if the anchor time is during 31st
		     January  2007 and the relative time is 1 month, the final
		     time is the same time of day during 28th February 2007.

	      -s     In addition to setting REPLY, set REPLY2 to the remainder
		     of	 the  argument	after  the  date  and  time  have been
		     stripped.	This is empty if the option -A was given.

	      -t     Allow a time with no date	specification.	 The  date  is
		     assumed to be today.  The behaviour is unspecified if the
		     iron tongue of midnight is tolling twelve.

       calendar_show
	      The function used by default to display events.	It  accepts  a
	      start  time  and end time for events, both in epoch seconds, and
	      an event description.

	      The event is always printed to standard output.  If the  command
	      line  editor is active (which will usually be the case) the com‐
	      mand line will be redisplayed after the output.

	      If the parameter DISPLAY is set and the start and end times  are
	      the  same	 (indicating a scheduled event), the function uses the
	      command xmessage to display a window with the event details.

BUGS
       As the system is based entirely on shell functions (with a little  sup‐
       port  from  the	zsh/datetime  module)  the  mechanisms used are not as
       robust as those provided by a dedicated calendar utility.  Consequently
       the user should not rely on the shell for vital alerts.

       There is no calendar_delete function.

       There  is  no localization support for dates and times, nor any support
       for the use of time zones.

       Relative periods of months and years do not take into account the vari‐
       able number of days.

       The  calendar_show  function is currently hardwired to use xmessage for
       displaying alerts on X Window System displays.  This should be  config‐
       urable and ideally integrate better with the desktop.

       calendar_lockfiles  hangs the shell while waiting for a lock on a file.
       If called from a scheduled task, it should instead reschedule the event
       that caused it.

ZSHTCPSYS(1)							  ZSHTCPSYS(1)

NAME
       zshtcpsys - zsh tcp system

DESCRIPTION
       A  module  zsh/net/tcp  is  provided to provide network I/O over TCP/IP
       from within the shell; see its description  in  zshmodules(1)  .	  This
       manual  page  describes	a  function suite based on the module.	If the
       module is installed, the functions are usually installed	 at  the  same
       time,  in  which	 case  they  will  be available for autoloading in the
       default function search path.  In addition to the  zsh/net/tcp  module,
       the  zsh/zselect	 module	 is  used to implement timeouts on read opera‐
       tions.  For troubleshooting tips, consult the corresponding advice  for
       the zftp functions described in zshftpsys(1) .

       There  are  functions  corresponding  to the basic I/O operations open,
       close, read and send, named  tcp_open  etc.,  as	 well  as  a  function
       tcp_expect  for pattern match analysis of data read as input.  The sys‐
       tem makes it easy to receive data from and send data to multiple	 named
       sessions	 at once.  In addition, it can be linked with the shell's line
       editor in such a way that input data is automatically shown at the ter‐
       minal.	Other  facilities  available  including logging, filtering and
       configurable output prompts.

       To use the system where	it  is	available,  it	should	be  enough  to
       `autoload  -U tcp_open' and run tcp_open as documented below to start a
       session.	 The tcp_open function will autoload the remaining functions.

TCP USER FUNCTIONS
   Basic I/O
       tcp_open [-qz] host port [ sess ]
       tcp_open [-qz] [ -s sess | -l sess,... ] ...
       tcp_open [-qz] [-a fd | -f fd ] [ sess ]
	      Open a new session.  In the first and simplest form, open a  TCP
	      connection to host host at port port; numeric and symbolic forms
	      are understood for both.

	      If sess is given, this becomes the name of the session which can
	      be used to refer to multiple different TCP connections.  If sess
	      is not given, the function will  invent  a  numeric  name	 value
	      (note  this  is not the same as the file descriptor to which the
	      session is attached).  It is recommended that session names  not
	      include  `funny'	characters,  where  funny  characters  are not
	      well-defined but	certainly  do  not  include  alphanumerics  or
	      underscores, and certainly do include whitespace.

	      In  the second case, one or more sessions to be opened are given
	      by name.	A  single  session  name  is  given  after  -s	and  a
	      comma-separated  list  after -l; both options may be repeated as
	      many times as necessary.	The host and port are  read  from  the
	      file .ztcp_sessions in the same directory as the user's zsh ini‐
	      tialisation files, i.e. usually the home directory, but $ZDOTDIR
	      if  that	is set.	 The file consists of lines each giving a ses‐
	      sion name and the corresponding host and	port,  in  that	 order
	      (note  the  session  name	 comes	first, not last), separated by
	      whitespace.

	      The third form allows passive and fake TCP connections.  If  the
	      option  -a  is  used, its argument is a file descriptor open for
	      listening for connections.  No function front-end is provided to
	      open  such  a file descriptor, but a call to `ztcp -l port' will
	      create one with the file	descriptor  stored  in	the  parameter
	      $REPLY.	The listening port can be closed with `ztcp -c fd'.  A
	      call to `tcp_open -a fd' will block until a remote  TCP  connec‐
	      tion  is	made  to  port on the local machine.  At this point, a
	      session is created in the usual way  and	is  largely  indistin‐
	      guishable	 from  an  active  connection  created with one of the
	      first two forms.

	      If the option -f is used, its  argument  is  a  file  descriptor
	      which  is	 used  directly as if it were a TCP session.  How well
	      the remainder of the TCP function system copes with this depends
	      on what actually underlies this file descriptor.	A regular file
	      is likely to be unusable; a FIFO (pipe) of some sort  will  work
	      better,  but  note  that it is not a good idea for two different
	      sessions to attempt to read from the same FIFO at once.

	      If the option -q is given with any of the three forms,  tcp_open
	      will  not	 print informational messages, although it will in any
	      case exit with an appropriate status.

	      If the line editor (zle) is in use, which is typically the  case
	      if  the shell is interactive, tcp_open installs a handler inside
	      zle which will check for new data at the same time as it	checks
	      for keyboard input.  This is convenient as the shell consumes no
	      CPU time while waiting; the test is performed by	the  operating
	      system.	Giving	the  option -z to any of the forms of tcp_open
	      prevents the handler from being installed, so data must be  read
	      explicitly.   Note, however, this is not necessary for executing
	      complete sets of send and read commands from a function, as  zle
	      is not active at this point.  Generally speaking, the handler is
	      only active when the shell is waiting for	 input	at  a  command
	      prompt or in the vared builtin.  The option has no effect if zle
	      is not active; `[[ -o zle]]' will test for this.

	      The first session to be opened becomes the current  session  and
	      subsequent calls to tcp_open do not change it.  The current ses‐
	      sion is stored in the parameter $TCP_SESS; see  below  for  more
	      detail about the parameters used by the system.

       tcp_close [-qn] [ -a | -l sess,... | sess ... ]
	      Close  the  named	 sessions,  or	the current session if none is
	      given, or all open sessions if -a is given.  The options -l  and
	      -s  are both handled for consistency with tcp_open, although the
	      latter is redundant.

	      If the session being closed is the  current  one,	 $TCP_SESS  is
	      unset,  leaving no current session, even if there are other ses‐
	      sions still open.

	      If the session was opened with tcp_open -f, the file  descriptor
	      is  closed  so  long  as	it  is	in the range 0 to 9 accessible
	      directly from the command line.  If the option -n is  given,  no
	      attempt  will  be	 made  to close file descriptors in this case.
	      The -n option is not used for genuine  ztcp  session;  the  file
	      descriptors are always closed with the session.

	      If  the  option  -q  is given, no informational messages will be
	      printed.

       tcp_read [-bdq] [ -t TO ] [ -T TO ]
	   [ -a | -u fd ... | -l sess,... | -s sess ...]
	      Perform a read operation on the current session, or on a list of
	      sessions	if  any	 are given with -u, -l or -s, or all open ses‐
	      sions if the option -a is given.	 Any  of  the  -u,  -l	or  -s
	      options may be repeated or mixed together.  The -u option speci‐
	      fies a file descriptor directly (only those managed by this sys‐
	      tem are useful), the other two specify sessions as described for
	      tcp_open above.

	      The function checks for new data available on all	 the  sessions
	      listed.	Unless the -b option is given, it will not block wait‐
	      ing for new data.	 Any one line of data from any of  the	avail‐
	      able  sessions  will be read, stored in the parameter $TCP_LINE,
	      and displayed to standard output unless $TCP_SILENT  contains  a
	      non-empty	 string.   When	 printed to standard output the string
	      $TCP_PROMPT will be shown at the start of the line; the  default
	      form  for this includes the name of the session being read.  See
	      below for more information on these parameters.  In  this	 mode,
	      tcp_read	can  be	 called	 repeatedly  until it returns status 2
	      which indicates all pending input from  all  specified  sessions
	      has been handled.

	      With the option -b, equivalent to an infinite timeout, the func‐
	      tion will block until a line is available to read	 from  one  of
	      the   specified  sessions.   However,  only  a  single  line  is
	      returned.

	      The option  -d  indicates	 that  all  pending  input  should  be
	      drained.	 In  this  case tcp_read may process multiple lines in
	      the manner given above; only the last is	stored	in  $TCP_LINE,
	      but the complete set is stored in the array $tcp_lines.  This is
	      cleared at the start of each call to tcp_read.

	      The options -t and -T specify a timeout in seconds, which may be
	      a	 floating  point  number  for increased accuracy.  With -t the
	      timeout is applied before each line read.	 With -T, the  timeout
	      applies  to  the	overall operation, possibly including multiple
	      read operations if  the  option  -d  is  present;	 without  this
	      option, there is no distinction between -t and -T.

	      The  function  does not print informational messages, but if the
	      option -q is given, no error message is printed for a  non-exis‐
	      tent session.

	      A	 return	 status	 of  2 indicates a timeout or no data to read.
	      Any other non-zero return status indicates some error condition.

	      See tcp_log for how to control where data is sent by tcp_read.

       tcp_send [-cnq] [ -s sess | -l sess,... ] data ...
       tcp_send [-cnq] -a data ...
	      Send the supplied data strings to all the specified sessions  in
	      turn.  The underlying operation differs little from a `print -r'
	      to the session's file descriptor, although it attempts  to  pre‐
	      vent  the	 shell	from  dying  owing  to	a SIGPIPE caused by an
	      attempt to write to a defunct session.

	      The option -c causes tcp_send to	behave	like  cat.   It	 reads
	      lines  from  standard input until end of input and sends them in
	      turn to the specified session(s) exactly as if they  were	 given
	      as data arguments to individual tcp_send commands.

	      The  option  -n  prevents tcp_send from putting a newline at the
	      end of the data strings.

	      The remaining options all behave as for tcp_read.

	      The data arguments are not further processed once they have been
	      passed to tcp_send; they are simply passed down to print -r.

	      If  the  parameter $TCP_OUTPUT is a non-empty string and logging
	      is enabled then the data sent to each session will be echoed  to
	      the  log	file(s)	 with  $TCP_OUTPUT in front where appropriate,
	      much in the manner of $TCP_PROMPT.

   Session Management
       tcp_alias [-q] alias=sess ...
       tcp_alias [-q] [ alias ] ...
       tcp_alias -d [-q] alias ...
	      This function is not particularly well tested.

	      The first form creates an alias for a session  name;  alias  can
	      then  be	used  to  refer to the existing session sess.  As many
	      aliases may be listed as required.

	      The second form lists any aliases specified, or all  aliases  if
	      none.

	      The  third  form deletes all the aliases listed.	The underlying
	      sessions are not affected.

	      The option -q suppresses	an  inconsistently  chosen  subset  of
	      error messages.

       tcp_log [-asc] [ -n | -N ] [ logfile ]
	      With an argument logfile, all future input from tcp_read will be
	      logged to the named file.	 Unless -a  (append)  is  given,  this
	      file  will  first	 be truncated or created empty.	 With no argu‐
	      ments, show the current status of logging.

	      With the option -s, per-session logging is enabled.  Input  from
	      tcp_read	is output to the file logfile.sess.  As the session is
	      automatically discriminated by the filename,  the	 contents  are
	      raw   (no	 $TCP_PROMPT).	 The  option   -a  applies  as	above.
	      Per-session logging and logging of all data in one file are  not
	      mutually exclusive.

	      The  option -c closes all logging, both complete and per-session
	      logs.

	      The options -n and -N respectively turn off or restore output of
	      data  read  by  tcp_read to standard output; hence `tcp_log -cn'
	      turns off all output by tcp_read.

	      The function is purely a convenient front	 end  to  setting  the
	      parameters   $TCP_LOG,  $TCP_LOG_SESS,  $TCP_SILENT,  which  are
	      described below.

       tcp_rename old new
	      Rename session  old  to  session	new.   The  old	 name  becomes
	      invalid.

       tcp_sess [ sess [ command  ... ] ]
	      With  no	arguments,  list  all the open sessions and associated
	      file descriptors.	 The current session is marked	with  a	 star.
	      For   use	  in   functions,  direct  access  to  the  parameters
	      $tcp_by_name, $tcp_by_fd and $TCP_SESS is probably  more	conve‐
	      nient; see below.

	      With  a sess argument, set the current session to sess.  This is
	      equivalent to changing $TCP_SESS directly.

	      With additional arguments, temporarily set the  current  session
	      while  executing	the string command ....	 The first argument is
	      re-evaluated so as to expand aliases  etc.,  but	the  remaining
	      arguments	 are  passed  through  as the appear to tcp_sess.  The
	      original session is restored when tcp_sess exits.

   Advanced I/O
       tcp_command send-options ... send-arguments ...
	      This is a convenient front-end to tcp_send.  All	arguments  are
	      passed  to  tcp_send, then the function pauses waiting for data.
	      While data is arriving at least every $TCP_TIMEOUT (default 0.3)
	      seconds,	data  is handled and printed out according to the cur‐
	      rent settings.  Status 0 is always returned.

	      This is generally only useful for interactive  use,  to  prevent
	      the display becoming fragmented by output returned from the con‐
	      nection.	Within a programme or function it is generally	better
	      to handle reading data by a more explicit method.

       tcp_expect [ -q ] [ -p var ] [ -t  to | -T TO]
	   [ -a | -s sess ... | -l sess,... ] pattern ...
	      Wait  for	 input	matching any of the given patterns from any of
	      the specified sessions.  Input is ignored until  an  input  line
	      matches  one of the given patterns; at this point status zero is
	      returned, the matching line is stored in $TCP_LINE, and the full
	      set of lines read during the call to tcp_expect is stored in the
	      array $tcp_expect_lines.

	      Sessions are specified in the same way as tcp_read: the  default
	      is  to use the current session, otherwise the sessions specified
	      by -a, -s, or -l are used.

	      Each pattern is a standard zsh extended-globbing	pattern;  note
	      that  it	needs  to be quoted to avoid it being expanded immedi‐
	      ately by filename generation.  It must match the full  line,  so
	      to  match	 a substring there must be a `*' at the start and end.
	      The line matched	against	 includes  the	$TCP_PROMPT  added  by
	      tcp_read.	  It is possible to include the globbing flags `#b' or
	      `#m' in the patterns to make  backreferences  available  in  the
	      parameters  $MATCH,  $match,  etc., as described in the base zsh
	      documentation on pattern matching.

	      Unlike tcp_read, the default behaviour of tcp_expect is to block
	      indefinitely  until  the	required  input is found.  This can be
	      modified by specifying a timeout with -t or -T;  these  function
	      as  in  tcp_read,	 specifying  a	per-read  or  overall timeout,
	      respectively, in seconds, as an integer or  floating-point  num‐
	      ber.   As	 tcp_read,  the function returns status 2 if a timeout
	      occurs.

	      The function returns as soon as any one of  the  patterns	 given
	      match.   If  the	caller	needs  to  know	 which of the patterns
	      matched, the option -p var can be used; on return, $var  is  set
	      to  the  number of the pattern using ordinary zsh indexing, i.e.
	      the first is 1, and so on.  Note the absence of a `$'  in	 front
	      of  var.	 To  avoid  clashes,  the  parameter cannot begin with
	      `_expect'.

	      The option -q is passed directly down to tcp_read.

	      As all input is done via tcp_read, all  the  usual  rules	 about
	      output of lines read apply.  One exception is that the parameter
	      $tcp_lines will  only  reflect  the  line	 actually  matched  by
	      tcp_expect; use $tcp_expect_lines for the full set of lines read
	      during the function call.

       tcp_proxy
	      This is a simple-minded function to accept a TCP connection  and
	      execute  a  command  with	 I/O  redirected  to  the  connection.
	      Extreme caution should be taken as there is no security  whatso‐
	      ever  and	 this can leave your computer open to the world.  Ide‐
	      ally, it should only be used behind a firewall.

	      The first argument is a TCP port on which the function will lis‐
	      ten.

	      The remaining arguments give a command and its arguments to exe‐
	      cute with standard input, standard  output  and  standard	 error
	      redirected  to  the file descriptor on which the TCP session has
	      been accepted.  If no command is given, a new  zsh  is  started.
	      This  gives  everyone  on	 your  network	direct	access to your
	      account, which in many cases will be a bad thing.

	      The command is run in the	 background,  so  tcp_proxy  can  then
	      accept  new connections.	It continues to accept new connections
	      until interrupted.

       tcp_spam [-ertv] [ -a | -s  sess | -l sess,... ] cmd ...
	      Execute `cmd ...' for each session in turn.  Note this  executes
	      the  command and arguments; it does not send the command line as
	      data unless the -t (transmit) option is given.

	      The sessions may be selected explicitly with the standard -a, -s
	      or  -l  options,	or  may	 be chosen implicitly.	If none of the
	      three options is given  the  rules  are:	first,	if  the	 array
	      $tcp_spam_list  is  set,	this is taken as the list of sessions,
	      otherwise all sessions are taken.	 Second, any sessions given in
	      the  array  $tcp_no_spam_list  are removed from the list of ses‐
	      sions.

	      Normally, any sessions added by the `-a' flag or when  all  ses‐
	      sions  are  chosen  implicitly  are spammed in alphabetic order;
	      sessions given by the $tcp_spam_list array  or  on  the  command
	      line  are	 spammed in the order given.  The -r flag reverses the
	      order however it was arrived it.

	      The -v flag specifies that a $TCP_PROMPT will be	output	before
	      each session.  This is output after any modification to TCP_SESS
	      by  the  user-defined  tcp_on_spam  function  described	below.
	      (Obviously that function is able to generate its own output.)

	      If  the  option -e is present, the line given as cmd ... is exe‐
	      cuted using eval, otherwise it is executed without  any  further
	      processing.

       tcp_talk
	      This  is	a  fairly  simple-minded attempt to force input to the
	      line editor to go straight to the default TCP_SESSION.

	      An escape string, $TCP_TALK_ESCAPE,  default  `:',  is  used  to
	      allow  access to normal shell operation.	If it is on its own at
	      the start of the line, or followed only by whitespace, the  line
	      editor  returns  to normal operation.  Otherwise, the string and
	      any following whitespace are skipped and the  remainder  of  the
	      line executed as shell input without any change of the line edi‐
	      tor's operating mode.

	      The current implementation is somewhat deficient in terms of use
	      of the command history.  For this reason, many users will prefer
	      to use some form of alternative approach for sending data easily
	      to  the  current	session.  One simple approach is to alias some
	      special character (such as `%') to `tcp_command --'.

       tcp_wait
	      The sole argument is an integer or floating point	 number	 which
	      gives  the seconds to delay.  The shell will do nothing for that
	      period except wait for input on  all  TCP	 sessions  by  calling
	      tcp_read	-a.   This  is similar to the interactive behaviour at
	      the command prompt when zle handlers are installed.

   `One-shot' file transfer
       tcp_point port
       tcp_shoot host port
	      This pair of functions provide a simple way to transfer  a  file
	      between  two  hosts  within the shell.  Note, however, that bulk
	      data transfer is currently done using cat.  tcp_point reads  any
	      data arriving at port and sends it to standard output; tcp_shoot
	      connects to port on host and  sends  its	standard  input.   Any
	      unused  port  may	 be used; the standard mechanism for picking a
	      port is to think of a random four-digit number above 1024	 until
	      one works.

	      To  transfer  a  file  from  host	 woodcock to host springes, on
	      springes:

		     tcp_point 8091 >output_file

	      and on woodcock:

		     tcp_shoot springes 8091 <input_file

	      As these two functions do not require tcp_open to set up	a  TCP
	      connection first, they may need to be autoloaded separately.

TCP USER-DEFINED FUNCTIONS
       Certain	functions, if defined by the user, will be called by the func‐
       tion system in certain contexts.	 This facility depends on  the	module
       zsh/parameter,  which is usually available in interactive shells as the
       completion system depends  on  it.   None  of  the  functions  need  be
       defined; they simply provide convenient hooks when necessary.

       Typically,  these are called after the requested action has been taken,
       so that the various parameters will reflect the new state.

       tcp_on_alias alias fd
	      When an alias is defined, this function will be called with  two
	      arguments: the name of the alias, and the file descriptor of the
	      corresponding session.

       tcp_on_close sess fd
	      This is called with the name of a session being closed  and  the
	      file  descriptor	which corresponded to that session.  Both will
	      be invalid by the time the function is called.

       tcp_on_open sess fd
	      This is called after a new session has  been  defined  with  the
	      session name and file descriptor as arguments.

       tcp_on_rename oldsess fd newsess
	      This  is	called after a session has been renamed with the three
	      arguments old session name, file descriptor, new session name.

       tcp_on_spam sess command ...
	      This is called once for each session spammed, just before a com‐
	      mand  is	executed for a session by tcp_spam.  The arguments are
	      the session name followed by the command list  to	 be  executed.
	      If  tcp_spam  was	 called	 with the option -t, the first command
	      will be tcp_send.

	      This function is called after $TCP_SESS is set  to  reflect  the
	      session  to be spammed, but before any use of it is made.	 Hence
	      it is possible to alter the value of $TCP_SESS within this func‐
	      tion.   For  example,  the  session  arguments to tcp_spam could
	      include extra information to be stripped off  and	 processed  in
	      tcp_on_spam.

	      If the function sets the parameter $REPLY to `done', the command
	      line is not executed; in addition, no prompt is printed for  the
	      -v option to tcp_spam.

       tcp_on_unalias alias fd
	      This  is	called with the name of an alias and the corresponding
	      session's file descriptor after an alias has been deleted.

TCP UTILITY FUNCTIONS
       The following functions are used by the TCP function  system  but  will
       rarely if ever need to be called directly.

       tcp_fd_handler
	      This  is	the  function installed by tcp_open for handling input
	      from within the line editor, if that is required.	 It is in  the
	      format documented for the builtin `zle -F' in zshzle(1) .

	      While active, the function sets the parameter TCP_HANDLER_ACTIVE
	      to 1.  This allows shell code called internally (for example, by
	      setting  tcp_on_read)  to tell if is being called when the shell
	      is otherwise idle at the editor prompt.

       tcp_output [ -q ] -P prompt -F fd -S sess
	      This function is used for both logging and  handling  output  to
	      standard	output,	 from  within  tcp_read and (if $TCP_OUTPUT is
	      set) tcp_send.

	      The prompt to use is specified by -P; the default is  the	 empty
	      string.  It can contain:
	      %c     Expands  to 1 if the session is the current session, oth‐
		     erwise  0.	  Used	with  ternary  expressions   such   as
		     `%(c.-.+)'	 to output `+' for the current session and `-'
		     otherwise.

	      %f     Replaced by the session's file descriptor.

	      %s     Replaced by the session name.

	      %%     Replaced by a single `%'.

	      The option -q suppresses output to standard output, but  not  to
	      any log files which are configured.

	      The  -S  and -F options are used to pass in the session name and
	      file descriptor for possible replacement in the prompt.

TCP USER PARAMETERS
       Parameters follow the usual  convention	that  uppercase	 is  used  for
       scalars	and  integers, while lowercase is used for normal and associa‐
       tive array.  It is always safe for user code to read these  parameters.
       Some  parameters	 may  also be set; these are noted explicitly.	Others
       are included in this group as they are set by the function  system  for
       the  user's  benefit,  i.e. setting them is typically not useful but is
       benign.

       It is often also useful to make settable parameters local  to  a	 func‐
       tion.   For example, `local TCP_SILENT=1' specifies that data read dur‐
       ing the function call will not be printed to standard  output,  regard‐
       less   of   the	 setting   outside  the	 function.   Likewise,	`local
       TCP_SESS=sess' sets a session for  the  duration	 of  a	function,  and
       `local  TCP_PROMPT='  specifies that no prompt is used for input during
       the function.

       tcp_expect_lines
	      Array.   The  set	 of  lines  read  during  the  last  call   to
	      tcp_expect, including the last ($TCP_LINE).

       tcp_filter
	      Array. May be set directly.  A set of extended globbing patterns
	      which, if matched in tcp_output, will cause the line not	to  be
	      printed  to  standard output.  The patterns should be defined as
	      described for the arguments to tcp_expect.  Output  of  line  to
	      log files is not affected.

       TCP_HANDLER_ACTIVE
	      Scalar.  Set to 1 within tcp_fd_handler to indicate to functions
	      called recursively that they have been called during  an	editor
	      session.	Otherwise unset.

       TCP_LINE
	      The last line read by tcp_read, and hence also tcp_expect.

       TCP_LINE_FD
	      The   file   descriptor	from   which   $TCP_LINE   was	 read.
	      ${tcp_by_fd[$TCP_LINE_FD]} will give the	corresponding  session
	      name.

       tcp_lines
	      Array.  The  set of lines read during the last call to tcp_read,
	      including the last ($TCP_LINE).

       TCP_LOG
	      May be set directly, although it is also controlled by  tcp_log.
	      The  name	 of  a	file to which output from all sessions will be
	      sent.  The output is proceeded by the usual $TCP_PROMPT.	If  it
	      is  not an absolute path name, it will follow the user's current
	      directory.

       TCP_LOG_SESS
	      May be set directly, although it is also controlled by  tcp_log.
	      The  prefix for a set of files to which output from each session
	      separately   will	  be	sent;	 the	full	filename    is
	      ${TCP_LOG_SESS}.sess.   Output to each file is raw; no prompt is
	      added.  If it is not an absolute path name, it will  follow  the
	      user's current directory.

       tcp_no_spam_list
	      Array.  May be set directly.  See tcp_spam for how this is used.

       TCP_OUTPUT
	      May  be set directly.  If a non-empty string, any data sent to a
	      session by tcp_send will be logged.  This	 parameter  gives  the
	      prompt  to  be used in a file specified by $TCP_LOG but not in a
	      file generated from $TCP_LOG_SESS.  The prompt  string  has  the
	      same format as TCP_PROMPT and the same rules for its use apply.

       TCP_PROMPT
	      May  be  set  directly.	Used  as  the  prefix for data read by
	      tcp_read which is printed to standard output or to the log  file
	      given  by $TCP_LOG, if any.  Any `%s', `%f' or `%%' occurring in
	      the string will be replaced by the name of the session, the ses‐
	      sion's  underlying  file	descriptor,  or	 a single `%', respec‐
	      tively.  The expression `%c' expands to 1 if the	session	 being
	      read  is	the  current  session,	else 0; this is most useful in
	      ternary expressions such as `%(c.-.+)' which outputs `+' if  the
	      session is the current one, else `-'.

       TCP_READ_DEBUG
	      May be set directly.  If this has non-zero length, tcp_read will
	      give some limited diagnostics about data being read.

       TCP_SECONDS_START
	      This value is created and initialised to zero by tcp_open.

	      The functions tcp_read and tcp_expect use	 the  shell's  SECONDS
	      parameter	 for  their own timing purposes.  If that parameter is
	      not of floating point type on entry to one of the functions,  it
	      will  create  a  local parameter SECONDS which is floating point
	      and set the parameter TCP_SECONDS_START to the previous value of
	      $SECONDS.	  If  the  parameter  is already floating point, it is
	      used without a local copy being created and TCP_SECONDS_START is
	      not set.	As the global value is zero, the shell elapsed time is
	      guaranteed to be the sum of $SECONDS and $TCP_SECONDS_START.

	      This can be avoided by setting SECONDS globally  to  a  floating
	      point  value  using `typeset -F SECONDS'; then the TCP functions
	      will never make a local copy and never set TCP_SECONDS_START  to
	      a non-zero value.

       TCP_SESS
	      May  be set directly.  The current session; must refer to one of
	      the sessions established by tcp_open.

       TCP_SILENT
	      May be set directly, although it is also controlled by  tcp_log.
	      If of non-zero length, data read by tcp_read will not be written
	      to standard output, though may still be written to a log file.

       tcp_spam_list
	      Array.  May be set directly.  See the description of  the	 func‐
	      tion tcp_spam for how this is used.

       TCP_TALK_ESCAPE
	      May  be  set  directly.	See  the  description  of the function
	      tcp_talk for how this is used.

       TCP_TIMEOUT
	      May be set directly.  Currently this is only used by  the	 func‐
	      tion tcp_command, see above.

TCP USER-DEFINED PARAMETERS
       The following parameters are not set by the function system, but have a
       special effect if set by the user.

       tcp_on_read
	      This should be an associative array; if it is not, the behaviour
	      is undefined.  Each key is the name of a shell function or other
	      command, and the corresponding value is a shell  pattern	(using
	      EXTENDED_GLOB).	Every line read from a TCP session directly or
	      indirectly  using	 tcp_read  (which  includes  lines   read   by
	      tcp_expect)  is  compared	 against  the  pattern.	  If  the line
	      matches, the command given in the key is called with  two	 argu‐
	      ments: the name of the session from which the line was read, and
	      the line itself.

	      If any function called to handle a line returns a non-zero  sta‐
	      tus,  the	 line  is not output.  Thus a tcp_on_read handler con‐
	      taining only the instruction `return 1' can be used to  suppress
	      output  of  particular  lines  (see, however, tcp_filter above).
	      However, the line is still stored	 in  TCP_LINE  and  tcp_lines;
	      this occurs after all tcp_on_read processing.

TCP UTILITY PARAMETERS
       These  parameters  are  controlled  by the function system; they may be
       read directly, but should not usually be set by user code.

       tcp_aliases
	      Associative array.  The keys are the names  of  sessions	estab‐
	      lished  with  tcp_open;  each value is a space-separated list of
	      aliases which refer to that session.

       tcp_by_fd
	      Associative array.  The keys are session file descriptors;  each
	      value is the name of that session.

       tcp_by_name
	      Associative  array.   The	 keys  are the names of sessions; each
	      value is the file descriptor associated with that session.

TCP EXAMPLES
       Here is a trivial example using a remote calculator.

       TO create a calculator server on port 7337 (see the dc manual page  for
       quite how infuriating the underlying command is):

	      tcp_proxy 7337 dc

       To connect to this from the same host with a session also named `dc':

	      tcp_open localhost 7337 dc

       To send a command to the remote session and wait a short while for out‐
       put (assuming dc is the current session):

	      tcp_command 2 4 + p

       To close the session:

	      tcp_close

       The tcp_proxy needs to be killed to be stopped.	 Note  this  will  not
       usually kill any connections which have already been accepted, and also
       that the port is not immediately available for reuse.

       The following chunk of code puts a  list	 of  sessions  into  an	 xterm
       header, with the current session followed by a star.

	      print -n "\033]2;TCP:" ${(k)tcp_by_name:/$TCP_SESS/$TCP_SESS\*} "\a"

TCP BUGS
       The  function  tcp_read	uses the shell's normal read builtin.  As this
       reads a complete line at once, data arriving without a terminating new‐
       line can cause the function to block indefinitely.

       Though  the  function suite works well for interactive use and for data
       arriving in small amounts, the performance when large amounts  of  data
       are being exchanged is likely to be extremely poor.

ZSHZFTPSYS(1)							 ZSHZFTPSYS(1)

NAME
       zshzftpsys - zftp function front-end

DESCRIPTION
       This describes the set of shell functions supplied with the source dis‐
       tribution as an interface to the zftp builtin command, allowing you  to
       perform	FTP operations from the shell command line or within functions
       or scripts.  The interface is similar to a traditional FTP client (e.g.
       the  ftp command itself, see ftp(1)), but as it is entirely done within
       the shell all the familiar completion, editing and  globbing  features,
       and  so on, are present, and macros are particularly simple to write as
       they are just ordinary shell functions.

       The prerequisite is that the zftp  command,  as	described  in  zshmod‐
       ules(1)	,  must	 be  available in the version of zsh installed at your
       site.  If the shell is configured to load new commands at run time,  it
       probably	 is:  typing  `zmodload zsh/zftp' will make sure (if that runs
       silently, it has worked).  If this is not the case, it is possible zftp
       was  linked  into the shell anyway: to test this, type `which zftp' and
       if zftp is available you will get the  message  `zftp:  shell  built-in
       command'.

       Commands	 given	directly with zftp builtin may be interspersed between
       the functions in this suite; in a few cases, using  zftp	 directly  may
       cause  some  of	the  status  information stored in shell parameters to
       become invalid.	Note in particular the description  of	the  variables
       $ZFTP_TMOUT, $ZFTP_PREFS and $ZFTP_VERBOSE for zftp.

INSTALLATION
       You  should  make sure all the functions from the Functions/Zftp direc‐
       tory of the source distribution are available; they all begin with  the
       two letters `zf'.  They may already have been installed on your system;
       otherwise, you will need to find them and  copy	them.	The  directory
       should  appear  as one of the elements of the $fpath array (this should
       already be the case if they were installed), and at least the  function
       zfinit  should  be  autoloaded; it will autoload the rest.  Finally, to
       initialize the use of the system you need to call the zfinit  function.
       The  following  code  in	 your .zshrc will arrange for this; assume the
       functions are stored in the directory ~/myfns:

	      fpath=(~/myfns $fpath)
	      autoload -U zfinit
	      zfinit

       Note that zfinit assumes you are using the zmodload method to load  the
       zftp  command.  If it is already built into the shell, change zfinit to
       zfinit -n.  It is helpful (though not essential) if the call to	zfinit
       appears	after  any  code to initialize the new completion system, else
       unnecessary compctl commands will be given.

FUNCTIONS
       The sequence of operations in performing a file transfer is essentially
       the  same  as that in a standard FTP client.  Note that, due to a quirk
       of the shell's getopts builtin, for those functions that handle options
       you must use `--' rather than `-' to ensure the remaining arguments are
       treated literally (a single `-' is treated as an argument).

   Opening a connection
       zfparams [ host [ user [ password ... ] ] ]
	      Set or show the parameters for a future  zfopen  with  no	 argu‐
	      ments.   If  no  arguments are given, the current parameters are
	      displayed (the password will be shown as a line  of  asterisks).
	      If a host is given, and either the user or password is not, they
	      will be prompted for; also, any parameter given as `?'  will  be
	      prompted	for, and if the `?' is followed by a string, that will
	      be used as the prompt.  As zfopen calls zfparams	to  store  the
	      parameters, this usually need not be called directly.

	      A	 single	 argument `-' will delete the stored parameters.  This
	      will also cause the memory of the last directory (and so on)  on
	      the other host to be deleted.

       zfopen [ -1 ] [ host [ user [ password [ account ] ] ] ]
	      If  host	is present, open a connection to that host under user‐
	      name user with password password (and,  on  the  rare  occasions
	      when  it is necessary, account account).	If a necessary parame‐
	      ter is missing or given as `?' it will be prompted for.  If host
	      is not present, use a previously stored set of parameters.

	      If  the  command	was successful, and the terminal is compatible
	      with xterm or is sun-cmd, a summary will	appear	in  the	 title
	      bar,  giving the local host:directory and the remote host:direc‐
	      tory; this is handled  by	 the  function	zftp_chpwd,  described
	      below.

	      Normally,	 the  host,  user and password are internally recorded
	      for later re-opening, either by a zfopen with no	arguments,  or
	      automatically (see below).  With the option `-1', no information
	      is stored.  Also, if an open command with arguments failed,  the
	      parameters  will	not  be	 retained (and any previous parameters
	      will also be deleted).  A zfopen on its own,  or	a  zfopen  -1,
	      never alters the stored parameters.

	      Both zfopen and zfanon (but not zfparams) understand URLs of the
	      form ftp://host/path... as meaning to connect to the host,  then
	      change  directory	 to  path  (which  must	 be a directory, not a
	      file).  The `ftp://' can be omitted; the trailing `/' is	enough
	      to  trigger  recognition	of the path.  Note prefixes other than
	      `ftp:' are not recognized, and that  all	characters  after  the
	      first slash beyond host are significant in path.

       zfanon [ -1 ] host
	      Open  a connection host for anonymous FTP.  The username used is
	      `anonymous'.  The password (which will  be  reported  the	 first
	      time)  is	 generated  as	user@host;  this is then stored in the
	      shell parameter $EMAIL_ADDR which can alternatively be set manu‐
	      ally to a suitable string.

   Directory management
       zfcd [ dir ]
       zfcd -
       zfcd old new
	      Change  the  current  directory  on  the remote server:  this is
	      implemented to have many of the features of  the	shell  builtin
	      cd.

	      In the first form with dir present, change to the directory dir.
	      The command `zfcd ..' is treated specially, so is guaranteed  to
	      work  on	non-UNIX  servers  (note this is handled internally by
	      zftp).  If dir is omitted, has the effect of `zfcd ~'.

	      The second form changes to the directory previously current.

	      The third form attempts  to  change  the	current	 directory  by
	      replacing the first occurrence of the string old with the string
	      new in the current directory.

	      Note that in this command, and indeed anywhere a remote filename
	      is  expected,  the string which on the local host corresponds to
	      `~' is converted back to a `~' before being passed to the remote
	      machine.	 This  is  convenient  because of the way expansion is
	      performed on the command line before  zfcd  receives  a  string.
	      For  example,  suppose  the  command is `zfcd ~/foo'.  The shell
	      will   expand   this   to	  a   full   path   such   as	 `zfcd
	      /home/user2/pws/foo'.   At  this stage, zfcd recognises the ini‐
	      tial path as corresponding to `~' and will send the directory to
	      the  remote  host	 as ~/foo, so that the `~' will be expanded by
	      the server to the correct remote host  directory.	  Other	 named
	      directories of the form `~name' are not treated in this fashion.

       zfhere Change  directory	 on the remote server to the one corresponding
	      to the current local directory, with special handling of `~'  as
	      in  zfcd.	  For  example,	 if  the  current  local  directory is
	      ~/foo/bar, then zfhere performs the effect of `zfcd ~/foo/bar'.

       zfdir [ -rfd ] [ - ] [ dir-options ] [ dir ]
	      Produce a long directory listing.	 The arguments dir-options and
	      dir are passed directly to the server and their effect is imple‐
	      mentation dependent, but specifying a particular	remote	direc‐
	      tory  dir	 is  usually possible.	The output is passed through a
	      pager given by the environment variable  $PAGER,	or  `more'  if
	      that is not set.

	      The directory is usually cached for re-use.  In fact, two caches
	      are maintained.  One is for use when there is no dir-options  or
	      dir,  i.e. a full listing of the current remote directory; it is
	      flushed when the current remote directory changes.  The other is
	      kept  for	 repeated  use	of  zfdir with the same arguments; for
	      example, repeated use of `zfdir /pub/gnu' will only require  the
	      directory	 to  be	 retrieved  on the first call.	Alternatively,
	      this cache can be re-viewed with the  -r	option.	  As  relative
	      directories  will	 confuse  zfdir,  the -f option can be used to
	      force the cache to be flushed before the	directory  is  listed.
	      The  option  -d will delete both caches without showing a direc‐
	      tory listing; it will also delete the cache of file names in the
	      current remote directory, if any.

       zfls [ ls-options ] [ dir ]
	      List  files  on the remote server.  With no arguments, this will
	      produce a simple list of	file  names  for  the  current	remote
	      directory.  Any arguments are passed directly to the server.  No
	      pager and no caching is used.

   Status commands
       zftype [ type ]
	      With no arguments, show the type of data to be transferred, usu‐
	      ally  ASCII  or  binary.	With an argument, change the type: the
	      types `A' or `ASCII' for ASCII data and `B' or `BINARY', `I'  or
	      `IMAGE' for binary data are understood case-insensitively.

       zfstat [ -v ]
	      Show  the	 status	 of the current or last connection, as well as
	      the status of some of zftp's  status  variables.	 With  the  -v
	      option,  a  more	verbose	 listing  is  produced by querying the
	      server for its version of events, too.

   Retrieving files
       The commands for retrieving files all take at  least  two  options.  -G
       suppresses remote filename expansion which would otherwise be performed
       (see below for a more detailed description of that).   -t  attempts  to
       set the modification time of the local file to that of the remote file:
       this requires version 5 of perl, see the description  of	 the  function
       zfrtime below for more information.

       zfget [ -Gtc ] file1 ...
	      Retrieve	all  the listed files file1 ... one at a time from the
	      remote server.  If a file contains  a  `/',  the	full  name  is
	      passed  to  the  remote  server,	but the file is stored locally
	      under the name given by the  part	 after	the  final  `/'.   The
	      option  -c  (cat) forces all files to be sent as a single stream
	      to standard output; in this case the -t option has no effect.

       zfuget [ -Gvst ] file1 ...
	      As zfget, but only retrieve  files  where	 the  version  on  the
	      remote server is newer (has a later modification time), or where
	      the local file does not exist.  If the remote file is older  but
	      the files have different sizes, or if the sizes are the same but
	      the remote file is newer, the  user  will	 usually  be  queried.
	      With  the	 option	 -s, the command runs silently and will always
	      retrieve the file in either of those two cases.  With the option
	      -v, the command prints more information about the files while it
	      is working out whether or not to transfer them.

       zfcget [ -Gt ] file1 ...
	      As zfget, but if any of the local files exists, and  is  shorter
	      than  the corresponding remote file, the command assumes that it
	      is the result of a partially completed transfer and attempts  to
	      transfer the rest of the file.  This is useful on a poor connec‐
	      tion which keeps failing.

	      Note that this requires a commonly  implemented,	but  non-stan‐
	      dard,  version of the FTP protocol, so is not guaranteed to work
	      on all servers.

       zfgcp [ -Gt ] remote-file local-file
       zfgcp [ -Gt ] rfile1 ... ldir
	      This retrieves files  from  the  remote  server  with  arguments
	      behaving similarly to the cp command.

	      In the first form, copy remote-file from the server to the local
	      file local-file.

	      In the second form, copy all the remote files  rfile1  ...  into
	      the  local  directory  ldir  retaining the same basenames.  This
	      assumes UNIX directory semantics.

   Sending files
       zfput [ -r ] file1 ...
	      Send all the file1 ... given separately to  the  remote  server.
	      If  a filename contains a `/', the full filename is used locally
	      to find the file, but only the basename is used for  the	remote
	      file name.

	      With the option -r, if any of the files are directories they are
	      sent recursively with all their subdirectories, including	 files
	      beginning	 with  `.'.   This  requires  that  the remote machine
	      understand UNIX file semantics, since `/' is used as a directory
	      separator.

       zfuput [ -vs ] file1 ...
	      As  zfput,  but only send files which are newer than their local
	      equivalents, or if the remote file does not exist.  The logic is
	      the  same	 as  for zfuget, but reversed between local and remote
	      files.

       zfcput file1 ...
	      As zfput, but if any remote file already exists and  is  shorter
	      than  the local equivalent, assume it is the result of an incom‐
	      plete transfer and send the rest of the file to  append  to  the
	      existing	part.	As the FTP append command is part of the stan‐
	      dard set, this is in principle more likely to work than zfcget.

       zfpcp local-file remote-file
       zfpcp lfile1 ... rdir
	      This sends files to the remote server  with  arguments  behaving
	      similarly to the cp command.

	      With   two   arguments,	copy   local-file  to  the  server  as
	      remote-file.

	      With more than two arguments, copy all the  local	 files	lfile1
	      ...  into	 the existing remote directory rdir retaining the same
	      basenames.  This assumes UNIX directory semantics.

	      A problem arises if you attempt to use zfpcp lfile1  rdir,  i.e.
	      the  second  form of copying but with two arguments, as the com‐
	      mand has no simple way of	 knowing  if  rdir  corresponds	 to  a
	      directory or a filename.	It attempts to resolve this in various
	      ways.  First, if the rdir argument is `.' or `..' or ends	 in  a
	      slash, it is assumed to be a directory.  Secondly, if the opera‐
	      tion of copying to a remote file in the first form  failed,  and
	      the remote server sends back the expected failure code 553 and a
	      reply including the string `Is a	directory',  then  zfpcp  will
	      retry using the second form.

   Closing the connection
       zfclose
	      Close the connection.

   Session management
       zfsession [ -lvod ] [ sessname ]
	      Allows you to manage multiple FTP sessions at once.  By default,
	      connections take place in a session called `default'; by	giving
	      the  command  `zfsession	sessname'  you	can change to a new or
	      existing session with a name of your choice.   The  new  session
	      remembers its own connection, as well as associated shell param‐
	      eters, and also the host/user parameters set by zfparams.	 Hence
	      you  can	have different sessions set up to connect to different
	      hosts, each remembering the appropriate host, user and password.

	      With no arguments, zfsession prints the name of the current ses‐
	      sion;  with  the option -l it lists all sessions which currently
	      exist, and with the option -v it gives a	verbose	 list  showing
	      the  host and directory for each session, where the current ses‐
	      sion is marked with an asterisk.	With -o, it will switch to the
	      most recent previous session.

	      With -d, the given session (or else the current one) is removed;
	      everything to do with it is completely forgotten.	 If it was the
	      only session, a new session called `default' is created and made
	      current.	It is safest not to delete sessions  while  background
	      commands using zftp are active.

       zftransfer sess1:file1 sess2:file2
	      Transfer files between two sessions; no local copy is made.  The
	      file is read from the session sess1 as file1 and written to ses‐
	      sion sess2 as file file2; file1 and file2 may be relative to the
	      current directories of the session.  Either sess1 or  sess2  may
	      be  omitted  (though  the colon should be retained if there is a
	      possibility of a colon appearing in the file name) and  defaults
	      to  the  current session; file2 may be omitted or may end with a
	      slash, in which case the basename of file1 will be  added.   The
	      sessions sess1 and sess2 must be distinct.

	      The  operation  is performed using pipes, so it is required that
	      the connections still be valid in a subshell, which is  not  the
	      case under versions of some operating systems, presumably due to
	      a system bug.

   Bookmarks
       The two functions zfmark and zfgoto allow you to `bookmark' the present
       location	 (host,	 user and directory) of the current FTP connection for
       later use.  The file to be used for storing and retrieving bookmarks is
       given  by  the  parameter  $ZFTP_BMFILE; if not set when one of the two
       functions is called, it will be set  to	the  file  .zfbkmarks  in  the
       directory where your zsh startup files live (usually ~).

       zfmark [ bookmark ]
	      If  given an argument, mark the current host, user and directory
	      under the name bookmark for later use by zfgoto.	If there is no
	      connection  open, use the values for the last connection immedi‐
	      ately before it was closed; it is an error if  there  was	 none.
	      Any  existing  bookmark  under  the  same	 name will be silently
	      replaced.

	      If not given an argument, list the existing  bookmarks  and  the
	      points to which they refer in the form user@host:directory; this
	      is the format in which they are stored,  and  the	 file  may  be
	      edited directly.

       zfgoto [ -n ] bookmark
	      Return  to  the location given by bookmark, as previously set by
	      zfmark.  If the location has user `ftp' or `anonymous', open the
	      connection with zfanon, so that no password is required.	If the
	      user and host parameters match those stored for the current ses‐
	      sion,  if	 any,  those  will  be	used, and again no password is
	      required.	 Otherwise a password will be prompted for.

	      With the option -n, the bookmark	is  taken  to  be  a  nickname
	      stored  by  the  ncftp  program  in  its bookmark file, which is
	      assumed to be ~/.ncftp/bookmarks.	 The  function	works  identi‐
	      cally in other ways.  Note that there is no mechanism for adding
	      or modifying ncftp bookmarks from the zftp functions.

   Other functions
       Mostly, these  functions	 will  not  be	called	directly  (apart  from
       zfinit),	 but  are  described  here  for completeness.  You may wish to
       alter zftp_chpwd and zftp_progress, in particular.

       zfinit [ -n ]
	      As described above, this is used to initialize the zftp function
	      system.	The  -n	 option	 should be used if the zftp command is
	      already built into the shell.

       zfautocheck [ -dn ]
	      This function is called to implement automatic reopening	behav‐
	      iour,  as	 described  in	more  detail  below.  The options must
	      appear in the first  argument;  -n  prevents  the	 command  from
	      changing to the old directory, while -d prevents it from setting
	      the variable do_close, which it otherwise does  as  a  flag  for
	      automatically closing the connection after a transfer.  The host
	      and directory for the last session are stored  in	 the  variable
	      $zflastsession,  but  the internal host/user/password parameters
	      must also be correctly set.

       zfcd_match prefix suffix
	      This performs matching for completion of remote directory names.
	      If  the  remote  server is UNIX, it will attempt to persuade the
	      server to list the remote directory with subdirectories  marked,
	      which  usually  works  but is not guaranteed.  On other hosts it
	      simply calls zfget_match and hence completes all files, not just
	      directories.   On	 some  systems,	 directories may not even look
	      like filenames.

       zfget_match prefix suffix
	      This performs matching for completion of remote  filenames.   It
	      caches  files  for  the  current	directory  (only) in the shell
	      parameter $zftp_fcache.  It is in the form to be called  by  the
	      -K  option  of  compctl,	but also works when called from a wid‐
	      get-style completion function with prefix and suffix set	appro‐
	      priately.

       zfrglob varname
	      Perform  remote  globbing,  as  describes	 in more detail below.
	      varname is the name of a variable containing the pattern	to  be
	      expanded;	 if  there were any matches, the same variable will be
	      set to the expanded set of filenames on return.

       zfrtime lfile rfile [ time ]
	      Set the local file lfile to have the same modification  time  as
	      the  remote  file rfile, or the explicit time time in FTP format
	      CCYYMMDDhhmmSS for the GMT timezone.

	      Currently this requires perl version 5 to perform the conversion
	      from  GMT	 to local time.	 This is unfortunately difficult to do
	      using shell code alone.

       zftp_chpwd
	      This function is called every time a connection  is  opened,  or
	      closed,  or  the	remote directory changes.  This version alters
	      the title bar of an xterm-compatible or sun-cmd terminal	emula‐
	      tor to reflect the local and remote hostnames and current direc‐
	      tories.  It works best when combined with	 the  function	chpwd.
	      In particular, a function of the form

		     chpwd() {
		       if [[ -n $ZFTP_USER ]]; then
			 zftp_chpwd
		       else
			 # usual chpwd e.g put host:directory in title bar
		       fi
		     }

	      fits in well.

       zftp_progress
	      This  function  shows  the  status of the transfer.  It will not
	      write anything unless the output is going to  a  terminal;  how‐
	      ever,  if	 you transfer files in the background, you should turn
	      off progress reports by hand using  `zstyle  ':zftp:*'  progress
	      none'.   Note  also  that if you alter it, any output must be to
	      standard error, as standard output may be a file being received.
	      The  form	 of  the progress meter, or whether it is used at all,
	      can be configured without altering the function, as described in
	      the next section.

       zffcache
	      This is used to implement caching of files in the current direc‐
	      tory for each session separately.	 It is used by zfget_match and
	      zfrglob.

MISCELLANEOUS FEATURES
   Configuration
       Various	styles are available using the standard shell style mechanism,
       described in zshmodules(1).  Briefly,  the  command  `zstyle  ':zftp:*'
       style value ...'.  defines the style to have value value; more than one
       value may be given, although that is not useful in the cases  described
       here.  These values will then be used throughout the zftp function sys‐
       tem.  For more precise control, the first argument, which gives a  con‐
       text  in which the style applies, can be modified to include a particu‐
       lar function, as for example `:zftp:zfget': the style  will  then  have
       the  given value only in the zfget function.  Values for the same style
       in different contexts may be set; the most specific  function  will  be
       used,  where  strings  are  held to be more specific than patterns, and
       longer patterns and shorter patterns.  Note that	 only  the  top	 level
       function	 name,	as called by the user, is used; calling of lower level
       functions is transparent to the user.  Hence modifications to the title
       bar  in	zftp_chpwd  use	 the  contexts :zftp:zfopen, :zftp:zfcd, etc.,
       depending where it was called from.  The following  styles  are	under‐
       stood:

       progress
	      Controls the way that zftp_progress reports on the progress of a
	      transfer.	 If empty, unset, or `none',  no  progress  report  is
	      made; if `bar' a growing bar of inverse video is shown; if `per‐
	      cent' (or any other string, though this may change  in  future),
	      the  percentage of the file transferred is shown.	 The bar meter
	      requires that the width of the terminal  be  available  via  the
	      $COLUMNS parameter (normally this is set automatically).	If the
	      size of the file being transferred is  not  available,  bar  and
	      percent  meters will simply show the number of bytes transferred
	      so far.

	      When zfinit is run, if this style is not defined for the context
	      :zftp:*, it will be set to `bar'.

       update Specifies	 the  minimum  time  interval  between	updates of the
	      progress meter in seconds.  No update is made  unless  new  data
	      has  been	 received, so the actual time interval is limited only
	      by $ZFTP_TIMEOUT.

	      As described for progress, zfinit will force this to default  to
	      1.

       remote-glob
	      If  set  to `1', `yes' or `true', filename generation (globbing)
	      is performed on the remote machine instead of by zsh itself; see
	      below.

       titlebar
	      If  set  to `1', `yes' or `true', zftp_chpwd will put the remote
	      host and remote directory into the titlebar of  terminal	emula‐
	      tors such as xterm or sun-cmd that allow this.

	      As  described for progress, zfinit will force this to default to
	      1.

       chpwd  If set to `1' `yes' or `true', zftp_chpwd will call the function
	      chpwd when a connection is closed.  This is useful if the remote
	      host details were put into the terminal title bar by  zftp_chpwd
	      and your usual chpwd also modifies the title bar.

	      When  zfinit  is run, it will determine whether chpwd exists and
	      if so it will set the default value for the style to 1  if  none
	      exists already.

       Note  that  there  is also an associative array zfconfig which contains
       values used by the function system.  This should	 not  be  modified  or
       overwritten.

   Remote globbing
       The  commands  for retrieving files usually perform filename generation
       (globbing) on their arguments; this can be turned off  by  passing  the
       option  -G to each of the commands.  Normally this operates by retriev‐
       ing a complete list of files for the directory in question, then match‐
       ing these locally against the pattern supplied.	This has the advantage
       that the full range of zsh patterns  (respecting	 the  setting  of  the
       option  EXTENDED_GLOB)  can be used.  However, it means that the direc‐
       tory part of a filename will not be expanded and must be given exactly.
       If  the	remote	server	does not support the UNIX directory semantics,
       directory handling is problematic and it is recommended	that  globbing
       only  be	 used  within the current directory.  The list of files in the
       current directory, if retrieved, will be	 cached,  so  that  subsequent
       globs  in  the  same  directory	without	 an  intervening zfcd are much
       faster.

       If the remote-glob style (see above) is set, globbing is	 instead  per‐
       formed  on  the remote host: the server is asked for a list of matching
       files.  This is highly dependent on  how	 the  server  is  implemented,
       though  typically UNIX servers will provide support for basic glob pat‐
       terns.  This may in some cases be faster, as it avoids  retrieving  the
       entire list of directory contents.

   Automatic and temporary reopening
       As described for the zfopen command, a subsequent zfopen with no param‐
       eters will reopen the connection to the last host (this	includes  con‐
       nections	 made  with  the zfanon command).  Opened in this fashion, the
       connection starts in the default remote directory and will remain  open
       until explicitly closed.

       Automatic  re-opening  is  also available.  If a connection is not cur‐
       rently open and a command requiring a connection	 is  given,  the  last
       connection  is  implicitly  reopened.  In this case the directory which
       was current when the connection was closed again	 becomes  the  current
       directory (unless, of course, the command given changes it).  Automatic
       reopening will also take place if  the  connection  was	close  by  the
       remote  server  for whatever reason (e.g. a timeout).  It is not avail‐
       able if the -1 option to zfopen or zfanon was used.

       Furthermore, if the command issued is a file transfer,  the  connection
       will  be	 closed	 after	the  transfer  is  finished, hence providing a
       one-shot mode for transfers.  This does not apply to directory changing
       or  listing  commands;  for example a zfdir may reopen a connection but
       will leave it open.  Also, automatic closure will only ever  happen  in
       the same command as automatic opening, i.e a zfdir directly followed by
       a zfget will never close the connection automatically.

       Information about the previous connection is given by the zfstat	 func‐
       tion.  So, for example, if that reports:

	      Session:	      default
	      Not connected.
	      Last session:   ftp.bar.com:/pub/textfiles

       then  the command zfget file.txt will attempt to reopen a connection to
       ftp.bar.com, retrieve the file /pub/textfiles/file.txt, and immediately
       close  the connection again.  On the other hand, zfcd ..	 will open the
       connection in the directory /pub and leave it open.

       Note that all the above is local to each session; if you	 return	 to  a
       previous session, the connection for that session is the one which will
       be reopened.

   Completion
       Completion of local and remote files, directories, sessions  and	 book‐
       marks  is  supported.   The  older, compctl-style completion is defined
       when zfinit is called; support for the new widget-based completion sys‐
       tem  is	provided  in  the function Completion/Zsh/Command/_zftp, which
       should be installed with the other functions of the  completion	system
       and hence should automatically be available.

ZSHCONTRIB(1)							 ZSHCONTRIB(1)

NAME
       zshcontrib - user contributions to zsh

DESCRIPTION
       The  Zsh	 source distribution includes a number of items contributed by
       the user community.  These are not inherently a part of the shell,  and
       some may not be available in every zsh installation.  The most signifi‐
       cant of these are documented here.  For documentation on other contrib‐
       uted  items  such as shell functions, look for comments in the function
       source files.

UTILITIES
   Accessing On-Line Help
       The key sequence ESC h is normally bound by ZLE to execute the run-help
       widget  (see  zshzle(1)).   This	 invokes the run-help command with the
       command word from the current input line as its argument.  By  default,
       run-help	 is an alias for the man command, so this often fails when the
       command word is	a  shell  builtin  or  a  user-defined	function.   By
       redefining  the	run-help  alias, one can improve the on-line help pro‐
       vided by the shell.

       The helpfiles utility, found in the Util directory of the distribution,
       is a Perl program that can be used to process the zsh manual to produce
       a separate help file for each shell builtin and for  many  other	 shell
       features	 as  well.  The autoloadable run-help function, found in Func‐
       tions/Misc, searches for these helpfiles	 and  performs	several	 other
       tests to produce the most complete help possible for the command.

       There  may already be a directory of help files on your system; look in
       /usr/share/zsh or /usr/local/share/zsh and subdirectories below	those,
       or ask your system administrator.

       To create your own help files with helpfiles, choose or create a direc‐
       tory where the individual command help files will reside.  For example,
       you  might  choose ~/zsh_help.  If you unpacked the zsh distribution in
       your home directory, you would use the commands:

	      mkdir ~/zsh_help
	      cd ~/zsh_help
	      man zshall | colcrt - | \
	      perl ~/zsh-4.3.6/Util/helpfiles

       Next, to use the run-help function, you need  to	 add  lines  something
       like the following to your .zshrc or equivalent startup file:

	      unalias run-help
	      autoload run-help
	      HELPDIR=~/zsh_help

       The  HELPDIR parameter tells run-help where to look for the help files.
       If your system already has a help file directory installed, set HELPDIR
       to the path of that directory instead.

       Note  that  in order for `autoload run-help' to work, the run-help file
       must be in one of the directories named in your fpath array  (see  zsh‐
       param(1)).   This should already be the case if you have a standard zsh
       installation; if it is not, copy Functions/Misc/run-help to  an	appro‐
       priate directory.

   Recompiling Functions
       If  you frequently edit your zsh functions, or periodically update your
       zsh installation to track the latest developments, you  may  find  that
       function	 digests compiled with the zcompile builtin are frequently out
       of date with respect to the function source files.  This is not usually
       a  problem, because zsh always looks for the newest file when loading a
       function, but it may cause slower shell startup and  function  loading.
       Also,  if  a digest file is explicitly used as an element of fpath, zsh
       won't check whether any of its source files has changed.

       The zrecompile autoloadable function, found in Functions/Misc,  can  be
       used to keep function digests up to date.

       zrecompile [ -qt ] [ name ... ]
       zrecompile [ -qt ] -p args [ -- args ... ]
	      This tries to find *.zwc files and automatically re-compile them
	      if at least one of the original files is newer than the compiled
	      file.  This works only if the names stored in the compiled files
	      are full paths or are relative to the  directory	that  contains
	      the .zwc file.

	      In the first form, each name is the name of a compiled file or a
	      directory containing *.zwc files that should be checked.	If  no
	      arguments	 are  given,  the directories and *.zwc files in fpath
	      are used.

	      When -t is given, no compilation is performed, but a return sta‐
	      tus  of  zero  (true)  is set if there are files that need to be
	      re-compiled and non-zero (false) otherwise.  The -q option  qui‐
	      ets the chatty output that describes what zrecompile is doing.

	      Without  the  -t	option, the return status is zero if all files
	      that needed re-compilation could be  compiled  and  non-zero  if
	      compilation for at least one of the files failed.

	      If  the  -p  option is given, the args are interpreted as one or
	      more sets of arguments for zcompile,  separated  by  `--'.   For
	      example:

		     zrecompile -p \
				-R ~/.zshrc -- \
				-M ~/.zcompdump -- \
				~/zsh/comp.zwc ~/zsh/Completion/*/_*

	      This  compiles  ~/.zshrc into ~/.zshrc.zwc if that doesn't exist
	      or if it is older than  ~/.zshrc.	 The  compiled	file  will  be
	      marked  for  reading  instead  of	 mapping. The same is done for
	      ~/.zcompdump and ~/.zcompdump.zwc, but  this  compiled  file  is
	      marked   for   mapping.	The  last  line	 re-creates  the  file
	      ~/zsh/comp.zwc if any of the files matching the given pattern is
	      newer than it.

	      Without  the  -p	option,	 zrecompile  does  not create function
	      digests that do not already exist, nor does it add new functions
	      to the digest.

       The  following  shell loop is an example of a method for creating func‐
       tion digests for all functions in your fpath, assuming  that  you  have
       write permission to the directories:

	      for ((i=1; i <= $#fpath; ++i)); do
		dir=$fpath[i]
		zwc=${dir:t}.zwc
		if [[ $dir == (.|..) || $dir == (.|..)/* ]]; then
		  continue
		fi
		files=($dir/*(N-.))
		if [[ -w $dir:h && -n $files ]]; then
		  files=(${${(M)files%/*/*}#/})
		  if ( cd $dir:h &&
		       zrecompile -p -U -z $zwc $files ); then
		    fpath[i]=$fpath[i].zwc
		  fi
		fi
	      done

       The  -U and -z options are appropriate for functions in the default zsh
       installation fpath; you may need to use different options for your per‐
       sonal function directories.

       Once  the digests have been created and your fpath modified to refer to
       them, you can keep them up to date by running zrecompile with no	 argu‐
       ments.

   Keyboard Definition
       The  large  number of possible combinations of keyboards, workstations,
       terminals, emulators, and window systems makes it impossible for zsh to
       have  built-in  key  bindings  for  every situation.  The zkbd utility,
       found in Functions/Misc, can help you quickly create key	 bindings  for
       your configuration.

       Run zkbd either as an autoloaded function, or as a shell script:

	      zsh -f ~/zsh-4.3.6/Functions/Misc/zkbd

       When  you  run  zkbd, it first asks you to enter your terminal type; if
       the default it offers is correct, just press return.  It then asks  you
       to  press  a  number  of different keys to determine characteristics of
       your keyboard and terminal; zkbd warns you if it finds anything out  of
       the ordinary, such as a Delete key that sends neither ^H nor ^?.

       The  keystrokes	read by zkbd are recorded as a definition for an asso‐
       ciative array named key, written to a file in  the  subdirectory	 .zkbd
       within  either your HOME or ZDOTDIR directory.  The name of the file is
       composed from  the  TERM,  VENDOR  and  OSTYPE  parameters,  joined  by
       hyphens.

       You  may	 read  this file into your .zshrc or another startup file with
       the `source' or `.' commands, then reference the key parameter in bind‐
       key commands, like this:

	      source ${ZDOTDIR:-$HOME}/.zkbd/$TERM-$VENDOR-$OSTYPE
	      [[ -n ${key[Left]} ]] && bindkey "${key[Left]}" backward-char
	      [[ -n ${key[Right]} ]] && bindkey "${key[Right]}" forward-char
	      # etc.

       Note  that  in order for `autoload zkbd' to work, the zkdb file must be
       in one of the directories named in your fpath array (see	 zshparam(1)).
       This  should  already  be the case if you have a standard zsh installa‐
       tion; if it is not, copy Functions/Misc/zkbd to an  appropriate	direc‐
       tory.

   Dumping Shell State
       Occasionally  you  may encounter what appears to be a bug in the shell,
       particularly if you are using a beta version of zsh  or	a  development
       release.	 Usually it is sufficient to send a description of the problem
       to one of the zsh mailing lists (see zsh(1)), but sometimes one of  the
       zsh developers will need to recreate your environment in order to track
       the problem down.

       The script named reporter, found in the Util directory of the distribu‐
       tion,  is  provided for this purpose.  (It is also possible to autoload
       reporter, but reporter is not installed in  fpath  by  default.)	  This
       script  outputs	a  detailed  dump  of  the shell state, in the form of
       another script that can be read with `zsh -f' to recreate that state.

       To use reporter, read the script into your shell with the  `.'  command
       and redirect the output into a file:

	      . ~/zsh-4.3.6/Util/reporter > zsh.report

       You should check the zsh.report file for any sensitive information such
       as passwords and delete them by hand before sending the script  to  the
       developers.   Also,  as the output can be voluminous, it's best to wait
       for the developers to ask for this information before sending it.

       You can also use reporter to dump only a subset	of  the	 shell	state.
       This is sometimes useful for creating startup files for the first time.
       Most of the output from reporter is far more detailed than  usually  is
       necessary  for  a  startup  file, but the aliases, options, and zstyles
       states may be  useful  because  they  include  only  changes  from  the
       defaults.   The bindings state may be useful if you have created any of
       your own keymaps, because reporter arranges to dump the keymap creation
       commands as well as the bindings for every keymap.

       As  is  usual  with  automated tools, if you create a startup file with
       reporter, you should edit the results to remove	unnecessary  commands.
       Note  that  if  you're  using the new completion system, you should not
       dump the functions state to your startup files with reporter;  use  the
       compdump function instead (see zshcompsys(1)).

       reporter [ state ... ]
	      Print  to	 standard  output  the indicated subset of the current
	      shell state.  The state arguments may be one or more of:

	      all    Output everything listed below.
	      aliases
		     Output alias definitions.
	      bindings
		     Output ZLE key maps and bindings.
	      completion
		     Output old-style compctl  commands.   New	completion  is
		     covered by functions and zstyles.
	      functions
		     Output autoloads and function definitions.
	      limits Output limit commands.
	      options
		     Output setopt commands.
	      styles Same as zstyles.
	      variables
		     Output  shell parameter assignments, plus export commands
		     for any environment variables.
	      zstyles
		     Output zstyle commands.

	      If the state is omitted, all is assumed.

       With the exception of `all', every state can be abbreviated by any pre‐
       fix, even a single letter; thus a is the same as aliases, z is the same
       as zstyles, etc.

PROMPT THEMES
   Installation
       You should make sure  all  the  functions  from	the  Functions/Prompts
       directory of the source distribution are available; they all begin with
       the string `prompt_' except for the special function`promptinit'.   You
       also  need  the	`colors'  function  from Functions/Misc.  All of these
       functions may already have been installed on your system; if  not,  you
       will  need  to find them and copy them.	The directory should appear as
       one of the elements of the fpath array (this should already be the case
       if they were installed), and at least the function promptinit should be
       autoloaded; it will autoload the rest.  Finally, to initialize the  use
       of  the system you need to call the promptinit function.	 The following
       code in your .zshrc will arrange for this;  assume  the	functions  are
       stored in the directory ~/myfns:

	      fpath=(~/myfns $fpath)
	      autoload -U promptinit
	      promptinit

   Theme Selection
       Use  the	 prompt	 command to select your preferred theme.  This command
       may be added to your .zshrc following the call to promptinit  in	 order
       to start zsh with a theme already selected.

       prompt [ -c | -l ]
       prompt [ -p | -h ] [ theme ... ]
       prompt [ -s ] theme [ arg ... ]
	      Set  or  examine	the prompt theme.  With no options and a theme
	      argument, the theme with that name is set as the current	theme.
	      The  available  themes  are  determined  at run time; use the -l
	      option to see a list.  The special  theme	 `random'  selects  at
	      random one of the available themes and sets your prompt to that.

	      In  some	cases  the  theme may be modified by one or more argu‐
	      ments, which should be given after the theme name.  See the help
	      for each theme for descriptions of these arguments.

	      Options are:

	      -c     Show  the currently selected theme and its parameters, if
		     any.
	      -l     List all available prompt themes.
	      -p     Preview the theme named by theme, or  all	themes	if  no
		     theme is given.
	      -h     Show help for the theme named by theme, or for the prompt
		     function if no theme is given.
	      -s     Set theme as the current theme and save state.

       prompt_theme_setup
	      Each available theme has a setup function which is called by the
	      prompt function to install that theme.  This function may define
	      other functions as necessary to maintain the  prompt,  including
	      functions	 used  to  preview  the prompt or provide help for its
	      use.  You should not normally  call  a  theme's  setup  function
	      directly.

ZLE FUNCTIONS
   Widgets
       These  functions all implement user-defined ZLE widgets (see zshzle(1))
       which can be bound to keystrokes in interactive shells.	To  use	 them,
       your .zshrc should contain lines of the form

	      autoload function
	      zle -N function

       followed	 by  an	 appropriate bindkey command to associate the function
       with a key sequence.  Suggested bindings are described below.

       bash-style word functions
	      If you are looking for functions to implement  moving  over  and
	      editing  words  in  the  manner of bash, where only alphanumeric
	      characters are considered word characters, you can use the func‐
	      tions  described	in  the next section.  The following is suffi‐
	      cient:

		     autoload -U select-word-style
		     select-word-style bash

       forward-word-match, backward-word-match
       kill-word-match, backward-kill-word-match
       transpose-words-match, capitalize-word-match
       up-case-word-match, down-case-word-match
       select-word-style, match-word-context, match-words-by-style
	      The eight `-match' functions are drop-in	replacements  for  the
	      builtin widgets without the suffix.  By default they behave in a
	      similar way.  However, by the use of  styles  and	 the  function
	      select-word-style, the way words are matched can be altered.

	      The  simplest  way  of  configuring  the	functions  is  to  use
	      select-word-style, which can either be called as a normal	 func‐
	      tion with the appropriate argument, or invoked as a user-defined
	      widget that will prompt for the  first  character	 of  the  word
	      style  to	 be  used.   The  first	 time it is invoked, the eight
	      -match functions will automatically  replace  the	 builtin  ver‐
	      sions, so they do not need to be loaded explicitly.

	      The  word styles available are as follows.  Only the first char‐
	      acter is examined.

	      bash   Word characters are alphanumeric characters only.

	      normal As	 in  normal  shell  operation:	 word  characters  are
		     alphanumeric  characters  plus  any characters present in
		     the string given by the parameter $WORDCHARS.

	      shell  Words are	complete  shell	 command  arguments,  possibly
		     including	complete quoted strings, or any tokens special
		     to the shell.

	      whitespace
		     Words are any set of characters delimited by whitespace.

	      default
		     Restore the default settings; this is usually the same as
		     `normal'.

	      More  control  can  be  obtained	using  the  zstyle command, as
	      described in zshmodules(1).  Each style is looked up in the con‐
	      text  :zle:widget	 where	widget is the name of the user-defined
	      widget, not the name of the function implementing it, so in  the
	      case of the definitions supplied by select-word-style the appro‐
	      priate contexts are :zle:forward-word, and so on.	 The  function
	      select-word-style	 itself	 always defines styles for the context
	      `:zle:*' which can be overridden by more specific (longer)  pat‐
	      terns as well as explicit contexts.

	      The  style word-style specifies the rules to use.	 This may have
	      the following values.

	      normal Use the standard  shell  rules,  i.e.  alphanumerics  and
		     $WORDCHARS, unless overridden by the styles word-chars or
		     word-class.

	      specified
		     Similar to normal, but only the specified characters, and
		     not also alphanumerics, are considered word characters.

	      unspecified
		     The  negation  of	specified.   The  given characters are
		     those which will not be considered part of a word.

	      shell  Words are obtained by using the syntactic rules for  gen‐
		     erating  shell  command  arguments.  In addition, special
		     tokens which are never command arguments such as `()' are
		     also treated as words.

	      whitespace
		     Words are whitespace-delimited strings of characters.

	      The  first  three of those rules usually use $WORDCHARS, but the
	      value  in	 the  parameter	 can  be  overridden  by   the	 style
	      word-chars,  which  works in exactly the same way as $WORDCHARS.
	      In addition, the style word-class uses character class syntax to
	      group  characters	 and  takes precedence over word-chars if both
	      are set.	The word-class style does not include the  surrounding
	      brackets of the character class; for example, `-:[:alnum:]' is a
	      valid word-class to include all alphanumerics plus  the  charac‐
	      ters  `-'	 and  `:'.   Be	 careful including `]', `^' and `-' as
	      these are special inside character classes.

	      The style skip-chars is mostly useful  for  transpose-words  and
	      similar  functions.   If	set,  it  gives	 a count of characters
	      starting at the cursor position which  will  not	be  considered
	      part  of	the  word and are treated as space, regardless of what
	      they actually are.  For example, if

		     zstyle ':zle:transpose-words' skip-chars 1

	      has been set, and transpose-words-match is called with the  cur‐
	      sor  on the X of fooXbar, where X can be any character, then the
	      resulting expression is barXfoo.

	      Finer grained control can	 be  obtained  by  setting  the	 style
	      word-context  to	an  array  of  pairs of entries.  Each pair of
	      entries consists of a pattern and a subcontext.  The shell argu‐
	      ment  the	 cursor	 is on is matched against each pattern in turn
	      until one matches; if it does, the  context  is  extended	 by  a
	      colon  and  the corresponding subcontext.	 Note that the test is
	      made against the original word on the line, with no stripping of
	      quotes.	If  the	 cursor	 is at the end of the line the test is
	      performed against an  empty  string;  if	it  is	on  whitespace
	      between  words  the  test	 is made against a single space.  Some
	      examples are given below.

	      Here are some examples of use of the styles, actually taken from
	      the simplified interface in select-word-style:

		     zstyle ':zle:*' word-style standard
		     zstyle ':zle:*' word-chars ''

	      Implements  bash-style  word handling for all widgets, i.e. only
	      alphanumerics are word characters;  equivalent  to  setting  the
	      parameter WORDCHARS empty for the given context.

		     style ':zle:*kill*' word-style space

	      Uses  space-delimited  words for widgets with the word `kill' in
	      the name.	 Neither of the styles word-chars  nor	word-class  is
	      used in this case.

	      Here  are	 some  examples	 of  use  of the word-context style to
	      extend the context.

		     zstyle ':zle:*' word-context "*/*" file "[[:space:]]" whitespace
		     zstyle ':zle:transpose-words:whitespace' word-style shell
		     zstyle ':zle:transpose-words:filename' word-style normal
		     zstyle ':zle:transpose-words:filename' word-chars ''

	      This  provides  two  different  ways  of	using  transpose-words
	      depending	 on  whether the cursor is on whitespace between words
	      or on a filename, here any word containing a /.  On  whitespace,
	      complete	arguments  as  defined by standard shell rules will be
	      transposed.  In a filename, only alphanumerics  will  be	trans‐
	      posed.   Elsewhere,  words  will be transposed using the default
	      style for :zle:transpose-words.

	      The word matching and all the handling  of  zstyle  settings  is
	      actually implemented by the function match-words-by-style.  This
	      can be used to create new	 user-defined  widgets.	  The  calling
	      function	should set the local parameter curcontext to :zle:wid‐
	      get,  create  the	 local	parameter   matched_words   and	  call
	      match-words-by-style    with    no    arguments.	  On   return,
	      matched_words will be set to an array with the elements: (1) the
	      start  of	 the  line  (2)	 the  word  before  the cursor (3) any
	      non-word characters between that word and	 the  cursor  (4)  any
	      non-word	character  at  the  cursor position plus any remaining
	      non-word characters before the next word, including all  charac‐
	      ters  specified by the skip-chars style, (5) the word at or fol‐
	      lowing the cursor (6) any	 non-word  characters  following  that
	      word  (7) the remainder of the line.  Any of the elements may be
	      an empty string; the calling function should test	 for  this  to
	      decide whether it can perform its function.

	      It   is	possible   to	pass   options	 with	arguments   to
	      match-words-by-style to override the use of styles.  The options
	      are:
	      -w     word-style
	      -s     skip-chars
	      -c     word-class
	      -C     word-chars

	      For  example,  match-words-by-style -w shell -c 0 may be used to
	      extract the command argument around the cursor.

	      The  word-context	 style	is   implemented   by	the   function
	      match-word-context.   This  should not usually need to be called
	      directly.

       delete-whole-word-match
	      This is another function which works like the  -match  functions
	      described	 immediately  above,  i.e.  using styles to decide the
	      word boundaries.	However, it  is	 not  a	 replacement  for  any
	      existing function.

	      The  basic  behaviour  is	 to delete the word around the cursor.
	      There is no numeric prefix handling; only the single word around
	      the  cursor  is  considered.   If the widget contains the string
	      kill, the removed text will  be  placed  in  the	cutbuffer  for
	      future	yanking.    This   can	 be   obtained	 by   defining
	      kill-whole-word-match as follows:

		     zle -N kill-whole-word-match delete-whole-word-match

	      and then binding the widget kill-whole-word-match.

       copy-earlier-word
	      This widget works like a	combination  of	 insert-last-word  and
	      copy-prev-shell-word.    Repeated	  invocations  of  the	widget
	      retrieve earlier words on the relevant  history  line.   With  a
	      numeric argument N, insert the Nth word from the history line; N
	      may be negative to count from the end of the line.

	      If insert-last-word has been used to retrieve the last word on a
	      previous	history	 line,	repeated invocations will replace that
	      word with earlier words from the same line.

	      Otherwise, the widget applies to words  on  the  line  currently
	      being  edited.   The  widget  style  can	be  set to the name of
	      another widget that should be called to  retrieve	 words.	  This
	      widget must accept the same three arguments as insert-last-word.

       cycle-completion-positions
	      After inserting an unambiguous string into the command line, the
	      new function based completion system  may	 know  about  multiple
	      places  in  this	string	where characters are missing or differ
	      from at least one of the possible matches.  It will  then	 place
	      the cursor on the position it considers to be the most interest‐
	      ing one, i.e. the one where one can disambiguate between as many
	      matches as possible with as little typing as possible.

	      This  widget  allows  the cursor to be easily moved to the other
	      interesting spots.   It  can  be	invoked	 repeatedly  to	 cycle
	      between all positions reported by the completion system.

       edit-command-line
	      Edit the command line using your visual editor, as in ksh.

		     bindkey -M vicmd v edit-command-line

       history-search-end
	      This    function	  implements	the   widgets	history-begin‐
	      ning-search-backward-end	  and	 history-beginning-search-for‐
	      ward-end.	  These commands work by first calling the correspond‐
	      ing builtin widget (see `History Control' in zshzle(1)) and then
	      moving  the  cursor to the end of the line.  The original cursor
	      position is remembered and restored before calling  the  builtin
	      widget  a	 second	 time,	so that the same search is repeated to
	      look farther through the history.

	      Although you autoload only one function, the commands to use  it
	      are slightly different because it implements two widgets.

		     zle -N history-beginning-search-backward-end \
			    history-search-end
		     zle -N history-beginning-search-forward-end \
			    history-search-end
		     bindkey '\e^P' history-beginning-search-backward-end
		     bindkey '\e^N' history-beginning-search-forward-end

       history-beginning-search-menu
	      This  function implements yet another form of history searching.
	      The text before the cursor is used to select lines from the his‐
	      tory,  as	 for history-beginning-search-backward except that all
	      matches are shown in a numbered menu.   Typing  the  appropriate
	      digits  inserts the full history line.  Note that leading zeroes
	      must be typed (they are only shown when necessary	 for  removing
	      ambiguity).   The	 entire	 history is searched; there is no dis‐
	      tinction between forwards and backwards.

	      With a prefix argument, the search is not anchored to the	 start
	      of  the line; the string typed by the use may appear anywhere in
	      the line in the history.

	      If the widget name contains `-end' the cursor is	moved  to  the
	      end  of the line inserted.  If the widget name contains `-space'
	      any space in the text typed is treated as	 a  wildcard  and  can
	      match  anything (hence a leading space is equivalent to giving a
	      prefix argument).	 Both forms can be combined, for example:

		     zle -N history-beginning-search-menu-space-end \
			    history-beginning-search-menu

       history-pattern-search
	      The function  history-pattern-search  implements	widgets	 which
	      prompt  for a pattern with which to search the history backwards
	      or forwards.  The pattern is in the usual	 zsh  format,  however
	      the  first  character may be ^ to anchor the search to the start
	      of the line, and the last character  may	be  $  to  anchor  the
	      search  to  the end of the line.	If the search was not anchored
	      to the end of the line the cursor is positioned just  after  the
	      pattern found.

	      The  commands to create bindable widgets are similar to those in
	      the example immediately above:

		     autoload -U history-pattern-search
		     zle -N history-pattern-search-backward history-pattern-search
		     zle -N history-pattern-search-forward history-pattern-search

       up-line-or-beginning-search, down-line-or-beginning-search
	      These   widgets	are   similar	to   the   builtin   functions
	      up-line-or-search	 and  down-line-or-search:   if in a multiline
	      buffer they move up or down within the  buffer,  otherwise  they
	      search  for  a  history  line  matching the start of the current
	      line.  In this case, however,  they  search  for	a  line	 which
	      matches  the  current line up to the current cursor position, in
	      the manner of  history-beginning-search-backward	and  -forward,
	      rather than the first word on the line.

       incarg Typing  the keystrokes for this widget with the cursor placed on
	      or to the left of an integer causes that integer	to  be	incre‐
	      mented  by  one.	 With a numeric prefix argument, the number is
	      incremented by the amount of the argument	 (decremented  if  the
	      prefix argument is negative).  The shell parameter incarg may be
	      set to change the default increment to something other than one.

		     bindkey '^X+' incarg

       incremental-complete-word
	      This allows incremental completion of a  word.   After  starting
	      this  command,  a	 list of completion choices can be shown after
	      every character you type, which you can delete with ^H  or  DEL.
	      Pressing return accepts the completion so far and returns you to
	      normal editing (that is, the command  line  is  not  immediately
	      executed).  You can hit TAB to do normal completion, ^G to abort
	      back to the state when you started, and ^D to list the matches.

	      This works only with the new function based completion system.

		     bindkey '^Xi' incremental-complete-word

       insert-composed-char
	      This function allows you to compose characters that don't appear
	      on  the keyboard to be inserted into the command line.  The com‐
	      mand is followed by two keys corresponding to  ASCII  characters
	      (there is no prompt).  For accented characters, the two keys are
	      a base character followed by a code for the  accent,  while  for
	      other  special  characters  the  two  characters together form a
	      mnemonic for the character to be	inserted.   The	 two-character
	      codes  are  a subset of those given by RFC 1345 (see for example
	      http://www.faqs.org/rfcs/rfc1345.html).

	      The function may optionally be followed by up to two  characters
	      which  replace  one or both of the characters read from the key‐
	      board; if both characters are supplied, no input is  read.   For
	      example,	insert-composed-char a: can be used within a widget to
	      insert an a with umlaut into the command	line.	This  has  the
	      advantages  over use of a literal character that it is more por‐
	      table.

	      For best results zsh should have been  built  with  support  for
	      multibyte	 characters (configured with --enable-multibyte); how‐
	      ever, the function works for the	limited	 range	of  characters
	      available in single-byte character sets such as ISO-8859-1.

	      The  character  is  converted  into the local representation and
	      inserted into the command line at	 the  cursor  position.	  (The
	      conversion  is  done within the shell, using whatever facilities
	      the C library provides.)	With a numeric argument, the character
	      and its code are previewed in the status line

	      The  function may be run outside zle in which case it prints the
	      character (together with a newline) to standard  output.	 Input
	      is still read from keystrokes.

	      See insert-unicode-char for an alternative way of inserting Uni‐
	      code characters using their hexadecimal character number.

	      The set of accented characters is reasonably complete up to Uni‐
	      code  character  U+0180,	the set of special characters less so.
	      However, it it is very sporadic from  that  point.   Adding  new
	      characters  is  easy,  however;  see  the	 function  define-com‐
	      posed-chars.  Please  send  any  additions  to  zsh-workers@sun‐
	      site.dk.

	      The codes for the second character when used to accent the first
	      are as follows.  Note that not every character  can  take	 every
	      accent.
	      !	     Grave.
	      '	     Acute.
	      >	     Circumflex.
	      ?	     Tilde.   (This  is not ~ as RFC 1345 does not assume that
		     character is present on the keyboard.)
	      -	     Macron.  (A horizontal bar over the base character.)
	      (	     Breve.  (A shallow dish shape over the base character.)
	      .	     Dot above the base character, or in the case of i no dot,
		     or in the case of L and l a centered dot.
	      :	     Diaeresis (Umlaut).
	      c	     Cedilla.
	      _	     Underline,	 however  there	 are  currently	 no underlined
		     characters.
	      /	     Stroke through the base character.
	      "	     Double acute (only supported on a few letters).
	      ;	     Ogonek.  (A little forward	 facing	 hook  at  the	bottom
		     right of the character.)
	      <	     Caron.  (A little v over the letter.)
	      0	     Circle over the base character.
	      2	     Hook over the base character.
	      9	     Horn over the base character.

	      The  most common characters from the Arabic, Cyrillic, Greek and
	      Hebrew alphabets are available; consult RFC 1345 for the	appro‐
	      priate sequences.	 In addition, a set of two letter codes not in
	      RFC 1345 are available for the  double-width  characters	corre‐
	      sponding to ASCII characters from !  to ~ (0x21 to 0x7e) by pre‐
	      ceding the character with ^, for example ^A for  a  double-width
	      A.

	      The following other two-character sequences are understood.

	      ASCII characters
		     These are already present on most keyboards:
	      <(     Left square bracket
	      //     Backslash (solidus)
	      )>     Right square bracket
	      (!     Left brace (curly bracket)
	      !!     Vertical bar (pipe symbol)
	      !)     Right brace (curly bracket)
	      '?     Tilde

	      Special letters
		     Characters	 found in various variants of the Latin alpha‐
		     bet:
	      ss     Eszett (scafes S)
	      D-, d- Eth
	      TH, th Thorn
	      kk     Kra
	      'n     'n
	      NG, ng Ng
	      OI, oi Oi
	      yr     yr
	      ED     ezh

	      Currency symbols
	      Ct     Cent
	      Pd     Pound sterling (also lira and others)
	      Cu     Currency
	      Ye     Yen
	      Eu     Euro (N.B. not in RFC 1345)

	      Punctuation characters
		     References to "right" quotes indicate the shape (like a 9
		     rather  than  6) rather than their grammatical use.  (For
		     example, a "right" low double quote is used to open  quo‐
		     tations in German.)
	      !I     Inverted exclamation mark
	      BB     Broken vertical bar
	      SE     Section
	      Co     Copyright
	      -a     Spanish feminine ordinal indicator
	      <<     Left guillemet
	      --     Soft hyphen
	      Rg     Registered trade mark
	      PI     Pilcrow (paragraph)
	      -o     Spanish masculine ordinal indicator
	      >>     Right guillemet
	      ?I     Inverted question mark
	      -1     Hyphen
	      -N     En dash
	      -M     Em dash
	      -3     Horizontal bar
	      :3     Vertical ellipsis
	      .3     Horizontal midline ellipsis
	      !2     Double vertical line
	      =2     Double low line
	      '6     Left single quote
	      '9     Right single quote
	      .9     "Right" low quote
	      9'     Reversed "right" quote
	      "6     Left double quote
	      "9     Right double quote
	      :9     "Right" low double quote
	      9"     Reversed "right" double quote
	      /-     Dagger
	      /=     Double dagger

	      Mathematical symbols
	      DG     Degree
	      -2, +-, -+
		     - sign, +/- sign, -/+ sign
	      2S     Superscript 2
	      3S     Superscript 3
	      1S     Superscript 1
	      My     Micro
	      .M     Middle dot
	      14     Quarter
	      12     Half
	      34     Three quarters
	      *X     Multiplication
	      -:     Division
	      %0     Per mille
	      FA, TE, /0
		     For all, there exists, empty set
	      dP, DE, NB
		     Partial derivative, delta (increment), del (nabla)
	      (-, -) Element of, contains
	      *P, +Z Product, sum
	      *-, Ob, Sb
		     Asterisk, ring, bullet
	      RT, 0(, 00
		     Root sign, proportional to, infinity

	      Other symbols
	      cS, cH, cD, cC
		     Card suits: spades, hearts, diamonds, clubs
	      Md, M8, M2, Mb, Mx, MX
		     Musical notation: crotchet (quarter note), quaver (eighth
		     note), semiquavers (sixteenth notes), flag sign,  natural
		     sign, sharp sign
	      Fm, Ml Female, male

	      Accents on their own
	      '>     Circumflex (same as caret, ^)
	      '!     Grave (same as backtick, `)
	      ',     Cedilla
	      ':     Diaeresis (Umlaut)
	      'm     Macron
	      ''     Acute

       insert-files
	      This  function  allows  you  type	 a  file  pattern, and see the
	      results of the expansion at each step.  When you hit return, all
	      expansions are inserted into the command line.

		     bindkey '^Xf' insert-files

       narrow-to-region [ -p pre ] [ -P post ]
	   [ -S statepm | -R statepm ] [ -n ] [ start end ])
       narrow-to-region-invisible
	      Narrow  the editable portion of the buffer to the region between
	      the cursor and the mark, which may  be  in  either  order.   The
	      region may not be empty.

	      narrow-to-region may be used as a widget or called as a function
	      from a user-defined widget; by default,  the  text  outside  the
	      editable	area  remains  visible.	 A recursive-edit is performed
	      and the original widening	 status	 is  then  restored.   Various
	      options and arguments are available when it is called as a func‐
	      tion.

	      The options -p pretext and -P posttext may be  used  to  replace
	      the  text	 before	 and after the display for the duration of the
	      function; either or both may be an empty string.

	      If the option -n is also given, pretext or posttext will only be
	      inserted	if  there  is  text before or after the region respec‐
	      tively which will be made invisible.

	      Two numeric arguments may be given which will be used instead of
	      the cursor and mark positions.

	      The  option  -S statepm is used to narrow according to the other
	      options while saving the original state in  the  parameter  with
	      name statepm, while the option -R statepm is used to restore the
	      state from the parameter; note in both cases  the	 name  of  the
	      parameter	 is  required.	 In the second case, other options and
	      arguments are irrelevant.	 When this method is used,  no	recur‐
	      sive-edit	 is  performed;	 the  calling  widget should call this
	      function with the option -S, perform its own editing on the com‐
	      mand  line or pass control to the user via `zle recursive-edit',
	      then call this  function	with  the  option  -R.	 The  argument
	      statepm  must  be	 a  suitable  name  for an ordinary parameter,
	      except that parameters  beginning	 with  the  prefix  _ntr_  are
	      reserved for use within narrow-to-region.	 Typically the parame‐
	      ter will be local to the calling function.

	      narrow-to-region-invisible is a simple widget which  calls  nar‐
	      row-to-region  with arguments which replace any text outside the
	      region with `...'.

	      The display is restored (and the widget returns)	upon  any  zle
	      command  which  would  usually  cause the line to be accepted or
	      aborted.	Hence an additional such command is required to accept
	      or abort the current line.

	      The  return  status  of  both  widgets  is  zero if the line was
	      accepted, else non-zero.

	      Here is a trivial example of a widget using this feature.
		     local state
		     narrow-to-region -p $'Editing restricted region\n' \
		       -P '' -S state
		     zle recursive-edit
		     narrow-to-region -R state

       insert-unicode-char
	      When first executed, the user inputs a set of  hexadecimal  dig‐
	      its.   This  is  terminated  with	 another  call	to insert-uni‐
	      code-char.  The digits are then turned  into  the	 corresponding
	      Unicode  character.  For example, if the widget is bound to ^XU,
	      the character sequence `^XU 4 c ^XU' inserts L (Unicode U+004c).

	      See insert-composed-char for a way of inserting characters using
	      a two-character mnemonic.

       predict-on
	      This set of functions implements predictive typing using history
	      search.  After predict-on, typing characters causes  the	editor
	      to  look	backward  in  the history for the first line beginning
	      with what you have typed so  far.	  After	 predict-off,  editing
	      returns  to normal for the line found.  In fact, you often don't
	      even need to use predict-off, because if the line doesn't	 match
	      something in the history, adding a key performs standard comple‐
	      tion, and then inserts itself  if	 no  completions  were	found.
	      However,	editing	 in  the middle of a line is liable to confuse
	      prediction; see the toggle style below.

	      With the function based completion system (which is  needed  for
	      this),  you  should  be  able to type TAB at almost any point to
	      advance the cursor to the next ``interesting''  character	 posi‐
	      tion  (usually  the end of the current word, but sometimes some‐
	      where in the middle of the word).	 And of course as soon as  the
	      entire  line is what you want, you can accept with return, with‐
	      out needing to move the cursor to the end first.

	      The first time predict-on is used, it creates several additional
	      widget functions:

	      delete-backward-and-predict
		     Replaces  the  backward-delete-char  widget.   You do not
		     need to bind this yourself.
	      insert-and-predict
		     Implements predictive typing by replacing the self-insert
		     widget.  You do not need to bind this yourself.
	      predict-off
		     Turns off predictive typing.

	      Although you autoload only the predict-on function, it is neces‐
	      sary to create a keybinding for predict-off as well.

		     zle -N predict-on
		     zle -N predict-off
		     bindkey '^X^Z' predict-on
		     bindkey '^Z' predict-off

       read-from-minibuffer
	      This is most useful when called as a function from inside a wid‐
	      get,  but	 will work correctly as a widget in its own right.  It
	      prompts for a value below the current command line; a value  may
	      be  input	 using	all  of	 the  standard zle operations (and not
	      merely the restricted set available when executing, for example,
	      execute-named-cmd).   The	 value is then returned to the calling
	      function in the parameter $REPLY and the editing buffer restored
	      to  its  previous	 state.	 If the read was aborted by a keyboard
	      break (typically ^G), the function returns status 1  and	$REPLY
	      is not set.

	      If  one  argument	 is  supplied to the function it is taken as a
	      prompt, otherwise `? ' is used.  If two arguments are  supplied,
	      they  are the prompt and the initial value of $LBUFFER, and if a
	      third argument is given it is the	 initial  value	 of  $RBUFFER.
	      This  provides  a	 default  value and starting cursor placement.
	      Upon return the entire buffer is the value of $REPLY.

	      One option is available: `-k num' specifies that num  characters
	      are  to be read instead of a whole line.	The line editor is not
	      invoked recursively in this case, so depending on	 the  terminal
	      settings	the  input may not be visible, and only the input keys
	      are placed in $REPLY, not the entire buffer.  Note  that	unlike
	      the read builtin num must be given; there is no default.

	      The  name	 is  a	slight	misnomer,  as  in fact the shell's own
	      minibuffer is not used.  Hence it is still possible to call exe‐
	      cuted-named-cmd and similar functions while reading a value.

       replace-string, replace-pattern
       replace-string-again, replace-pattern-again
	      The  function replace-string implements two widgets.  If defined
	      under the same name as the function, it prompts for two strings;
	      the  first (source) string will be replaced by the second every‐
	      where it occurs in the line editing buffer.

	      If the widget name contains the word `pattern', for  example  by
	      defining	the  widget  using the command `zle -N replace-pattern
	      replace-string', then the replacement is done by pattern	match‐
	      ing.   All  zsh  extended	 globbing  patterns can be used in the
	      source string; note that unlike filename generation the  pattern
	      does  not	 need  to match an entire word, nor do glob qualifiers
	      have any effect.	In addition, the replacement string  can  con‐
	      tain  parameter or command substitutions.	 Furthermore, a `&' in
	      the replacement string will be replaced with the matched	source
	      string,  and a backquoted digit `\N' will be replaced by the Nth
	      parenthesised expression matched.	 The form `\{N}' may  be  used
	      to protect the digit from following digits.

	      By default the previous source or replacement string will not be
	      offered for editing.  However, this feature can be activated  by
	      setting  the style edit-previous in the context :zle:widget (for
	      example, :zle:replace-string) to true.  In addition, a  positive
	      numeric  argument	 forces	 the  previous values to be offered, a
	      negative or zero argument forces them not to be.

	      The function replace-string-again can be used to repeat the pre‐
	      vious    replacement;   no   prompting   is   done.    As	  with
	      replace-string, if the name of  the  widget  contains  the  word
	      `pattern',  pattern matching is performed, else a literal string
	      replacement.  Note that the previous source and replacement text
	      are the same whether pattern or string matching is used.

	      For example, starting from the line:

		     print This line contains fan and fond

	      and  invoking replace-pattern with the source string `f(?)n' and
	      the replacement string `c\1r' produces the not very useful line:

		     print This line contains car and cord

	      The range of the replacement string can be limited by using  the
	      narrow-to-region-invisible  widget.   One limitation of the cur‐
	      rent version is that undo will  cycle  through  changes  to  the
	      replacement  and	source	strings before undoing the replacement
	      itself.

       smart-insert-last-word
	      This function may replace the insert-last-word widget, like so:

		     zle -N insert-last-word smart-insert-last-word

	      With a numeric prefix, or when passed command line arguments  in
	      a	 call  from  another widget, it behaves like insert-last-word,
	      except that words in comments are ignored when  INTERACTIVE_COM‐
	      MENTS is set.

	      Otherwise,  the rightmost ``interesting'' word from the previous
	      command is  found	 and  inserted.	  The  default	definition  of
	      ``interesting''  is  that	 the word contains at least one alpha‐
	      betic character, slash, or backslash.  This  definition  may  be
	      overridden  by use of the match style.  The context used to look
	      up the style is the widget  name,	 so  usually  the  context  is
	      :insert-last-word.   However, you can bind this function to dif‐
	      ferent widgets to use different patterns:

		     zle -N insert-last-assignment smart-insert-last-word
		     zstyle :insert-last-assignment match '[[:alpha:]][][[:alnum:]]#=*'
		     bindkey '\e=' insert-last-assignment

	      If no interesting word is found and the auto-previous  style  is
	      set  to  a  true	value, the search continues upward through the
	      history.	When auto-previous is unset or	false  (the  default),
	      the widget must be invoked repeatedly in order to search earlier
	      history lines.

       which-command
	      This function is a drop-in replacement for  the  builtin	widget
	      which-command.   It has enhanced behaviour, in that it correctly
	      detects whether or not the command word needs to be expanded  as
	      an  alias; if so, it continues tracing the command word from the
	      expanded alias until it reaches the command that	will  be  exe‐
	      cuted.

	      The  style whence is available in the context :zle:$WIDGET; this
	      may be set to an array to give the command and options that will
	      be  used	to investigate the command word found.	The default is
	      whence -c.

   Utility Functions
       These functions are useful in constructing  widgets.   They  should  be
       loaded  with  `autoload	-U  function'  and  called  as	indicated from
       user-defined widgets.

       split-shell-arguments
	      This function splits the line currently being edited into	 shell
	      arguments	 and  whitespace.   The	 result is stored in the array
	      reply.  The array contains all the parts of the line  in	order,
	      starting with any whitespace before the first argument, and fin‐
	      ishing with any whitespace after the last argument.   Hence  (so
	      long as the option KSH_ARRAYS is not set) whitespace is given by
	      odd indices in the array and arguments by	 even  indices.	  Note
	      that  no	stripping  of quotes is done; joining together all the
	      elements of reply in order is guaranteed to produce the original
	      line.

	      The  parameter  REPLY  is	 set to the index of the word in reply
	      which contains the character after the cursor, where  the	 first
	      element  has  index 1.  The parameter REPLY2 is set to the index
	      of the character under the cursor in that word, where the	 first
	      character has index 1.

	      Hence  reply,  REPLY  and REPLY2 should all be made local to the
	      enclosing function.

	      See the function modify-current-argument, described  below,  for
	      an example of how to call this function.

       modify-current-argument expr-using-$ARG
	      This  function provides a simple method of allowing user-defined
	      widgets to modify the command line argument under the cursor (or
	      immediately  to  the left of the cursor if the cursor is between
	      arguments).  The argument should be  an  expression  which  when
	      evaluated	 operates  on the shell parameter ARG, which will have
	      been set to the command line argument  under  the	 cursor.   The
	      expression  should be suitably quoted to prevent it being evalu‐
	      ated too early.

	      For example, a user-defined widget containing the following code
	      converts	the  characters	 in the argument under the cursor into
	      all upper case:

		     modify-current-argument '${(U)ARG}'

	      The following strips any quoting from the current word  (whether
	      backslashes  or  one  of	the styles of quotes), and replaces it
	      with single quoting throughout:

		     modify-current-argument '${(qq)${(Q)ARG}}'

   Styles
       The behavior of several of the above widgets can be controlled  by  the
       use of the zstyle mechanism.  In particular, widgets that interact with
       the completion system pass along their context to any completions  that
       they invoke.

       break-keys
	      This  style is used by the incremental-complete-word widget. Its
	      value should be a pattern, and all keys  matching	 this  pattern
	      will cause the widget to stop incremental completion without the
	      key having any further effect. Like all styles used directly  by
	      incremental-complete-word,  this	style  is  looked up using the
	      context `:incremental'.

       completer
	      The incremental-complete-word and insert-and-predict widgets set
	      up their top-level context name before calling completion.  This
	      allows one to define different sets of completer	functions  for
	      normal  completion  and  for these widgets.  For example, to use
	      completion, approximation and correction for normal  completion,
	      completion  and  correction  for incremental completion and only
	      completion for prediction one could use:

		     zstyle ':completion:*' completer \
			     _complete _correct _approximate
		     zstyle ':completion:incremental:*' completer \
			     _complete _correct
		     zstyle ':completion:predict:*' completer \
			     _complete

	      It is a good idea to restrict the completers used in prediction,
	      because  they  may  be  automatically  invoked as you type.  The
	      _list and _menu completers should never be used with prediction.
	      The  _approximate,  _correct, _expand, and _match completers may
	      be used, but be aware that they may change  characters  anywhere
	      in  the  word  behind the cursor, so you need to watch carefully
	      that the result is what you intended.

       cursor The insert-and-predict widget uses this style,  in  the  context
	      `:predict', to decide where to place the cursor after completion
	      has been tried.  Values are:

	      complete
		     The cursor is left where it was when completion finished,
		     but only if it is after a character equal to the one just
		     inserted by the user.  If it is after another  character,
		     this value is the same as `key'.

	      key    The  cursor is left after the nth occurrence of the char‐
		     acter just inserted, where n is the number of times  that
		     character	appeared  in  the  word	 before completion was
		     attempted.	 In short, this has the effect of leaving  the
		     cursor after the character just typed even if the comple‐
		     tion code found out that no other characters need	to  be
		     inserted at that position.

	      Any other value for this style unconditionally leaves the cursor
	      at the position where the completion code left it.

       list   When using the incremental-complete-word widget, this style says
	      if  the matches should be listed on every key press (if they fit
	      on the screen).  Use the context	prefix	`:completion:incremen‐
	      tal'.

	      The  insert-and-predict  widget uses this style to decide if the
	      completion should be shown even if there is  only	 one  possible
	      completion.   This  is  done  if	the value of this style is the
	      string always.  In this case  the	 context  is  `:predict'  (not
	      `:completion:predict').

       match  This  style  is used by smart-insert-last-word to provide a pat‐
	      tern (using full EXTENDED_GLOB syntax) that matches an interest‐
	      ing  word.   The	context	 is  the  name	of the widget to which
	      smart-insert-last-word is bound (see above).  The default behav‐
	      ior of smart-insert-last-word is equivalent to:

		     zstyle :insert-last-word match '*[[:alpha:]/\\]*'

	      However, you might want to include words that contain spaces:

		     zstyle :insert-last-word match '*[[:alpha:][:space:]/\\]*'

	      Or  include  numbers as long as the word is at least two charac‐
	      ters long:

		     zstyle :insert-last-word match '*([[:digit:]]?|[[:alpha:]/\\])*'

	      The above example causes redirections like "2>" to be included.

       prompt The incremental-complete-word widget shows  the  value  of  this
	      style  in	 the  status  line during incremental completion.  The
	      string value may contain any of the following substrings in  the
	      manner of the PS1 and other prompt parameters:

	      %c     Replaced  by the name of the completer function that gen‐
		     erated the matches (without the leading underscore).

	      %l     When the list style is set, replaced by `...' if the list
		     of	 matches  is too long to fit on the screen and with an
		     empty string otherwise.  If the list style is `false'  or
		     not set, `%l' is always removed.

	      %n     Replaced by the number of matches generated.

	      %s     Replaced  by  `-no	 match-',  `-no	 prefix-', or an empty
		     string if there is no completion matching the word on the
		     line, if the matches have no common prefix different from
		     the word on the line, or if there is such a  common  pre‐
		     fix, respectively.

	      %u     Replaced by the unambiguous part of all matches, if there
		     is any, and if it is different from the word on the line.

	      Like `break-keys', this uses the `:incremental' context.

       stop-keys
	      This style is used by the incremental-complete-word widget.  Its
	      value  is	 treated similarly to the one for the break-keys style
	      (and uses the same context: `:incremental').  However,  in  this
	      case  all keys matching the pattern given as its value will stop
	      incremental completion and will then execute their  usual	 func‐
	      tion.

       toggle This boolean style is used by predict-on and its related widgets
	      in the context `:predict'.  If set to one of the standard `true'
	      values, predictive typing is automatically toggled off in situa‐
	      tions where it is unlikely to be useful, such as when editing  a
	      multi-line  buffer or after moving into the middle of a line and
	      then deleting a character.  The default is to  leave  prediction
	      turned on until an explicit call to predict-off.

       verbose
	      This boolean style is used by predict-on and its related widgets
	      in the context `:predict'.  If set to one of the standard `true'
	      values,  these  widgets  display a message below the prompt when
	      the predictive state is toggled.	This is most useful in	combi‐
	      nation  with  the	 toggle	 style.	  The default does not display
	      these messages.

       widget This style is similar to the command style: For widget functions
	      that  use zle to call other widgets, this style can sometimes be
	      used to override the widget which is called.   The  context  for
	      this  style  is  the name of the calling widget (not the name of
	      the calling function, because one function may be bound to  mul‐
	      tiple widget names).

		     zstyle :copy-earlier-word widget smart-insert-last-word

	      Check  the  documentation	 for the calling widget or function to
	      determine whether the widget style is used.

EXCEPTION HANDLING
       Two functions are provided to enable zsh to provide exception  handling
       in a form that should be familiar from other languages.

       throw exception
	      The  function  throw throws the named exception.	The name is an
	      arbitrary string and is only used by the throw and  catch	 func‐
	      tions.   An exception is for the most part treated the same as a
	      shell error, i.e. an unhandled exception will cause the shell to
	      abort  all  processing  in a function or script and to return to
	      the top level in an interactive shell.

       catch exception-pattern
	      The function catch returns  status  zero	if  an	exception  was
	      thrown and the pattern exception-pattern matches its name.  Oth‐
	      erwise it returns status 1.   exception-pattern  is  a  standard
	      shell   pattern,	 respecting   the   current   setting  of  the
	      EXTENDED_GLOB option.  An alias catch is also defined to prevent
	      the  argument  to	 the function from matching filenames, so pat‐
	      terns may be used unquoted.  Note that  as  exceptions  are  not
	      fundamentally  different	from other shell errors it is possible
	      to catch shell errors by using an empty string as the  exception
	      name.   The shell variable CAUGHT is set by catch to the name of
	      the exception caught.  It is possible to rethrow an exception by
	      calling  the  throw  function  again  once an exception has been
	      caught.

       The functions are designed to be used together  with  the  always  con‐
       struct  described  in  zshmisc(1).  This is important as only this con‐
       struct provides the required support for exceptions.  A typical example
       is as follows.

	      {
		# "try" block
		# ... nested code here calls "throw MyExcept"
	      } always {
		# "always" block
		if catch MyExcept; then
		  print "Caught exception MyExcept"
		elif catch ''; then
		  print "Caught a shell error.	Propagating..."
		  throw ''
		fi
		# Other exceptions are not handled but may be caught further
		# up the call stack.
	      }

       If  all	exceptions  should  be	caught,	 the  following idiom might be
       preferable.

	      {
		# ... nested code here throws an exception
	      } always {
		if catch *; then
		  case $CAUGHT in
		    (MyExcept)
		    print "Caught my own exception"
		    ;;
		    (*)
		    print "Caught some other exception"
		    ;;
		  esac
		fi
	      }

       In common with exception handling in other languages, the exception may
       be  thrown by code deeply nested inside the `try' block.	 However, note
       that it must be thrown inside the current  shell,  not  in  a  subshell
       forked  for  a pipeline, parenthesised current-shell construct, or some
       form of command or process substitution.

       The system internally uses the shell variable EXCEPTION to  record  the
       name  of	 the exception between throwing and catching.  One drawback of
       this scheme is that if the exception is not handled the variable EXCEP‐
       TION  remains  set  and may be incorrectly recognised as the name of an
       exception if a shell error subsequently occurs.	Adding unset EXCEPTION
       at  the	start  of  the outermost layer of any code that uses exception
       handling will eliminate this problem.

MIME FUNCTIONS
       Three functions are available to provide handling of  files  recognised
       by extension, for example to dispatch a file text.ps when executed as a
       command to an appropriate viewer.

       zsh-mime-setup [-flv]
       zsh-mime-handler
	      These  two   functions   use   the   files   ~/.mime.types   and
	      /etc/mime.types,	which  associate types and extensions, as well
	      as ~/.mailcap and /etc/mailcap files, which associate types  and
	      the  programs that handle them.  These are provided on many sys‐
	      tems with the Multimedia Internet Mail Extensions.

	      To enable the system,  the  function  zsh-mime-setup  should  be
	      autoloaded  and  run.   This  allows files with extensions to be
	      treated as executable; such files be completed by	 the  function
	      completion  system.   The	 function  zsh-mime-handler should not
	      need to be called by the user.

	      The system works by setting up suffix aliases with  `alias  -s'.
	      Suffix  aliases  already installed by the user will not be over‐
	      written.

	      Repeated calls to zsh-mime-setup do not  override	 the  existing
	      mapping  between suffixes and executable files unless the option
	      -f is given.  Note, however, that this does not override	exist‐
	      ing suffix aliases assigned to handlers other than zsh-mime-han‐
	      dler.  Calling zsh-mime-setup  with  the	option	-l  lists  the
	      existing mappings without altering them.	Calling zsh-mime-setup
	      with the option -v causes verbose output to be shown during  the
	      setup operation.

	      The  system  respects  the mailcap flags needsterminal and copi‐
	      ousoutput, see mailcap(4).

	      The functions use the following styles, which are	 defined  with
	      the  zstyle builtin command (see zshmodules(1)).	They should be
	      defined before zsh-mime-setup is run.   The  contexts  used  all
	      start with :mime:, with additional components in some cases.  It
	      is recommended that a trailing * (suitably quoted)  be  appended
	      to  style	 patterns  in  case  the system is extended in future.
	      Some examples are given below.
	      current-shell
		     If this boolean style is true, the	 mailcap  handler  for
		     the  context  in  question	 is run using the eval builtin
		     instead of by starting a new sh process.	This  is  more
		     efficient, but may not work in the occasional cases where
		     the mailcap handler uses strict POSIX syntax.

	      execute-as-is
		     This style gives a list of patterns to be matched against
		     files  passed  for	 execution with a handler program.  If
		     the file matches the pattern, the entire command line  is
		     executed  in  its current form, with no handler.  This is
		     useful for files which might have suffixes	 but  nonethe‐
		     less  be  executable in their own right.  If the style is
		     not set, the pattern *(*) *(/) is used; hence  executable
		     files  are executed directly and not passed to a handler,
		     and the option AUTO_CD may be used to change to  directo‐
		     ries that happen to have MIME suffixes.

	      file-path
		     Used  if the style find-file-in-path is true for the same
		     context.  Set to an array of directories  that  are  used
		     for  searching for the file to be handled; the default is
		     the command path given by	the  special  parameter	 path.
		     The  shell option PATH_DIRS is respected; if that is set,
		     the appropriate path will be searched even if the name of
		     the  file to be handled as it appears on the command line
		     contains a `/'.  The full context is  :mime:.suffix:,  as
		     described for the style handler.

	      find-file-in-path
		     If	 set, allows files whose names do not contain absolute
		     paths to be searched for in the command path or the  path
		     specified	by  the	 file-path  style.  If the file is not
		     found in the path, it is looked for locally  (whether  or
		     not  the  current directory is in the path); if it is not
		     found locally, the handler will  abort  unless  the  han‐
		     dle-nonexistent  style  is	 set.  Files found in the path
		     are tested as described for the style execute-as-is.  The
		     full  context  is	:mime:.suffix:,	 as  described for the
		     style handler.

	      flags  Defines flags to go with a handler; the context is as for
		     the  handler style, and the format is as for the flags in
		     mailcap.

	      handle-nonexistent
		     By default, arguments that don't correspond to files  are
		     not  passed  to  the  MIME handler in order to prevent it
		     from intercepting commands found in the path that	happen
		     to	 have  suffixes.  This style may be set to an array of
		     extended glob patterns for arguments that will be	passed
		     to	 the  handler  even if they don't exist.  If it is not
		     explicitly	 set  it  defaults  to	[[:alpha:]]#:/*	 which
		     allows  URLs to be passed to the MIME handler even though
		     they don't exist in that format in the file system.   The
		     full  context  is	:mime:.suffix:,	 as  described for the
		     style handler.

	      handler
		     Specifies a handler for a suffix; the suffix is given  by
		     the context as :mime:.suffix:, and the format of the han‐
		     dler is exactly that in mailcap.  Note in particular  the
		     `.'  and  trailing	 colon	to distinguish this use of the
		     context.  This overrides any  handler  specified  by  the
		     mailcap  files.   If the handler requires a terminal, the
		     flags style should be set to include the word needstermi‐
		     nal,  or if the output is to be displayed through a pager
		     (but not if the handler is itself	a  pager),  it	should
		     include copiousoutput.

	      mailcap
		     A	 list  of  files  in  the  format  of  ~/.mailcap  and
		     /etc/mailcap to  be  read	during	setup,	replacing  the
		     default list which consists of those two files.  The con‐
		     text is :mime:.  A + in the list will be replaced by  the
		     default files.

	      mailcap-priorities
		     This  style  is  used to resolve multiple mailcap entries
		     for the same MIME type.  It consists of an array  of  the
		     following	elements,  in  descending  order  of priority;
		     later entries will be used if earlier entries are	unable
		     to	 resolve  the  entries being compared.	If none of the
		     tests resolve the entries, the first entry encountered is
		     retained.

		     files  The	 order of files (entries in the mailcap style)
			    read.  Earlier files are  preferred.   (Note  this
			    does not resolve entries in the same file.)

		     priority
			    The	 priority  flag	 from  the mailcap entry.  The
			    priority is an  integer  from  0  to  9  with  the
			    default value being 5.

		     flags  The test given by the mailcap-prio-flags option is
			    used to resolve entries.

		     place  Later entries are preferred; as  the  entries  are
			    strictly ordered, this test always succeeds.

		     Note that as this style is handled during initialisation,
		     the context is always :mime:, with no  discrimination  by
		     suffix.

	      mailcap-prio-flags
		     This  style is used when the keyword flags is encountered
		     in the list of tests specified by the  mailcap-priorities
		     style.   It  should be set to a list of patterns, each of
		     which is tested against the flags specified in the	 mail‐
		     cap  entry (in other words, the sets of assignments found
		     with some entries in the mailcap file).  Earlier patterns
		     in the list are preferred to later ones, and matched pat‐
		     terns are preferred to unmatched ones.

	      mime-types
		     A list of	files  in  the	format	of  ~/.mime.types  and
		     /etc/mime.types  to  be  read during setup, replacing the
		     default list which consists of those two files.  The con‐
		     text  is :mime:.  A + in the list will be replaced by the
		     default files.

	      never-background
		     If this boolean style is set, the handler for  the	 given
		     context  is  always  run  in  the foreground, even if the
		     flags provided in the mailcap entry suggest it  need  not
		     be (for example, it doesn't require a terminal).

	      pager  If	 set, will be used instead of $PAGER or more to handle
		     suffixes where the copiousoutput flag is set.   The  con‐
		     text  is as for handler, i.e. :mime:.suffix: for handling
		     a file with the given suffix.

	      Examples:

		     zstyle ':mime:*' mailcap ~/.mailcap /usr/local/etc/mailcap
		     zstyle ':mime:.txt:' handler less %s
		     zstyle ':mime:.txt:' flags needsterminal

	      When zsh-mime-setup is subsequently run, it will look for	 mail‐
	      cap  entries  in the two files given.  Files of suffix .txt will
	      be handled by running `less file.txt'.  The  flag	 needsterminal
	      is  set  to show that this program must run attached to a termi‐
	      nal.

	      As there are several steps to dispatching a command, the follow‐
	      ing  should be checked if attempting to execute a file by exten‐
	      sion .ext does not have the expected effect.

	      The command `alias -s ext'  should  show	`ps=zsh-mime-handler'.
	      If  it  shows  something	else, another suffix alias was already
	      installed and was not overwritten.  If it shows nothing, no han‐
	      dler  was installed:  this is most likely because no handler was
	      found in the .mime.types and mailcap combination for .ext files.
	      In   that	  case,	  appropriate  handling	 should	 be  added  to
	      ~/.mime.types and mailcap.

	      If the extension is handled by zsh-mime-handler but the file  is
	      not opened correctly, either the handler defined for the type is
	      incorrect, or the flags associated with it are  in  appropriate.
	      Running  zsh-mime-setup  -l  will show the handler and, if there
	      are any, the flags.  A %s in the handler is replaced by the file
	      (suitably	 quoted if necessary).	Check that the handler program
	      listed lists and can be run in the way shown.  Also  check  that
	      the  flags needsterminal or copiousoutput are set if the handler
	      needs to be run under a terminal; the second flag is used if the
	      output  should  be  sent	to  a pager.  An example of a suitable
	      mailcap entry for such a program is:

		     text/html; /usr/bin/lynx '%s'; needsterminal

       pick-web-browser
	      This function is separate from the two MIME functions  described
	      above and can be assigned directly to a suffix:

		     autoload -U pick-web-browser
		     alias -s html=pick-web-browser

	      It  is  provided	as  an intelligent front end to dispatch a web
	      browser.	It may be run as either a function or a shell  script.
	      The status 255 is returned if no browser could be started.

	      Various	styles	are  available	to  customize  the  choice  of
	      browsers:

	      browser-style
		     The value of the style is an array giving preferences  in
		     decreasing	 order	for  the  type of browser to use.  The
		     values of elements may be

		     running
			    Use a GUI browser that is already running when  an
			    X  Window  display	is  available.	 The  browsers
			    listed in the x-browsers style are tried in	 order
			    until  one	is  found;  if it is, the file will be
			    displayed in that browser, so the user may need to
			    check  whether  it	has  appeared.	 If no running
			    browser is found, one is  not  started.   Browsers
			    other   than  Firefox,  Opera  and	Konqueror  are
			    assumed to understand the Mozilla syntax for open‐
			    ing a URL remotely.

		     x	    Start  a  new GUI browser when an X Window display
			    is available.  Search for the availability of  one
			    of the browsers listed in the x-browsers style and
			    start the first one that is found.	 No  check  is
			    made for an already running browser.

		     tty    Start  a  terminal-based  browser.	Search for the
			    availability of one of the browsers listed in  the
			    tty-browsers style and start the first one that is
			    found.

		     If the style is not set the  default  running  x  tty  is
		     used.

	      x-browsers
		     An array in decreasing order of preference of browsers to
		     use when running under the X Window  System.   The	 array
		     consists  of  the	command	 name under which to start the
		     browser.  They are looked up in the context :mime: (which
		     may  be  extended	in  future, so appending `*' is recom‐
		     mended).  For example,

			    zstyle ':mime:*' x-browsers opera konqueror firefox

		     specifies that pick-web-browser should first look	for  a
		     running  instance of Opera, Konqueror or Firefox, in that
		     order, and if it fails to	find  any  should  attempt  to
		     start  Opera.   The  default  is firefox mozilla netscape
		     opera konqueror.

	      tty-browsers
		     An array similar to  x-browsers,  except  that  it	 gives
		     browsers  to  use	use when no X Window display is avail‐
		     able.  The default is elinks links lynx.

	      command
		     If it is set this style is used to pick the command  used
		     to	  open	 a   page  for	a  browser.   The  context  is
		     :mime:browser:new:$browser: to start  a  new  browser  or
		     :mime:browser:running:$browser:   to  open	 a  URL	 in  a
		     browser already running on the current X  display,	 where
		     $browser  is  the	value  matched	in  the	 x-browsers or
		     tty-browsers  style.   The	 escape	 sequence  %b  in  the
		     style's  value  will be replaced by the browser, while %u
		     will be replaced by the URL.  If the style	 is  not  set,
		     the  default for all new instances is equivalent to %b %u
		     and the defaults for using running browsers  are  equiva‐
		     lent  to  the  values kfmclient openURL %u for Konqueror,
		     firefox -new-tab %u for Firefox, opera  -newpage  %u  for
		     Opera, and %b -remote "openUrl(%u)" for all others.

MATHEMATICAL FUNCTIONS
       zcalc [ expression ... ]
	      A reasonably powerful calculator based on zsh's arithmetic eval‐
	      uation facility.	The syntax is similar to that of  formulae  in
	      most  programming languages; see the section `Arithmetic Evalua‐
	      tion' in	zshmisc(1)  for	 details.   The	 mathematical  library
	      zsh/mathfunc  will be loaded if it is available; see the section
	      `The zsh/mathfunc Module' in  zshmodules(1).   The  mathematical
	      functions correspond to the raw system libraries, so trigonomet‐
	      ric functions are evaluated using radians, and so on.

	      Each line typed is evaluated as an expression.  The prompt shows
	      a	 number, which corresponds to a positional parameter where the
	      result of that calculation is stored.  For example,  the	result
	      of the calculation on the line preceded by `4> ' is available as
	      $4.  The last value calculated is available as ans.   Full  com‐
	      mand  line  editing,  including the history of previous calcula‐
	      tions,  is  available;  the  history  is	saved  in   the	  file
	      ~/.zcalc_history.	  To  exit,  enter a blank line or type `q' on
	      its own.

	      If arguments are given to zcalc on start up, they	 are  used  to
	      prime  the first few positional parameters.  A visual indication
	      of this is given when the calculator starts.

	      The constants PI (3.14159...) and E (2.71828...)	are  provided.
	      Parameter	 assignment  is possible, but note that all parameters
	      will be put into the global namespace.

	      The output  base	can  be	 initialised  by  passing  the	option
	      `-#base',	 for  example  `zcalc  -#16'  (the  `#' may have to be
	      quoted, depending on the globbing options set).

	      The prompt is configurable via the parameter ZCALCPROMPT,	 which
	      undergoes	 standard  prompt expansion.  The index of the current
	      entry is stored locally in the first element of the array psvar,
	      which  can  be referred to in ZCALCPROMPT as `%1v'.  The default
	      prompt is `%1v> '.

	      The output precision may be specified within  zcalc  by  special
	      commands familiar from many calculators:
	      norm   The  default output format.  It corresponds to the printf
		     %g specification.	Typically this shows six decimal  dig‐
		     its.

	      sci digits
		     Scientific	 notation, corresponding to the printf %g out‐
		     put format with the precision given by digits.  This pro‐
		     duces  either fixed point or exponential notation depend‐
		     ing on the value output.

	      fix digits
		     Fixed point notation, corresponding to the printf %f out‐
		     put format with the precision given by digits.

	      eng digits
		     Exponential notation, corresponding to the printf %E out‐
		     put format with the precision given by digits.

	      Other special commands:
	      local arg ...
		     Declare variables local to the function.  Note that  cer‐
		     tain  variables are used by the function for its own pur‐
		     poses.  Other variables may be used, too, but  they  will
		     be taken from or put into the global scope.

	      function name [ body ]
		     Define  a	mathematical function or (with no body) delete
		     it.  The function	is  defined  using  zmathfuncdef,  see
		     below.

		     Note  that	 zcalc	takes  care of all quoting.  Hence for
		     example:

			    function cube $1 * $1 * $1

		     defines a function to cube the sole argument.

	      [#base]
		     When this syntax appears on a line by itself, the default
		     output  radix  is set to base.  Use, for example, `[#16]'
		     to display hexadecimal output preceded by	an  indication
		     of	 the  base, or `[##16]' just to display the raw number
		     in the given base.	 Bases themselves are always specified
		     in	 decimal.  `[#]'  restores  the	 normal output format.
		     Note that setting	an  output  base  suppresses  floating
		     point output; use `[#]' to return to normal operation.

		     +.RE

	      See the comments in the function for a few extra tips.

       zmathfuncdef mathfunc [ body ]
	      A convenient front end to functions -M.

	      With  two	 arguments, define a mathematical function named math‐
	      func which can be used in any  form  of  arithmetic  evaluation.
	      body is a mathematical expression to implement the function.  It
	      may contain references to position parameters $1,	 $2,  ...   to
	      refer  to	 mandatory parameters and ${1:-defvalue} ...  to refer
	      to optional parameters.  Note that the forms  must  be  strictly
	      adhered  to  for the function to calculate the correct number of
	      arguments.  The implementation is held in a shell function named
	      zsh_math_func_mathfunc;  usually the user will not need to refer
	      to the shell function directly.

	      With one argument, remove the mathematical function mathfunc  as
	      well as the shell function implementation.

USER CONFIGURATION FUNCTIONS
       The  zsh/newuser	 module	 comes	with  a function to aid in configuring
       shell options for new users.  If the module is installed, this function
       can  also be run by hand.  It is available even if the module's default
       behaviour, namely running the function for a new user logging in	 with‐
       out startup files, is inhibited.

       zsh-newuser-install [ -f ]
	      The  function  presents  the  user with various options for cus‐
	      tomizing their initialization scripts.  Currently only  ~/.zshrc
	      is  handled.   $ZDOTDIR/.zshrc  is used instead if the parameter
	      ZDOTDIR is set; this provides a way for the user to configure  a
	      file without altering an existing .zshrc.

	      By default the function exits immediately if it finds any of the
	      files .zshenv, .zprofile, .zshrc, or .zlogin in the  appropriate
	      directory.   The	option	-f  is	required in order to force the
	      function to continue.  Note  this	 may  happen  even  if	.zshrc
	      itself does not exist.

	      As  currently  configured, the function will exit immediately if
	      the user has root privileges; this behaviour cannot be  overrid‐
	      den.

	      Once  activated,	the  function's	 behaviour  is	supposed to be
	      self-explanatory.	 Menus are present allowing the user to	 alter
	      the  value  of options and parameters.  Suggestions for improve‐
	      ments are always welcome.

	      When the script exits, the user is given the opportunity to save
	      the  new	file  or  not; changes are not irreversible until this
	      point.  However, the script is careful to	 restrict  changes  to
	      the file only to a group marked by the lines `# Lines configured
	      by zsh-newuser-install'  and  `#	End  of	 lines	configured  by
	      zsh-newuser-install'.  In addition, the old version of .zshrc is
	      saved to a file with the suffix .zni appended.

	      If the function edits an existing .zshrc, it is up to  the  user
	      to  ensure that the changes made will take effect.  For example,
	      if control usually returns early from the	 existing  .zshrc  the
	      lines  will  not be executed; or a later initialization file may
	      override options or parameters, and so on.  The function	itself
	      does not attempt to detect any such conflicts.

OTHER FUNCTIONS
       There  are  a  large  number of helpful functions in the Functions/Misc
       directory of the zsh distribution.  Most are very  simple  and  do  not
       require documentation here, but a few are worthy of special mention.

   Descriptions
       colors This  function  initializes  several  associative	 arrays to map
	      color names to (and from) the ANSI standard eight-color terminal
	      codes.   These  are used by the prompt theme system (see above).
	      You seldom should need to run colors more than once.

	      The eight base colors are:  black,  red,	green,	yellow,	 blue,
	      magenta,	cyan,  and  white.   Each of these has codes for fore‐
	      ground and background.  In addition there	 are  eight  intensity
	      attributes:  bold,  faint,  standout, underline, blink, reverse,
	      and conceal.  Finally,  there  are  six  codes  used  to	negate
	      attributes:  none (reset all attributes to the defaults), normal
	      (neither bold nor faint), no-standout,  no-underline,  no-blink,
	      and no-reverse.

	      Some  terminals  do  not	support all combinations of colors and
	      intensities.

	      The associative arrays are:

	      color
	      colour Map all the color names to their integer codes, and inte‐
		     ger  codes	 to the color names.  The eight base names map
		     to the foreground color codes, as do names prefixed  with
		     `fg-', such as `fg-red'.  Names prefixed with `bg-', such
		     as `bg-blue', refer to the background codes.  The reverse
		     mapping  from  code  to  color yields base name for fore‐
		     ground codes and the bg- form for backgrounds.

		     Although it is a misnomer to call	them  `colors',	 these
		     arrays  also map the other fourteen attributes from names
		     to codes and codes to names.

	      fg
	      fg_bold
	      fg_no_bold
		     Map the eight basic color names to ANSI  terminal	escape
		     sequences	that  set  the	corresponding  foreground text
		     properties.  The fg sequences change  the	color  without
		     changing the eight intensity attributes.

	      bg
	      bg_bold
	      bg_no_bold
		     Map  the  eight basic color names to ANSI terminal escape
		     sequences that set the corresponding  background  proper‐
		     ties.  The bg sequences change the color without changing
		     the eight intensity attributes.

	      In addition, the scalar parameters  reset_color  and  bold_color
	      are  set	to  the	 ANSI  terminal	 escapes  that	turn  off  all
	      attributes and turn on bold intensity, respectively.

       fned name
	      Same as zed -f.  This function does not appear in the  zsh  dis‐
	      tribution, but can be created by linking zed to the name fned in
	      some directory in your fpath.

       is-at-least needed [ present ]
	      Perform a greater-than-or-equal-to  comparison  of  two  strings
	      having  the format of a zsh version number; that is, a string of
	      numbers and text with segments separated by dots or dashes.   If
	      the  present string is not provided, $ZSH_VERSION is used.  Seg‐
	      ments are paired left-to-right in the two strings	 with  leading
	      non-number parts ignored.	 If one string has fewer segments than
	      the other, the missing segments are considered zero.

	      This is useful in startup files to set options and  other	 state
	      that are not available in all versions of zsh.

		     is-at-least 3.1.6-15 && setopt NO_GLOBAL_RCS
		     is-at-least 3.1.0 && setopt HIST_REDUCE_BLANKS
		     is-at-least 2.6-17 || print "You can't use is-at-least here."

       nslookup [ arg ... ]
	      This  wrapper  function  for  the	 nslookup command requires the
	      zsh/zpty module (see zshmodules(1)).  It	behaves	 exactly  like
	      the  standard  nslookup  except  that  it	 provides customizable
	      prompts  (including  a  right-side  prompt)  and	completion  of
	      nslookup	commands,  host	 names,	 etc.  (if  you	 use the func‐
	      tion-based completion system).  Completion  styles  may  be  set
	      with the context prefix `:completion:nslookup'.

	      See also the pager, prompt and rprompt styles below.

       run-help cmd
	      This function is designed to be invoked by the run-help ZLE wid‐
	      get, in place of the  default  alias.   See  `Accessing  On-Line
	      Help' above for setup instructions.

	      In the discussion which follows, if cmd is a filesystem path, it
	      is first reduced to its rightmost component (the file name).

	      Help is first sought by looking for a  file  named  cmd  in  the
	      directory	 named by the HELPDIR parameter.  If no file is found,
	      an assistant function, alias, or command named  run-help-cmd  is
	      sought.	If  found,  the assistant is executed with the rest of
	      the current command line (everything after the command name cmd)
	      as its arguments.	 When neither file nor assistant is found, the
	      external command `man cmd' is run.

	      An example assistant for the "ssh" command:

		     run-help-ssh() {
			 emulate -LR zsh
			 local -a args
			 # Delete the "-l username" option
			 zparseopts -D -E -a args l:
			 # Delete other options, leaving: host command
			 args=(${@:#-*})
			 if [[ ${#args} -lt 2 ]]; then
			     man ssh
			 else
			     run-help $args[2]
			 fi
		     }

	      Several of these assistants are provided in  the	Functions/Misc
	      directory.   These  must	be autoloaded, or placed as executable
	      scripts in your search path, in order to be found	 and  used  by
	      run-help.

	      run-help-git
	      run-help-svk
	      run-help-svn
		     Assistant functions for the git, svk, and svn commands.

       tetris Zsh  was once accused of not being as complete as Emacs, because
	      it lacked a Tetris game.	This function was  written  to	refute
	      this vicious slander.

	      This function must be used as a ZLE widget:

		     autoload -U tetris
		     zle -N tetris
		     bindkey keys tetris

	      To  start	 a game, execute the widget by typing the keys.	 What‐
	      ever command line you were editing disappears  temporarily,  and
	      your  keymap  is also temporarily replaced by the Tetris control
	      keys.  The previous editor state is restored when you  quit  the
	      game (by pressing `q') or when you lose.

	      If  you quit in the middle of a game, the next invocation of the
	      tetris widget will continue where you left off.  If you lost, it
	      will start a new game.

       zargs [ option ... -- ] [ input ... ] [ -- command [ arg ... ] ]
	      This function works like GNU xargs, except that instead of read‐
	      ing lines of arguments from the standard input,  it  takes  them
	      from  the	 command line.	This is useful because zsh, especially
	      with recursive glob operators, often  can	 construct  a  command
	      line for a shell function that is longer than can be accepted by
	      an external command.

	      The option list represents options of the zargs command  itself,
	      which  are  the  same  as those of xargs.	 The input list is the
	      collection of strings (often file names) that become  the	 argu‐
	      ments  of the command, analogous to the standard input of xargs.
	      Finally, the arg	list  consists	of  those  arguments  (usually
	      options)	that are passed to the command each time it runs.  The
	      arg list precedes the elements from the input list in each  run.
	      If no command is provided, then no arg list may be provided, and
	      in that event the default command is `print' with arguments  `-r
	      --'.

	      For  example, to get a long ls listing of all plain files in the
	      current directory or its subdirectories:

		     autoload -U zargs
		     zargs -- **/*(.) -- ls -l

	      Note that `--' is used both to mark the end of the  option  list
	      and  to  mark the end of the input list, so it must appear twice
	      whenever the input list may be empty.  If there is guaranteed to
	      be  at least one input and the first input does not begin with a
	      `-', then the first `--' may be omitted.

	      In the event that the string `--' is or may be an input, the  -e
	      option  may  be  used  to change the end-of-inputs marker.  Note
	      that this does not change the end-of-options marker.  For	 exam‐
	      ple, to use `..' as the marker:

		     zargs -e.. -- **/*(.) .. ls -l

	      This  is a good choice in that example because no plain file can
	      be named `..', but the best end-marker depends  on  the  circum‐
	      stances.

	      For  details  of	the  other  zargs options, see xargs(1) or run
	      zargs with the --help option.

       zed [ -f ] name
       zed -b This function uses the ZLE editor to edit a file or function.

	      Only one name argument is allowed.  If the -f option  is	given,
	      the  name	 is taken to be that of a function; if the function is
	      marked for autoloading, zed searches for it  in  the  fpath  and
	      loads  it.   Note	 that  functions edited this way are installed
	      into the current shell, but not written  back  to	 the  autoload
	      file.

	      Without  -f,  name  is  the path name of the file to edit, which
	      need not exist; it is created on write, if necessary.

	      While editing, the function sets the main keymap to zed and  the
	      vi  command  keymap to zed-vicmd.	 These will be copied from the
	      existing main and vicmd keymaps if they do not exist  the	 first
	      time  zed is run.	 They can be used to provide special key bind‐
	      ings used only in zed.

	      If it creates the keymap, zed rebinds the return key to insert a
	      line  break and `^X^W' to accept the edit in the zed keymap, and
	      binds `ZZ' to accept the edit in the zed-vicmd keymap.

	      The bindings alone can be installed by running `zed  -b'.	  This
	      is  suitable  for	 putting  into	a startup file.	 Note that, if
	      rerun, this  will	 overwrite  the	 existing  zed	and  zed-vicmd
	      keymaps.

	      Completion  is available, and styles may be set with the context
	      prefix `:completion:zed'.

	      A zle widget zed-set-file-name is available.  This can be called
	      by  name	from  within  zed using `\ex zed-set-file-name' (note,
	      however, that because of zed's rebindings you will have to  type
	      ^j  at  the end instead of the return key), or can be bound to a
	      key in either of the zed or zed-vicmd keymaps after `zed -b' has
	      been  run.  When the widget is called, it prompts for a new name
	      for the file being edited.  When zed  exits  the	file  will  be
	      written  under  that  name  and  the  original file will be left
	      alone.  The widget has no effect with `zed -f'.

	      While zed-set-file-name is running, zed uses the keymap zed-nor‐
	      mal-keymap,  which  is  linked from the main keymap in effect at
	      the time zed initialised its bindings.  (This  is	 to  make  the
	      return  key  operate  normally.)	The result is that if the main
	      keymap has been changed, the widget won't notice.	 This is not a
	      concern for most users.

       zcp [ -finqQvwW ] srcpat dest
       zln [ -finqQsvwW ] srcpat dest
	      Same as zmv -C and zmv -L, respectively.	These functions do not
	      appear in the zsh distribution, but can be  created  by  linking
	      zmv to the names zcp and zln in some directory in your fpath.

       zkbd   See `Keyboard Definition' above.

       zmv  [ -finqQsvwW ] [ -C | -L | -M | -p program ] [ -o optstring ] src‐
       pat dest
	      Move (usually, rename) files matching the pattern srcpat to cor‐
	      responding  files	 having names of the form given by dest, where
	      srcpat contains parentheses surrounding patterns which  will  be
	      replaced in turn by $1, $2, ... in dest.	For example,

		     zmv '(*).lis' '$1.txt'

	      renames	 `foo.lis'   to	  `foo.txt',   `my.old.stuff.lis'   to
	      `my.old.stuff.txt', and so on.

	      The pattern is always treated as an EXTENDED_GLOB pattern.   Any
	      file  whose  name	 is  not changed by the substitution is simply
	      ignored.	Any error (a substitution resulted in an empty string,
	      two  substitutions  gave the same result, the destination was an
	      existing regular file and -f was not given)  causes  the	entire
	      function to abort without doing anything.

	      Options:

	      -f     Force  overwriting	 of  destination files.	 Not currently
		     passed down to the mv/cp/ln command due  to  vagaries  of
		     implementations (but you can use -o-f to do that).
	      -i     Interactive:  show	 each  line to be executed and ask the
		     user whether to execute it.  `Y' or `y' will execute  it,
		     anything  else  will skip it.  Note that you just need to
		     type one character.
	      -n     No execution: print what would happen, but don't do it.
	      -q     Turn bare glob qualifiers off: now assumed by default, so
		     this has no effect.
	      -Q     Force bare glob qualifiers on.  Don't turn this on unless
		     you are actually using glob qualifiers in a pattern.
	      -s     Symbolic, passed down to ln; only works with -L.
	      -v     Verbose: print each command as it's being executed.
	      -w     Pick out wildcard parts  of  the  pattern,	 as  described
		     above,  and  implicitly  add parentheses for referring to
		     them.
	      -W     Just like -w, with the addition of turning	 wildcards  in
		     the replacement pattern into sequential ${1} .. ${N} ref‐
		     erences.
	      -C
	      -L
	      -M     Force cp, ln or mv, respectively, regardless of the  name
		     of the function.
	      -p program
		     Call  program instead of cp, ln or mv.  Whatever it does,
		     it should at least understand the form `program  --  old‐
		     name  newname'  where  oldname  and newname are filenames
		     generated by zmv.
	      -o optstring
		     The optstring is split into words and passed down	verba‐
		     tim  to  the  cp,	ln or mv command called to perform the
		     work.  It should probably begin with a `-'.

	      Further examples:

		     zmv -v '(* *)' '${1// /_}'

	      For any file in the current directory with at least one space in
	      the  name,  replace every space by an underscore and display the
	      commands executed.

	      For more complete examples and other implementation details, see
	      the  zmv	source file, usually located in one of the directories
	      named in your fpath, or in Functions/Misc/zmv in the zsh distri‐
	      bution.

       zrecompile
	      See `Recompiling Functions' above.

       zstyle+ context style value [ + subcontext style value ... ]
	      This  makes  defining styles a bit simpler by using a single `+'
	      as a special token that allows you to append a context  name  to
	      the previously used context name.	 Like this:

		     zstyle+ ':foo:bar' style1 value1 \
			   + ':baz'	style2 value2 \
			   + ':frob'	style3 value3

	      This  defines `style1' with `value1' for the context :foo:bar as
	      usual, but it also defines `style2' with `value2' for  the  con‐
	      text  :foo:bar:baz and `style3' with `value3' for :foo:bar:frob.
	      Any subcontext may be the empty string to re-use the first  con‐
	      text unchanged.

   Styles
       insert-tab
	      The  zed function sets this style in context `:completion:zed:*'
	      to turn off completion when TAB is typed at the beginning	 of  a
	      line.   You may override this by setting your own value for this
	      context and style.

       pager  The nslookup  function  looks  up	 this  style  in  the  context
	      `:nslookup' to determine the program used to display output that
	      does not fit on a single screen.

       prompt
       rprompt
	      The nslookup  function  looks  up	 this  style  in  the  context
	      `:nslookup' to set the prompt and the right-side prompt, respec‐
	      tively.  The usual expansions for the PS1	 and  RPS1  parameters
	      may be used (see zshmisc(1)).

ZSHALL(1)							     ZSHALL(1)

FILES
       $ZDOTDIR/.zshenv
       $ZDOTDIR/.zprofile
       $ZDOTDIR/.zshrc
       $ZDOTDIR/.zlogin
       $ZDOTDIR/.zlogout
       ${TMPPREFIX}*   (default is /tmp/zsh*)
       /etc/zshenv
       /etc/zprofile
       /etc/zshrc
       /etc/zlogin
       /etc/zlogout    (installation-specific - /etc is the default)

SEE ALSO
       sh(1), csh(1), tcsh(1), rc(1), bash(1), ksh(1)

       IEEE  Standard  for  information Technology - Portable Operating System
       Interface (POSIX) - Part 2: Shell and Utilities, IEEE Inc,  1993,  ISBN
       1-55937-255-9.

zsh 4.3.6			 April 2, 2008			     ZSHALL(1)
[top]

List of man pages available for SuSE

Copyright (c) for man pages and the logo by the respective OS vendor.

For those who want to learn more, the polarhome community provides shell access and support.

[legal] [privacy] [GNU] [policy] [cookies] [netiquette] [sponsors] [FAQ]
Tweet
Polarhome, production since 1999.
Member of Polarhome portal.
Based on Fawad Halim's script.
....................................................................
Vote for polarhome
Free Shell Accounts :: the biggest list on the net